1
|
Yamashita S. Late-onset primary muscle diseases mimicking sarcopenia. Geriatr Gerontol Int 2024; 24:1099-1110. [PMID: 39402847 DOI: 10.1111/ggi.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
Sarcopenia is an age-related loss of skeletal muscle mass, strength, and function that causes various health problems. In contrast, late-onset primary myopathies, which occur in the older population, are caused by a variety of factors, including genetic mutations, autoimmune processes, and metabolic abnormalities. Although sarcopenia and primary myopathy are two distinct disease processes, their symptoms can overlap, making differentiation challenging. The diagnostic criteria for sarcopenia have evolved over time, and various criteria have been proposed by expert groups. Late-onset primary muscle diseases such as inclusion body myositis, sporadic late-onset nemaline myopathy, muscular dystrophies, distal myopathies, myofibrillar myopathies, metabolic myopathies, and mitochondrial myopathies share common pathogenic mechanisms with sarcopenia, further complicating the diagnostic process. Appropriate clinical evaluation, including detailed history-taking, physical examination, and diagnostic testing, is essential for accurate diagnosis and management. Treatment approaches, including exercise, nutritional support, and disease-specific therapies, must be tailored to the characteristics of each disease. Despite these differences, sarcopenia and primary myopathies require careful consideration in the clinical setting for proper diagnosis and management. This review outlines the evolution of diagnostic criteria and diagnostic items for sarcopenia, late-onset primary myopathies that should be differentiated from sarcopenia, common pathomechanisms, and diagnostic algorithms to properly differentiate primary myopathies. Geriatr Gerontol Int 2024; 24: 1099-1110.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Neurology, International University of Health and Welfare Narita Hospital, Narita, Japan
| |
Collapse
|
2
|
Văcăraş V, Vulturar R, Chiş A, Damian L. Inclusion body myositis, viral infections, and TDP-43: a narrative review. Clin Exp Med 2024; 24:91. [PMID: 38693436 PMCID: PMC11062973 DOI: 10.1007/s10238-024-01353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The ubiquitous RNA-processing molecule TDP-43 is involved in neuromuscular diseases such as inclusion body myositis, a late-onset acquired inflammatory myopathy. TDP-43 solubility and function are disrupted in certain viral infections. Certain viruses, high viremia, co-infections, reactivation of latent viruses, and post-acute expansion of cytotoxic T cells may all contribute to inclusion body myositis, mainly in an age-shaped immune landscape. The virally induced senescent, interferon gamma-producing cytotoxic CD8+ T cells with increased inflammatory, and cytotoxic features are involved in the occurrence of inclusion body myositis in most such cases, in a genetically predisposed host. We discuss the putative mechanisms linking inclusion body myositis, TDP-43, and viral infections untangling the links between viruses, interferon, and neuromuscular degeneration could shed a light on the pathogenesis of the inclusion body myositis and other TDP-43-related neuromuscular diseases, with possible therapeutic implications.
Collapse
Affiliation(s)
- Vitalie Văcăraş
- Department of Neurosciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, 43, Victor Babeş St, 400012, Cluj-Napoca, Romania
- Neurology Department of Cluj, County Emergency Hospital, 3-5, Clinicilor St, 400347, Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 6, Pasteur St, 400349, Cluj-Napoca, Romania
- Cognitive Neuroscience Laboratory, University Babeş-Bolyai, 30, Fântânele St, 400294, Cluj-Napoca, Romania
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St, 400497, Cluj-Napoca, Romania
| | - Adina Chiş
- Department of Molecular Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 6, Pasteur St, 400349, Cluj-Napoca, Romania.
- Cognitive Neuroscience Laboratory, University Babeş-Bolyai, 30, Fântânele St, 400294, Cluj-Napoca, Romania.
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St, 400497, Cluj-Napoca, Romania.
| | - Laura Damian
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St, 400497, Cluj-Napoca, Romania
- Department of Rheumatology, Centre for Rare Autoimmune and Autoinflammatory Diseases, Emergency, Clinical County Hospital Cluj, 2-4, Clinicilor St, 400006, Cluj-Napoca, Romania
- CMI Reumatologie Dr. Damian, 6-8, Petru Maior St, 400002, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Zhong H, Sian V, Johari M, Katayama S, Oghabian A, Jonson PH, Hackman P, Savarese M, Udd B. Revealing myopathy spectrum: integrating transcriptional and clinical features of human skeletal muscles with varying health conditions. Commun Biol 2024; 7:438. [PMID: 38600180 PMCID: PMC11006663 DOI: 10.1038/s42003-024-06143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Myopathy refers to a large group of heterogeneous, rare muscle diseases. Bulk RNA-sequencing has been utilized for the diagnosis and research of these diseases for many years. However, the existing valuable sequencing data often lack integration and clinical interpretation. In this study, we integrated bulk RNA-sequencing data from 1221 human skeletal muscles (292 with myopathies, 929 controls) from both databases and our local samples. By applying a method similar to single-cell analysis, we revealed a general spectrum of muscle diseases, ranging from healthy to mild disease, moderate muscle wasting, and severe muscle disease. This spectrum was further partly validated in three specific myopathies (97 muscles) through clinical features including trinucleotide repeat expansion, magnetic resonance imaging fat fraction, pathology, and clinical severity scores. This spectrum helped us identify 234 genuinely healthy muscles as unprecedented controls, providing a new perspective for deciphering the hallmark genes and pathways among different myopathies. The newly identified featured genes of general myopathy, inclusion body myositis, and titinopathy were highly expressed in our local muscles, as validated by quantitative polymerase chain reaction.
Collapse
Affiliation(s)
- Huahua Zhong
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Veronica Sian
- Department of Precision Medicine, "Luigi Vanvitelli" University of Campania, Via L. De Crecchio 7, Naples, Italy
| | - Mridul Johari
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Shintaro Katayama
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ali Oghabian
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per Harald Jonson
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Marco Savarese
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Tampere Neuromuscular Center, University Hospital, Tampere, Finland
| |
Collapse
|
4
|
Johari M, Vihola A, Palmio J, Jokela M, Jonson PH, Sarparanta J, Huovinen S, Savarese M, Hackman P, Udd B. Comprehensive transcriptomic analysis shows disturbed calcium homeostasis and deregulation of T lymphocyte apoptosis in inclusion body myositis. J Neurol 2022; 269:4161-4173. [PMID: 35237874 PMCID: PMC9293871 DOI: 10.1007/s00415-022-11029-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Inclusion body myositis (IBM) has an unclear molecular etiology exhibiting both characteristic inflammatory T-cell activity and rimmed-vacuolar degeneration of muscle fibers. Using in-depth gene expression and splicing studies, we aimed at understanding the different components of the molecular pathomechanisms in IBM. METHODS We performed RNA-seq on RNA extracted from skeletal muscle biopsies of clinically and histopathologically defined IBM (n = 24), tibial muscular dystrophy (n = 6), and histopathologically normal group (n = 9). In a comprehensive transcriptomics analysis, we analyzed the differential gene expression, differential splicing and exon usage, downstream pathway analysis, and the interplay between coding and non-coding RNAs (micro RNAs and long non-coding RNAs). RESULTS We observe dysregulation of genes involved in calcium homeostasis, particularly affecting the T-cell activity and regulation, causing disturbed Ca2+-induced apoptotic pathways of T cells in IBM muscles. Additionally, LCK/p56, which is an essential gene in regulating the fate of T-cell apoptosis, shows increased expression and altered splicing usage in IBM muscles. INTERPRETATION Our analysis provides a novel understanding of the molecular mechanisms in IBM by showing a detailed dysregulation of genes involved in calcium homeostasis and its effect on T-cell functioning in IBM muscles. Loss of T-cell regulation is hypothesized to be involved in the consistent observation of no response to immune therapies in IBM patients. Our results show that loss of apoptotic control of cytotoxic T cells could indeed be one component of their abnormal cytolytic activity in IBM muscles.
Collapse
Affiliation(s)
- Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland.
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
- Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital, Turku, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Sanna Huovinen
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
5
|
Transcriptome analysis from muscle biopsy tissues in late-onset myopathies identifies potential biomarkers correlating to muscle pathology. Neuromuscul Disord 2022; 32:643-653. [DOI: 10.1016/j.nmd.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022]
|
6
|
Luo OJ, Lei W, Zhu G, Ren Z, Xu Y, Xiao C, Zhang H, Cai J, Luo Z, Gao L, Su J, Tang L, Guo W, Su H, Zhang ZJ, Fang EF, Ruan Y, Leng SX, Ju Z, Lou H, Gao J, Peng N, Chen J, Bao Z, Liu F, Chen G. Multidimensional single-cell analysis of human peripheral blood reveals characteristic features of the immune system landscape in aging and frailty. NATURE AGING 2022; 2:348-364. [PMID: 37117750 DOI: 10.1038/s43587-022-00198-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Frailty is an intermediate status of the human aging process, associated with decompensated homeostasis and death. The immune phenotype of frailty and its underlying cellular and molecular processes remain poorly understood. We profiled 114,467 immune cells from cord blood, young adults and healthy and frail old adults using single-cell RNA and TCR sequencing. Here we show an age-dependent accumulation of transcriptome heterogeneity and variability in immune cells. Characteristic transcription factors were identified in given cell types of specific age groups. Trajectory analysis revealed cells from non-frail and frail old adults often fall into distinct paths. Numerous TCR clonotypes were shared among T-cell subtypes in old adults, indicating differential pluripotency and resilience capabilities of aged T cells. A frailty-specific monocyte subset was identified with exclusively high expression of long noncoding RNAs NEAT1 and MALAT1. Our study discovers human frailty-specific immune cell characteristics based on the comprehensive dimensions in the immune landscape of aging and frailty.
Collapse
|
7
|
Wang K, Zhu R, Li J, Zhang Z, Wen X, Chen H, Sun L. Coexpression network analysis coupled with connectivity map database mining reveals novel genetic biomarkers and potential therapeutic drugs for polymyositis. Clin Rheumatol 2022; 41:1719-1730. [DOI: 10.1007/s10067-021-06035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
|
8
|
Ikenaga C, Date H, Kanagawa M, Mitsui J, Ishiura H, Yoshimura J, Pinal‐Fernandez I, Mammen AL, Lloyd TE, Tsuji S, Shimizu J, Toda T, Goto J. Muscle transcriptomics shows overexpression of
cadherin 1
in inclusion body myositis. Ann Neurol 2022; 91:317-328. [PMID: 35064929 PMCID: PMC9092834 DOI: 10.1002/ana.26304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/18/2022]
Abstract
Objective This study aimed to elucidate the molecular features of inclusion body myositis (IBM). Methods We performed RNA sequencing analysis of muscle biopsy samples from 67 participants, consisting of 58 myositis patients with the pathological finding of CD8‐positive T cells invading non‐necrotic muscle fibers expressing major histocompatibility complex class I (43 IBM, 6 polymyositis, and 9 unclassifiable myositis), and 9 controls. Results Cluster analysis, principal component analysis, and pathway analysis showed that differentially expressed genes and pathways identified in IBM and polymyositis were mostly comparable. However, pathways related to cell adhesion molecules were upregulated in IBM as compared with polymyositis and controls (p < 0.01). Notably, CDH1, which encodes the epidermal cell junction protein cadherin 1, was overexpressed in the muscles of IBM, which was validated by another RNA sequencing dataset from previous publications. Western blotting confirmed the presence of mature cadherin 1 protein in the muscles of IBM. Immunohistochemical staining confirmed the positivity for anti‐cadherin 1 antibody in the muscles of IBM, whereas there was no muscle fiber positive for anti‐cadherin 1 antibody in immune‐mediated necrotizing myopathy, antisynthetase syndrome, and controls. The fibers stained with anti‐cadherin 1 antibody did not have rimmed vacuoles or abnormal protein accumulation. Experimental skeletal muscle regeneration and differentiation systems showed that CDH1 is expressed during skeletal muscle regeneration and differentiation. Interpretation CDH1 was detected as a differentially expressed gene, and immunohistochemistry showed that cadherin 1 exists in the muscles of IBM, whereas it was rarely seen in those of other idiopathic inflammatory myopathies. Cadherin 1 upregulation in muscle could provide a valuable clue to the pathological mechanisms of IBM. ANN NEUROL 2022;91:317–328
Collapse
Affiliation(s)
- Chiseko Ikenaga
- Department of Neurology, Graduate School of Medicine the University of Tokyo Tokyo Japan
- Department of Neurology Johns Hopkins University School of Medicine Baltimore MD US
| | - Hidetoshi Date
- Department of Neurology, National Center Hospital National Center of Neurology and Psychiatry Tokyo Japan
| | - Motoi Kanagawa
- Division of Molecular Brain Science Kobe University Graduate School of Medicine Kobe Japan
- Department of Cell Biology and Molecular Medicine Ehime University Graduate School of Medicine Ehime Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine the University of Tokyo Tokyo Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences The University of Tokyo Chiba Japan
| | - Iago Pinal‐Fernandez
- Department of Neurology Johns Hopkins University School of Medicine Baltimore MD US
- Muscle Disease Unit National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health Bethesda MD US
- Faculty of Health Sciences and Faculty of Computer Science, Multimedia and Telecommunications Universitat Oberta de Catalunya Barcelona Spain
| | - Andrew L. Mammen
- Department of Neurology Johns Hopkins University School of Medicine Baltimore MD US
- Muscle Disease Unit National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health Bethesda MD US
| | - Thomas E. Lloyd
- Department of Neurology Johns Hopkins University School of Medicine Baltimore MD US
- Solomon H. Synder Department of Neuroscience Johns Hopkins University School of Medicine Baltimore MD US
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine The University of Tokyo Tokyo Japan
- Institute of Medical Genomics International University of Health and Welfare Chiba Japan
| | - Jun Shimizu
- Department of Neurology, Graduate School of Medicine the University of Tokyo Tokyo Japan
- Department of Physical Therapy Tokyo University of Technology Tokyo Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine the University of Tokyo Tokyo Japan
- Division of Molecular Brain Science Kobe University Graduate School of Medicine Kobe Japan
| | - Jun Goto
- Department of Neurology International University of Health and Welfare, Mita Hospital Tokyo Japan
- Department of Neurology International University of Health and Welfare, Ichikawa Hospital Chiba Japan
| |
Collapse
|
9
|
González-Bello Y, Garcia-Valladares I, Reyes-Pérez IV, García-Cerda D, Medrano-Ramírez G, Navarro-Zarza JE, Andrade-Ortega L, Maradiaga-Ceceña M, Cardenas-Anaya A, Nava-Zavala AH, Orozco-Barocio G, Vázquez-Del Mercado M, Rojo-Mejia A, Loyo E, Gottschalk P, Iglesias-Gamarra A, Vega K, Rojas C, Mantilla R, Gómez G, García-Kutzbach A, Fritzler MJ, García-De La Torre I. Myositis-Specific Antibodies and Myositis-Associated Antibodies in Patients With Idiopathic Inflammatory Myopathies From the PANLAR Myositis Study Group. J Clin Rheumatol 2021; 27:e302-e306. [PMID: 32084069 DOI: 10.1097/rhu.0000000000001350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Dermatomyositis (DM) and polymyositis (PM) are forms of idiopathic inflammatory myopathies (IIMs), which are associated with the production of autoantibodies that are useful in the diagnosis and prognosis of the disease. OBJECTIVE The aim of this study was to determine the frequency of antinuclear autoantibodies (ANAs), myositis-specific autoantibodies (MSAs), and myositis-associated autoantibodies (MAAs) in 6 Latin American countries. METHODS Two hundred ten patients with IIM were included in this cross-sectional study from 2014 to 2017: 112 from Mexico, 46 from Colombia, 20 from Peru, 16 from the Dominican Republic, 10 from Argentina, and 6 from Guatemala. Antinuclear autoantibodies were detected by indirect immunofluorescence on HEp-2 cells. MSAs and MAAs were tested by a line immunoassay method. Mann-Whitney U and χ2 tests were used for statistical analysis. RESULTS Of the 210 IIM patients, 139 (66.2%) had DM, 59 (28%) PM, and 12 (5.7%) juvenile DM. The mean age was 43.5 (6-79 years); 158 (75.2%) were female, and 52 (24.8%) were male. The overall frequency of ANA was 60%. The most frequent patterns were fine speckled (AC-4) (78.3%) and cytoplasmic (AC-19) (6.45%). The most frequent MSA were anti-Mi-2 (38.5%) and anti-Jo-1 (11.9%). Anti-Mi-2 was more frequent in patients from Colombia (40.1%). The MAA more frequent were anti-Ro-52/TRIM21 (17.6%) and anti-PM-Scl75 (7.5%). CONCLUSIONS This is the first study of ANA, MSA, and MAA in patients from 6 countries from the Panamerican League against Rheumatism myositis study group. We observed a general prevalence of 60% of ANA. In relation to MSA and MAA, anti-Mi-2 was the more frequent (38.5%).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Esthela Loyo
- Hospital Regional Universitario, Santiago, República Dominicana
| | | | | | | | | | | | - Graciela Gómez
- Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
10
|
Huang H, Xing D, Zhang Q, Li H, Lin J, He Z, Lin J. LncRNAs as a new regulator of chronic musculoskeletal disorder. Cell Prolif 2021; 54:e13113. [PMID: 34498342 PMCID: PMC8488571 DOI: 10.1111/cpr.13113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES In recent years, long non-coding RNAs (lncRNAs) have been found to play a role in the occurrence, progression and prognosis of chronic musculoskeletal disorders. DESIGN AND METHODS Literature exploring on PubMed was conducted using the combination of keywords 'LncRNA' and each of the following: 'osteoarthritis', 'rheumatoid arthritis', 'osteoporosis', 'osteogenesis', 'osteoclastogenesis', 'gout arthritis', 'Kashin-Beck disease', 'ankylosing spondylitis', 'cervical spondylotic myelopathy', 'intervertebral disc degeneration', 'human muscle disease' and 'muscle hypertrophy and atrophy'. For each disorder, we focused on the publications in the last five years (5/1/2016-2021/5/1, except for Kashin-Beck disease). Finally, we excluded publications that had been reported in reviews of various musculoskeletal disorders during the last three years. Here, we summarized the progress of research on the role of lncRNA in multiple pathological processes during musculoskeletal disorders. RESULTS LncRNAs play a crucial role in regulating downstream gene expression and maintaining function and homeostasis of cells, especially in chondrocytes, synovial cells, osteoblasts, osteoclasts and skeletal muscle cells. CONCLUSIONS Understanding the mechanisms of lncRNAs in musculoskeletal disorders may provide promising strategies for clinical practice.
Collapse
Affiliation(s)
- Hesuyuan Huang
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Dan Xing
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Qingxi Zhang
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Hui Li
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Jianjing Lin
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Zihao He
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Jianhao Lin
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| |
Collapse
|
11
|
Boegel S, Castle JC, Schwarting A. Current status of use of high throughput nucleotide sequencing in rheumatology. RMD Open 2021; 7:rmdopen-2020-001324. [PMID: 33408124 PMCID: PMC7789458 DOI: 10.1136/rmdopen-2020-001324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/15/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Here, we assess the usage of high throughput sequencing (HTS) in rheumatic research and the availability of public HTS data of rheumatic samples. METHODS We performed a semiautomated literature review on PubMed, consisting of an R-script and manual curation as well as a manual search on the Sequence Read Archive for public available HTS data. RESULTS Of the 699 identified articles, rheumatoid arthritis (n=182 publications, 26%), systemic lupus erythematous (n=161, 23%) and osteoarthritis (n=152, 22%) are among the rheumatic diseases with the most reported use of HTS assays. The most represented assay is RNA-Seq (n=457, 65%) for the identification of biomarkers in blood or synovial tissue. We also find, that the quality of accompanying clinical characterisation of the sequenced patients differs dramatically and we propose a minimal set of clinical data necessary to accompany rheumatological-relevant HTS data. CONCLUSION HTS allows the analysis of a broad spectrum of molecular features in many samples at the same time. It offers enormous potential in novel personalised diagnosis and treatment strategies for patients with rheumatic diseases. Being established in cancer research and in the field of Mendelian diseases, rheumatic diseases are about to become the third disease domain for HTS, especially the RNA-Seq assay. However, we need to start a discussion about reporting of clinical characterisation accompany rheumatological-relevant HTS data to make clinical meaningful use of this data.
Collapse
Affiliation(s)
- Sebastian Boegel
- Department of Internal Medicine, University Center of Autoimmunity, University Medical Center Mainz, Mainz, Germany
| | | | - Andreas Schwarting
- Department of Internal Medicine, University Center of Autoimmunity, University Medical Center Mainz, Mainz, Germany.,Division of Rheumatology and Clinical Immunology, University Hospital Mainz, Mainz, Germany.,Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| |
Collapse
|
12
|
Oligonucleotide Therapies in the Treatment of Arthritis: A Narrative Review. Biomedicines 2021; 9:biomedicines9080902. [PMID: 34440106 PMCID: PMC8389545 DOI: 10.3390/biomedicines9080902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two of the most common chronic inflammatory joint diseases, for which there remains a great clinical need to develop safer and more efficacious pharmacological treatments. The pathology of both OA and RA involves multiple tissues within the joint, including the synovial joint lining and the bone, as well as the articular cartilage in OA. In this review, we discuss the potential for the development of oligonucleotide therapies for these disorders by examining the evidence that oligonucleotides can modulate the key cellular pathways that drive the pathology of the inflammatory diseased joint pathology, as well as evidence in preclinical in vivo models that oligonucleotides can modify disease progression.
Collapse
|
13
|
The Expression and Function of Metastases Associated Lung Adenocarcinoma Transcript-1 Long Non-Coding RNA in Subchondral Bone and Osteoblasts from Patients with Osteoarthritis. Cells 2021; 10:cells10040786. [PMID: 33916321 PMCID: PMC8066176 DOI: 10.3390/cells10040786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
Metastasis Associated Lung Adenocarcinoma Transcript-1 (MALAT1) is implicated in regulating the inflammatory response and in the pathology of several chronic inflammatory diseases, including osteoarthritis (OA). The purpose of this study was to examine the relationship between OA subchondral bone expression of MALAT1 with parameters of joint health and biomarkers of joint inflammation, and to determine its functional role in human OA osteoblasts. Subchondral bone and blood were collected from hip and knee OA patients (n = 17) and bone only from neck of femur fracture patients (n = 6) undergoing joint replacement surgery. Cytokines were determined by multiplex assays and ELISA, and gene expression by qPCR. MALAT1 loss of function was performed in OA patient osteoblasts using locked nucleic acids. The osteoblast transcriptome was analysed by RNASeq and pathway analysis. Bone expression of MALAT1 positively correlated to serum DKK1 and galectin-1 concentrations, and in OA patient osteoblasts was induced in response to IL-1β stimulation. Osteoblasts depleted of MALAT1 exhibited differential expression (>1.5 fold change) of 155 genes, including PTGS2. Both basal and IL-1β-mediated PGE2 secretion was greater in MALAT1 depleted osteoblasts. The induction of MALAT1 in human OA osteoblasts upon inflammatory challenge and its modulation of PGE2 production suggests that MALAT1 may play a role in regulating inflammation in OA subchondral bone.
Collapse
|
14
|
Wijesinghe SN, Nicholson T, Tsintzas K, Jones SW. Involvements of long noncoding RNAs in obesity-associated inflammatory diseases. Obes Rev 2021; 22:e13156. [PMID: 33078547 DOI: 10.1111/obr.13156] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
Obesity is associated with chronic low-grade inflammation that affects the phenotype of multiple tissues and therefore is implicated in the development and progression of several age-related chronic inflammatory disorders. Importantly, a new family of noncoding RNAs, termed long noncoding RNAs (lncRNAs), have been identified as key regulators of inflammatory signalling pathways that can mediate both pretranscriptional and posttranscriptional gene regulation. Furthermore, several lncRNAs have been identified, which are differentially expressed in multiple tissue types in individuals who are obese or in preclinical models of obesity. In this review, we examine the evidence for the role of several of the most well-studied lncRNAs in the regulation of inflammatory pathways associated with obesity. We highlight the evidence for their differential expression in the obese state and in age-related conditions including insulin resistance, type 2 diabetes (T2D), sarcopenia, osteoarthritis and rheumatoid arthritis, where obesity plays a significant role. Determining the expression and functional role of lncRNAs in mediating obesity-associated chronic inflammation will advance our understanding of the epigenetic regulatory pathways that underlie age-related inflammatory diseases and may also ultimately identify new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Susanne N Wijesinghe
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Thomas Nicholson
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
15
|
Wilhelmsen A, Tsintzas K, Jones SW. Recent advances and future avenues in understanding the role of adipose tissue cross talk in mediating skeletal muscle mass and function with ageing. GeroScience 2021; 43:85-110. [PMID: 33528828 PMCID: PMC8050140 DOI: 10.1007/s11357-021-00322-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/01/2021] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia, broadly defined as the age-related decline in skeletal muscle mass, quality, and function, is associated with chronic low-grade inflammation and an increased likelihood of adverse health outcomes. The regulation of skeletal muscle mass with ageing is complex and necessitates a delicate balance between muscle protein synthesis and degradation. The secretion and transfer of cytokines, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), both discretely and within extracellular vesicles, have emerged as important communication channels between tissues. Some of these factors have been implicated in regulating skeletal muscle mass, function, and pathologies and may be perturbed by excessive adiposity. Indeed, adipose tissue participates in a broad spectrum of inter-organ communication and obesity promotes the accumulation of macrophages, cellular senescence, and the production and secretion of pro-inflammatory factors. Pertinently, age-related sarcopenia has been reported to be more prevalent in obesity; however, such effects are confounded by comorbidities and physical activity level. In this review, we provide evidence that adiposity may exacerbate age-related sarcopenia and outline some emerging concepts of adipose-skeletal muscle communication including the secretion and processing of novel myokines and adipokines and the role of extracellular vesicles in mediating inter-tissue cross talk via lncRNAs and miRNAs in the context of sarcopenia, ageing, and obesity. Further research using advances in proteomics, transcriptomics, and techniques to investigate extracellular vesicles, with an emphasis on translational, longitudinal human studies, is required to better understand the physiological significance of these factors, the impact of obesity upon them, and their potential as therapeutic targets in combating muscle wasting.
Collapse
Affiliation(s)
- Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, The University of Birmingham, Birmingham, UK
| |
Collapse
|
16
|
Pinal-Fernandez I, Casal-Dominguez M, Derfoul A, Pak K, Miller FW, Milisenda JC, Grau-Junyent JM, Selva-O'Callaghan A, Carrion-Ribas C, Paik JJ, Albayda J, Christopher-Stine L, Lloyd TE, Corse AM, Mammen AL. Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis. Ann Rheum Dis 2020; 79:1234-1242. [PMID: 32546599 PMCID: PMC10461844 DOI: 10.1136/annrheumdis-2019-216599] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Myositis is a heterogeneous family of diseases that includes dermatomyositis (DM), antisynthetase syndrome (AS), immune-mediated necrotising myopathy (IMNM), inclusion body myositis (IBM), polymyositis and overlap myositis. Additional subtypes of myositis can be defined by the presence of myositis-specific autoantibodies (MSAs). The purpose of this study was to define unique gene expression profiles in muscle biopsies from patients with MSA-positive DM, AS and IMNM as well as IBM. METHODS RNA-seq was performed on muscle biopsies from 119 myositis patients with IBM or defined MSAs and 20 controls. Machine learning algorithms were trained on transcriptomic data and recursive feature elimination was used to determine which genes were most useful for classifying muscle biopsies into each type and MSA-defined subtype of myositis. RESULTS The support vector machine learning algorithm classified the muscle biopsies with >90% accuracy. Recursive feature elimination identified genes that are most useful to the machine learning algorithm and that are only overexpressed in one type of myositis. For example, CAMK1G (calcium/calmodulin-dependent protein kinase IG), EGR4 (early growth response protein 4) and CXCL8 (interleukin 8) are highly expressed in AS but not in DM or other types of myositis. Using the same computational approach, we also identified genes that are uniquely overexpressed in different MSA-defined subtypes. These included apolipoprotein A4 (APOA4), which is only expressed in anti-3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) myopathy, and MADCAM1 (mucosal vascular addressin cell adhesion molecule 1), which is only expressed in anti-Mi2-positive DM. CONCLUSIONS Unique gene expression profiles in muscle biopsies from patients with MSA-defined subtypes of myositis and IBM suggest that different pathological mechanisms underly muscle damage in each of these diseases.
Collapse
Affiliation(s)
- Iago Pinal-Fernandez
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Insititutes of Health, Bethesda, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
- Faculty of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Maria Casal-Dominguez
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Insititutes of Health, Bethesda, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Assia Derfoul
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Insititutes of Health, Bethesda, Maryland, USA
| | - Katherine Pak
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Insititutes of Health, Bethesda, Maryland, USA
| | - Frederick W Miller
- Enivironmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Albert Selva-O'Callaghan
- Internal Medicine, Vall d'Hebron General Hospital, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Carme Carrion-Ribas
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Julie J Paik
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jemima Albayda
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lisa Christopher-Stine
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea M Corse
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew L Mammen
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Insititutes of Health, Bethesda, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Karagianni P, Goules AV, Tzioufas AG. Epigenetic alterations in Sjögren's syndrome patient saliva. Clin Exp Immunol 2020; 202:137-143. [PMID: 32639584 PMCID: PMC7597604 DOI: 10.1111/cei.13492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetic mechanisms have been implicated in the pathogenesis of Sjögren's syndrome (SS). Extensive alterations in DNA methylation have been described in minor salivary gland (MSG) epithelial cells and lymphocytes derived from SS patients compared to sicca controls. In an effort to identify novel potential epigenetic markers that could prove useful in diagnosis and disease monitoring, we explored whether DNA methylation differences can also be detected in saliva from SS patients compared to sicca controls. We performed DNA methylation analysis by methylation-sensitive restriction digestion followed by quantitative real-time polymerase chain reaction of selected genomic loci in saliva samples of 16 SS patients and 10 sicca controls with negative MSG biopsy. We identified reduced DNA methylation of the imprinting control region (ICR) of the H19 locus in SS patient saliva compared to sicca controls. Levels of saliva H19 ICR methylation were negatively correlated with C4 serum complement levels. Consistent with the reduced methylation of the ICR, H19 RNA levels were increased in SS patient peripheral blood mononuclear cells (PBMCs), while no significant change was observed in MSG H19 RNA levels compared to sicca controls. Our findings support that H19 ICR methylation could be a useful molecular epigenetic marker in monitoring patients with SS, highlighting saliva as a valuable biological sample in SS research and clinical practice. The role of H19 in SS pathogenesis remains to be addressed.
Collapse
Affiliation(s)
- P Karagianni
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - A V Goules
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - A G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Wang J, Zhao L, Shang K, Liu F, Che J, Li H, Cao B. Long non-coding RNA H19, a novel therapeutic target for pancreatic cancer. Mol Med 2020; 26:30. [PMID: 32272875 PMCID: PMC7146949 DOI: 10.1186/s10020-020-00156-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high mortality, which threats peoples’ health. Unfortunately, the pathogenesis of PDAC remains unclear. Recent studies have indicated that long non-coding RNAs (lncRNAs) can regulate the development and progression of malignant tumors through varying mechanisms. LncRNA H19 has a unique expression profile and can act as a sponger of specific miRNAs to regulate the pathogenic process of many diseases, including PDAC and several other types of cancers. Here, we review the research approaches to understanding the regulatory role of H19 and potential mechanisms in the progression of PDAC and other types of cancers and diseases. These studies suggest that H19 may be a novel therapeutic target for PDAC and our findings may open new revenues for scientific researches and development of valuable therapies for these diseases in the future.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Beijing, Xicheng District, China.,Yale School of Medicine, New Haven, CT, USA
| | - Lei Zhao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Beijing, Xicheng District, China
| | - Kun Shang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Beijing, Xicheng District, China
| | - Fang Liu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Beijing, Xicheng District, China.,Yale School of Medicine, New Haven, CT, USA.,Department of Cardiology, Chaoyang Hospital, Capital Medical University, Beijing, Chaoyang District, China
| | - Juanjuan Che
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Beijing, Xicheng District, China
| | - Huihui Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Beijing, Xicheng District, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, #95 Yong An Road, Beijing, Xicheng District, China.
| |
Collapse
|
19
|
Zou Y, Xu H. Involvement of long noncoding RNAs in the pathogenesis of autoimmune diseases. J Transl Autoimmun 2020; 3:100044. [PMID: 32743525 PMCID: PMC7388364 DOI: 10.1016/j.jtauto.2020.100044] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases are a group of heterogeneous disorders characterized by damage to various organs caused by abnormal innate and adaptive immune responses. The pathogenesis of autoimmune diseases is extremely complicated and has not yet been fully elucidated. Long noncoding RNAs (lncRNAs), which are defined as transcripts containing more than 200 nucleotides with no protein-coding capacity, are emerging as important regulators of gene expression via epigenetic modification, transcriptional regulation and posttranscriptional regulation. Accumulating evidence has demonstrated that lncRNAs play a key role in the regulation of immunological functions and autoimmunity. In this review, we discuss various molecular mechanisms by which lncRNAs regulate gene expression and recent findings regarding the involvement of lncRNAs in many human autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), idiopathic inflammatory myopathy (IIM), systemic sclerosis (SSc) and Sjögren’s syndrome (pSS). lncRNAs are observed to be differentially expressed in various autoimmune diseases. lncRNAs are involved in abnormal immune regulation and inflammatory responses in autoimmune diseases, which provides new insight into disease pathogenesis. LncRNAs may have the potential of biomarkers for diagnosis and prognosis of autoimmune diseases.
Collapse
Affiliation(s)
- Yaoyao Zou
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Cardamone G, Paraboschi EM, Soldà G, Cantoni C, Supino D, Piccio L, Duga S, Asselta R. Not only cancer: the long non-coding RNA MALAT1 affects the repertoire of alternatively spliced transcripts and circular RNAs in multiple sclerosis. Hum Mol Genet 2020; 28:1414-1428. [PMID: 30566690 DOI: 10.1093/hmg/ddy438] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 01/23/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are post-transcriptional and epigenetic regulators, whose implication in neurodegenerative and autoimmune diseases remains poorly understood. We analyzed publicly available microarray data sets to identify dysregulated lncRNAs in multiple sclerosis (MS), a neuroinflammatory autoimmune disease. We found a consistent upregulation in MS of the lncRNA MALAT1 (2.7-fold increase; meta-analysis, P = 1.3 × 10-8; 190 cases, 182 controls), known to regulate alternative splicing (AS). We confirmed MALAT1 upregulation in two independent MS cohorts (1.5-fold increase; P < 0.01; 59 cases, 50 controls). We hence performed MALAT1 overexpression/knockdown in cell lines, demonstrating that its modulation impacts on endogenous expression of splicing factors (HNRNPF and HNRNPH1) and on AS of MS-associated genes (IL7R and SP140). Minigene-based splicing assays upon MALAT1 modulation recapitulated IL7R and SP140 isoform unbalances observed in patients. RNA-sequencing of MALAT1-knockdown Jurkat cells further highlighted MALAT1 role in splicing (approximately 1100 significantly-modulated AS events) and revealed its contribution to backsplicing (approximately 50 differentially expressed circular RNAs). Our study proposes a possible novel role for MALAT1 dysregulation and the consequent AS alteration in MS pathogenesis, based on anomalous splicing/backsplicing profiles of MS-relevant genes.
Collapse
Affiliation(s)
- Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
| | - Elvezia M Paraboschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Domenico Supino
- Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.,Humanitas Clinical and Research Center, Rozzano Milan, Italy
| |
Collapse
|
21
|
Nanus DE, Wijesinghe SN, Pearson MJ, Hadjicharalambous MR, Rosser A, Davis ET, Lindsay MA, Jones SW. Regulation of the Inflammatory Synovial Fibroblast Phenotype by Metastasis-Associated Lung Adenocarcinoma Transcript 1 Long Noncoding RNA in Obese Patients With Osteoarthritis. Arthritis Rheumatol 2020; 72:609-619. [PMID: 31682073 DOI: 10.1002/art.41158] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To identify long noncoding RNAs (lncRNAs) associated with the inflammatory phenotype of synovial fibroblasts from obese patients with osteoarthritis (OA), and to explore the expression and function of these lncRNAs. METHODS Synovium was collected from normal-weight patients with hip fracture (non-OA; n = 6) and from normal-weight (n = 8) and obese (n = 8) patients with hip OA. Expression of RNA was determined by RNA-sequencing and quantitative reverse transcription-polymerase chain reaction. Knockdown of lncRNA was performed using LNA-based GapmeRs. Synovial fibroblast cytokine production was measured by enzyme-linked immunosorbent assay. RESULTS Synovial fibroblasts from obese patients with OA secreted greater levels of interleukin-6 (IL-6) (mean ± SEM 162 ± 21 pg/ml; P < 0.001) and CXCL8 (262 ± 67 pg/ml; P < 0.05) compared to fibroblasts from normal-weight patients with OA (IL-6, 51 ± 4 pg/ml; CXCL8, 78 ± 11 pg/ml) or non-OA patients (IL-6, 35 ± 3 pg/ml; CXCL8, 56 ± 6 pg/ml) (n = 6 patients per group). RNA-sequencing revealed that fibroblasts from obese OA patients exhibited an inflammatory transcriptome, with increased expression of proinflammatory messenger RNAs (mRNAs) as compared to that in fibroblasts from normal-weight OA or non-OA patients (>2-fold change, P < 0.05; n = 4 patients per group). A total of 19 lncRNAs were differentially expressed between normal-weight OA and non-OA patient fibroblasts, and a further 19 lncRNAs were differentially expressed in fibroblasts from obese OA patients compared to normal-weight OA patients (>2-fold change, P < 0.05 for each), which included the lncRNA for metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). MALAT1 was rapidly induced upon stimulation of OA synovial fibroblasts with proinflammatory cytokines, and was up-regulated in the synovium from obese OA patients as compared to normal-weight OA patients (1.6-fold change, P < 0.001) or non-OA patients (6-fold change, P < 0.001). MALAT1 knockdown in OA synovial fibroblasts (n = 4 patients) decreased the levels of mRNA expression and protein secretion of CXCL8 (>1.5-fold change, P < 0.01), whereas it increased expression of mRNAs for TRIM6 (>2-fold change, P < 0.01), IL7R (<2-fold change, P < 0.01), HIST1H1C (>1.5-fold change, P < 0.001), and MAML3 (>1.5-fold change, P < 0.001). In addition, MALAT1 knockdown inhibited the proliferation of synovial fibroblasts from obese patients with OA. CONCLUSION Synovial fibroblasts from obese patients with hip OA exhibit an inflammatory phenotype. MALAT1 lncRNA may mediate joint inflammation in obese OA patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark A Lindsay
- University of Birmingham, Birmingham, UK, and University of Bath, Bath, UK
| | | |
Collapse
|
22
|
Ciryam P, Antalek M, Cid F, Tartaglia GG, Dobson CM, Guettsches AK, Eggers B, Vorgerd M, Marcus K, Kley RA, Morimoto RI, Vendruscolo M, Weihl CC. A metastable subproteome underlies inclusion formation in muscle proteinopathies. Acta Neuropathol Commun 2019; 7:197. [PMID: 31796104 PMCID: PMC6891963 DOI: 10.1186/s40478-019-0853-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/21/2019] [Indexed: 01/20/2023] Open
Abstract
Protein aggregation is a pathological feature of neurodegenerative disorders. We previously demonstrated that protein inclusions in the brain are composed of supersaturated proteins, which are abundant and aggregation-prone, and form a metastable subproteome. It is not yet clear, however, whether this phenomenon is also associated with non-neuronal protein conformational disorders. To respond to this question, we analyzed proteomic datasets from biopsies of patients with genetic and acquired protein aggregate myopathy (PAM) by quantifying the changes in composition, concentration and aggregation propensity of proteins in the fibers containing inclusions and those surrounding them. We found that a metastable subproteome is present in skeletal muscle from healthy patients. The expression of this subproteome escalate as proteomic samples are taken more proximal to the pathologic inclusion, eventually exceeding its solubility limits and aggregating. While most supersaturated proteins decrease or maintain steady abundance across healthy fibers and inclusion-containing fibers, proteins within the metastable subproteome rise in abundance, suggesting that they escape regulation. Taken together, our results show in the context of a human conformational disorder that the supersaturation of a metastable subproteome underlies widespread aggregation and correlates with the histopathological state of the tissue.
Collapse
Affiliation(s)
- Prajwal Ciryam
- Department of Neurology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Matthew Antalek
- Rice Institute for Biomedical Research, Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Fernando Cid
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Anne-Katrin Guettsches
- Department of Neurology, Heimer Institute of Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Britta Eggers
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute of Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Rudolf A Kley
- Department of Neurology, St. Marien Hospital Borken, University of Witten/Herdecke, Borken, Germany
| | - Richard I Morimoto
- Rice Institute for Biomedical Research, Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Conrad C Weihl
- Department of Neurology and Hope Center for Neurological Disease, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
23
|
Functions and Regulatory Mechanisms of lncRNAs in Skeletal Myogenesis, Muscle Disease and Meat Production. Cells 2019; 8:cells8091107. [PMID: 31546877 PMCID: PMC6769631 DOI: 10.3390/cells8091107] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Myogenesis is a complex biological process, and understanding the regulatory network of skeletal myogenesis will contribute to the treatment of human muscle related diseases and improvement of agricultural animal meat production. Long noncoding RNAs (lncRNAs) serve as regulators in gene expression networks, and participate in various biological processes. Recent studies have identified functional lncRNAs involved in skeletal muscle development and disease. These lncRNAs regulate the proliferation, differentiation, and fusion of myoblasts through multiple mechanisms, such as chromatin modification, transcription regulation, and microRNA sponge activity. In this review, we presented the latest advances regarding the functions and regulatory activities of lncRNAs involved in muscle development, muscle disease, and meat production. Moreover, challenges and future perspectives related to the identification of functional lncRNAs were also discussed.
Collapse
|
24
|
杨 伊, 左 晓, 朱 红, 刘 思. [Advances in epigenetic markers of dermatomyositis/polymyositis]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:374-377. [PMID: 30996386 PMCID: PMC7441193 DOI: 10.19723/j.issn.1671-167x.2019.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Indexed: 06/09/2023]
Abstract
Idiopathic inflammatory myopathy (IIM) is a rare group of autoimmune diseases, characterized by chronic muscle weakness, muscle fatigue and infiltration of single nuclear cells in skeletal muscle. Its subtypes include dermatomyositis (DM), polymyositis (PM), inclusion body myositis (IBM) and immune-mediated necrotizing myositis (IMNM), and the most common subtypes are DM and PM. PM is an autoimmune disease mainly manifested by muscle damage. When the skin is involved, it is called DM. The incidence of IIM was relatively low, which was 1.16-19 per million people/year, but the mortality was high and the prognosis was poor. The pathogenesis of IIM is still unclear. Previous studies suggest that both immune and non-immune mechanisms are involved in its pathogenesis, especially cellular and humoral immunity. In recent years, researchers have conducted a number of studies on the pathogenesis of IIM, especially in the study of DM/PM with the application of high-throughput biometrics. Epigenetics is a discipline that refers to the genetic phenomena of DNA methylation spectrum, chromatin structure state and gene expression spectrum transferred between cells without any changes in DNA sequence, including DNA methylation, chromatin modification and non-coding RNA changes. A large number of studies have shown that epigenetic modification plays an important role in many diseases, especially in cancer. Recent studies have also found a series of epigenetic markers related to the occurrence and development of DM/PM, mainly in the aspect of non-coding RNA changes, such as miR-10a, miR-206, etc. And there has also been some research on DNA methylation. However, no studies have been reported on whether chromatin modification is involved in the pathogenesis of DM/PM. The pathogenesis of DM/PM is complex and diverse. With the development of research, certain microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) may become biological markers for the early diagnosis of DM/PM. Therefore, this paper mainly expounds the research progress of the biomarkers of DM/PM from the aspect of epigenetics.
Collapse
Affiliation(s)
- 伊莹 杨
- />中南大学湘雅医院风湿免疫科,长沙 410008Department of Rheumatology and Clinical Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - 晓霞 左
- />中南大学湘雅医院风湿免疫科,长沙 410008Department of Rheumatology and Clinical Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - 红林 朱
- />中南大学湘雅医院风湿免疫科,长沙 410008Department of Rheumatology and Clinical Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - 思佳 刘
- />中南大学湘雅医院风湿免疫科,长沙 410008Department of Rheumatology and Clinical Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
25
|
杨 伊, 左 晓, 朱 红, 刘 思. [Advances in epigenetic markers of dermatomyositis/polymyositis]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:374-377. [PMID: 30996386 PMCID: PMC7441193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Indexed: 08/12/2024]
Abstract
Idiopathic inflammatory myopathy (IIM) is a rare group of autoimmune diseases, characterized by chronic muscle weakness, muscle fatigue and infiltration of single nuclear cells in skeletal muscle. Its subtypes include dermatomyositis (DM), polymyositis (PM), inclusion body myositis (IBM) and immune-mediated necrotizing myositis (IMNM), and the most common subtypes are DM and PM. PM is an autoimmune disease mainly manifested by muscle damage. When the skin is involved, it is called DM. The incidence of IIM was relatively low, which was 1.16-19 per million people/year, but the mortality was high and the prognosis was poor. The pathogenesis of IIM is still unclear. Previous studies suggest that both immune and non-immune mechanisms are involved in its pathogenesis, especially cellular and humoral immunity. In recent years, researchers have conducted a number of studies on the pathogenesis of IIM, especially in the study of DM/PM with the application of high-throughput biometrics. Epigenetics is a discipline that refers to the genetic phenomena of DNA methylation spectrum, chromatin structure state and gene expression spectrum transferred between cells without any changes in DNA sequence, including DNA methylation, chromatin modification and non-coding RNA changes. A large number of studies have shown that epigenetic modification plays an important role in many diseases, especially in cancer. Recent studies have also found a series of epigenetic markers related to the occurrence and development of DM/PM, mainly in the aspect of non-coding RNA changes, such as miR-10a, miR-206, etc. And there has also been some research on DNA methylation. However, no studies have been reported on whether chromatin modification is involved in the pathogenesis of DM/PM. The pathogenesis of DM/PM is complex and diverse. With the development of research, certain microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) may become biological markers for the early diagnosis of DM/PM. Therefore, this paper mainly expounds the research progress of the biomarkers of DM/PM from the aspect of epigenetics.
Collapse
Affiliation(s)
- 伊莹 杨
- />中南大学湘雅医院风湿免疫科,长沙 410008Department of Rheumatology and Clinical Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - 晓霞 左
- />中南大学湘雅医院风湿免疫科,长沙 410008Department of Rheumatology and Clinical Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - 红林 朱
- />中南大学湘雅医院风湿免疫科,长沙 410008Department of Rheumatology and Clinical Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - 思佳 刘
- />中南大学湘雅医院风湿免疫科,长沙 410008Department of Rheumatology and Clinical Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
26
|
De Paepe B. Sporadic Inclusion Body Myositis: An Acquired Mitochondrial Disease with Extras. Biomolecules 2019; 9:biom9010015. [PMID: 30621041 PMCID: PMC6359202 DOI: 10.3390/biom9010015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
The sporadic form of inclusion body myositis (IBM) is the most common late-onset myopathy. Its complex pathogenesis includes degenerative, inflammatory and mitochondrial aspects. However, which of those mechanisms are cause and which effect, as well as their interrelations, remain partly obscured to this day. In this review the nature of the mitochondrial dysregulation in IBM muscle is explored and comparison is made with other muscle disorders. Mitochondrial alterations in IBM are evidenced by histological and serum biomarkers. Muscular mitochondrial dynamics is disturbed, with deregulated organelle fusion leading to subsequent morphological alterations and muscle displays abnormal mitophagy. The tissue increases mitochondrial content in an attempt to compensate dysfunction, yet mitochondrial DNA (mtDNA) alterations and mild mtDNA depletion are also present. Oxidative phosphorylation defects have repeatedly been shown, most notably a reduction in complex IV activities and levels of mitokines and regulatory RNAs are perturbed. Based on the cumulating evidence of mitochondrial abnormality as a disease contributor, it is therefore warranted to regard IBM as a mitochondrial disease, offering a feasible therapeutic target to be developed for this yet untreatable condition.
Collapse
Affiliation(s)
- Boel De Paepe
- Neuromuscular Reference Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
27
|
Haczkiewicz K, Sebastian A, Piotrowska A, Misterska-Skóra M, Hałoń A, Skoczyńska M, Sebastian M, Wiland P, Dzięgiel P, Podhorska-Okołów M. Immunohistochemical and ultrastructural analysis of sporadic inclusion body myositis: a case series. Rheumatol Int 2018; 39:1291-1301. [PMID: 30535925 DOI: 10.1007/s00296-018-4221-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022]
Abstract
Sporadic inclusion body myositis (s-IBM) is a progressive, skeletal muscle disease with poor prognosis. However, establishing the final diagnosis is difficult because of the lack of clear biomarkers in the blood serum and very slow development of clinical symptoms. Moreover, most other organs function normally without any disturbance. Here, in patients with this untreatable disease, we have underlined the importance of immunohistochemical and ultrastructural assessment of skeletal muscle in patients diagnosed with s-IBM. The goal of this study was to identify the distribution of specific antigens and to determine morphological features in order to localize pathological protein aggregates, rimmed vacuoles, and loss of myofibrils, which are key elements in the diagnosis of s-IBM. All studied patients were between 48 and 83 years of age and were hospitalized in the Department of Rheumatology and Internal Medicine between 2011 and 2016. Anamneses revealed an accelerated progression of muscle atrophy, weakness of limb muscles, and difficulties with climbing stairs. Based on histopathology and transmission electron microscopy examination, inflammatory infiltrations consisting of mononuclear cells, severe atrophy and focal necrosis of myofibers, splitting of myofilaments, myelinoid bodies and rimmed vacuoles were observed. Primary antibodies directed against CD3, CD8, CD68, cN1A, beta-amyloid, Tau protein and apolipoprotein B made it possible to identify types of cells within infiltrations as well as the protein deposits within myofibers. Using a combination of immunohistochemistry and electron microscopy methods, we were able to establish the correct final diagnosis and to implement a specific treatment to inhibit disease progression.
Collapse
Affiliation(s)
- Katarzyna Haczkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego Street 6a, 50-368, Wrocław, Poland.
| | - Agata Sebastian
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego Street 6a, 50-368, Wrocław, Poland
| | - Maria Misterska-Skóra
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Agnieszka Hałoń
- Department of Pathomorphology, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Marta Skoczyńska
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Maciej Sebastian
- Department of Minimally Invasive Surgery and Proctology, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Piotr Wiland
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska Street 213, 50-556, Wrocław, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego Street 6a, 50-368, Wrocław, Poland
| | - Marzenna Podhorska-Okołów
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego Street 6a, 50-368, Wrocław, Poland
| |
Collapse
|
28
|
|
29
|
Yuan F, Lu L, Zhang Y, Wang S, Cai YD. Data mining of the cancer-related lncRNAs GO terms and KEGG pathways by using mRMR method. Math Biosci 2018; 304:1-8. [PMID: 30086268 DOI: 10.1016/j.mbs.2018.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/15/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
LncRNAs plays an important role in the regulation of gene expression. Identification of cancer-related lncRNAs GO terms and KEGG pathways is great helpful for revealing cancer-related functional biological processes. Therefore, in this study, we proposed a computational method to identify novel cancer-related lncRNAs GO terms and KEGG pathways. By using existing lncRNA database and Max-relevance Min-redundancy (mRMR) method, GO terms and KEGG pathways were evaluated based on their importance on distinguishing cancer-related and non-cancer-related lncRNAs. Finally, GO terms and KEGG pathways with high importance were presented and analyzed. Our literature reviewing showed that the top 10 ranked GO terms and pathways were really related to interpretable tumorigenesis according to recent publications.
Collapse
Affiliation(s)
- Fei Yuan
- Department of Science & Technology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China.
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York 10032, USA.
| | - YuHang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - ShaoPeng Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
30
|
Zhu J, Luo JZ, Li CB. Correlations of an Insertion/Deletion Polymorphism (rs10680577) in the RERT-lncRNA with the Susceptibility, Clinicopathological Features, and Prognosis of Lung Cancer. Biochem Genet 2018; 57:147-158. [PMID: 30073577 DOI: 10.1007/s10528-018-9883-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the correlations of an Ins/Del polymorphism (rs10680577) in the RERT-lncRNA with the susceptibility, clinicopathological features, and prognosis of lung cancer. A total of 376 patients with lung cancer and 419 healthy subjects were enrolled in this study. The genotype of rs10680577 was performed using polymerase chain reaction (PCR) followed by polyacrylamide gel electrophoresis. Quantitative real-time PCR was used to measure RERT-lncRNA and EGLN2 expressions. Subjects with Del allele of rs10680577 exhibited an elevated risk of lung cancer. The expressions of RERT-lncRNA and EGLN2 in tumor tissues were higher than adjacent normal tissues, manifesting a positive correlation. Compared to patients with Ins/Ins genotype carriers, those with Ins/Del + Del/Del genotype carriers had upregulated expressions of RERT-lncRNA and EGLN2. Moreover, Ins/Del + Del/Del genotype and expressions of RERT-lncRNA and EGLN2 were associated with age, smoking habits, and TNM stage in lung cancer patients. Besides, patients with Ins/Ins genotype of rs10680577 had a longer OS than those with Ins/Del + Del/Del genotype carriers, and patients with lower expressions of RERT-lncRNA and EGLN2 presented a shorter OS than those with higher expressions. COX multivariate analysis demonstrated that Ins/Del + Del/Del genotype and higher expressions of RERT lncRNA and EGLN2 were risk factors affecting the prognosis of lung cancer. The Ins/Del polymorphism (rs10680577) in RERT-lncRNA was correlated with the risk, major clinicopathological features, and prognosis of lung cancer patients, and the patients with Ins/Del + Del/Del genotype carriers had higher expressions of RERT-lncRNA and EGLN2 than those with Ins/Ins carriers.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Laboratory Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, 434020, Hubei, China
| | - Jin-Zhu Luo
- Department of Laboratory Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, 434020, Hubei, China
| | - Cheng-Bin Li
- Department of Laboratory Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, 434020, Hubei, China.
| |
Collapse
|
31
|
Gao JR, Qin XJ, Jiang H, Gao YC, Guo MF, Jiang NN. Potential role of lncRNAs in contributing to pathogenesis of chronic glomerulonephritis based on microarray data. Gene 2017; 643:46-54. [PMID: 29199037 DOI: 10.1016/j.gene.2017.11.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/04/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic glomerulonephritis (CGN) is the most common form of primary glomerular disease with unclear molecular mechanisms, which related to immune-mediated inflammatory diseases. Our study intended to identify potential long non-coding RNAs (lncRNAs) and genes, and to determine the potential molecular mechanisms of CGN pathogenesis. METHODS The microarray of GSE64265 and GSE46295 were downloaded from the Gene Expression Omnibus database, GSE64265 including 3 rats control kidney tissues and 5 rats model kidney tissues, GSE46295 including 3 rats control kidney tissues and 3 rats model kidney tissues, which was on the basis of GPL1355 platform. Identification of differentially expressed lncRNAs and mRNAs were performed between the 2 groups. Gene ontology (GO) and pathway enrichment analyses were performed to analyze the biological functions and pathways for the differentially expressed mRNAs. LncRNA-mRNA weighted co-expression network was constructed using the WGCNA package to analyses for the genes in the modules. The protein-protein interaction (PPI) network was visualized. RESULTS A total of 40 significantly up-regulated and 24 down-regulated lncRNAs, 653 up-regulated and 128 down-regulated mRNAs were identified. Additionally, Cdk1, with the highest connectivity degree in PPI network, was noteworthy enriched in cell cycle. Seven lncRNAs: NONRATT026650, LOC102547664, NONRATT77021989, NONRATT012453, LOC102551856, LOC102553536 and NONRATT7047175 were observed in the modules of lncRNA-mRNA weighted co-expression network. CONCLUSIONS LncRNAs NONRATT026650, LOC102547664, NONRATT77021989, NONRATT012453, LOC102551856, LOC102553536 and NONRATT7047175 were differentially expressed and might play important roles in the development of CGN. Key genes, such as Cd44, Rftn1, Runx1, may be crucial biomarkers for CGN.
Collapse
Affiliation(s)
- Jia-Rong Gao
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Xiu-Juan Qin
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China
| | - Hui Jiang
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China
| | - Ya-Chen Gao
- Department of Nephrology, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China
| | - Ming-Fei Guo
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China
| | - Nan-Nan Jiang
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China
| |
Collapse
|