1
|
Chiu SC, Yang XT, Wei TYW, Liao YTA, Chen JMM, Kuo YC, Liu CCJ, Cheng CY, Huang YTJ, Huang YRJ, Wu HLJ, Wan CX, Tsai JR, Yu CTR. The crescent-like Golgi ribbon is shaped by the Ajuba/PRMT5/Aurora-A complex-modified HURP. Cell Commun Signal 2023; 21:156. [PMID: 37370099 DOI: 10.1186/s12964-023-01167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Golgi apparatus (GA) is assembled as a crescent-like ribbon in mammalian cells under immunofluorescence microscope without knowing the shaping mechanisms. It is estimated that roughly 1/5 of the genes encoding kinases or phosphatases in human genome participate in the assembly of Golgi ribbon, reflecting protein modifications play major roles in building Golgi ribbon. METHODS To explore how Golgi ribbon is shaped as a crescent-like structure under the guidance of protein modifications, we identified a protein complex containing the scaffold proteins Ajuba, two known GA regulators including the protein kinase Aurora-A and the protein arginine methyltransferase PRMT5, and the common substrate of Aurora-A and PRMT5, HURP. Mutual modifications and activation of PRMT5 and Aurora-A in the complex leads to methylation and in turn phosphorylation of HURP, thereby producing HURP p725. The HURP p725 localizes to GA vicinity and its distribution pattern looks like GA morphology. Correlation study of the HURP p725 statuses and GA structure, site-directed mutagenesis and knockdown-rescue experiments were employed to identify the modified HURP as a key regulator assembling GA as a crescent ribbon. RESULTS The cells containing no or extended distribution of HURP p725 have dispersed GA membranes or longer GA. Knockdown of HURP fragmentized GA and HURP wild type could, while its phosphorylation deficiency mutant 725A could not, restore crescent Golgi ribbon in HURP depleted cells, collectively indicating a crescent GA-constructing activity of HURP p725. HURP p725 is transported, by GA membrane-associated ARF1, Dynein and its cargo adaptor Golgin-160, to cell center where HURP p725 forms crescent fibers, binds and stabilizes Golgi assembly factors (GAFs) including TRIP11, GRASP65 and GM130, thereby dictating the formation of crescent Golgi ribbon at nuclear periphery. CONCLUSIONS The Ajuba/PRMT5/Aurora-A complex integrates the signals of protein methylation and phosphorylation to HURP, and the HURP p725 organizes GA by stabilizing and recruiting GAFs to its crescent-like structure, therefore shaping GA as a crescent ribbon. Therefore, the HURP p725 fiber serves a template to construct GA according to its shape. Video Abstract.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Xin-Ting Yang
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Tong-You Wade Wei
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
- Department of Medicine, University of California, San Diego, CA, USA
| | - Yu-Ting Amber Liao
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Yi-Chun Kuo
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
| | - Chun-Chih Jared Liu
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Chiao-Yun Cheng
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Yu-Ting Jenny Huang
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | | | - He-Lian Joe Wu
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Chang-Xin Wan
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Jia-Rung Tsai
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan.
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan.
- Present Address: Department of Applied Chemistry, National Chi Nan University, No. 1, University Rd. Puli, Nantou, 545, Taiwan.
| |
Collapse
|
2
|
Song N, Liu J, Zhang K, Yang J, Cui K, Miao Z, Zhao F, Meng H, Chen L, Chen C, Li Y, Shao M, Su W, Wang H. The LIM Protein AJUBA is a Potential Oncogenic Target and Prognostic Marker in Human Cancer via Pan-Cancer Analysis. Front Cell Dev Biol 2022; 10:921897. [PMID: 35898403 PMCID: PMC9309301 DOI: 10.3389/fcell.2022.921897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose: The LIM (Lin-11, Isl1, MEC-3) domain protein AJUBA is involved in multiple biological functions, and its aberrant expression is related to the occurrence and progression of various cancers. However, there are no analytical studies on AJUBA in pan-cancer. Methods: We performed a comprehensive pan-cancer analysis and explored the potential oncogenic roles of AJUBA, including gene expression, genetic mutation, protein phosphorylation, clinical diagnostic biomarker, prognosis, and AJUBA-related immune infiltration based on The Cancer Genome Atlas and Genotype-Tissue Expression databases. Results: The results revealed that the expression of AJUBA highly correlated with poor clinical outcomes in patients with different types of cancer. Meanwhile, AJUBA expression was positively correlated with cancer-associated fibroblasts in many human cancers, such as breast invasive carcinoma, colon adenocarcinoma, brain lower-grade glioma, lung adenocarcinoma (LUAD), and ovarian serous cystadenocarcinoma (OV). Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that AJUBA is mainly involved in protein serine/threonine kinase activity, cell–cell junction, covalent chromatin modification, and Hippo signaling pathway. Conclusion: The pan-cancer study reveals the oncogenic roles of AJUBA and provides a comprehensive understanding of the molecular biological genetic information of AJUBA in various tumors.
Collapse
Affiliation(s)
- Na Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ke Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Kai Cui
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhuang Miao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Feiyue Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hongjing Meng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lu Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chong Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yushan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Minglong Shao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Haijun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- *Correspondence: Haijun Wang,
| |
Collapse
|
3
|
Ajuba Overexpression Promotes Breast Cancer Chemoresistance and Glucose Uptake through TAZ-GLUT3/Survivin Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3321409. [PMID: 35178446 PMCID: PMC8844350 DOI: 10.1155/2022/3321409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/18/2022]
Abstract
The LIM protein Ajuba has been implicated in the development of human cancers. To date, its expression pattern and biological significance in breast cancers (BC) have not been fully investigated. In the current study, we examined Ajuba protein levels in 93 invasive ductal carcinoma specimens by immunohistochemistry. The Ajuba expression level was elevated in breast cancer tissue compared with normal tissue. Ajuba overexpression is correlated with advanced tumor-node-metastasis (TNM) stage, positive node status, and adverse patient outcomes. The Ajuba protein level was also higher in BC cell lines compared to normal breast epithelial cell line MCF-10A. Ectopically expressed Ajuba in MCF-7 cells stimulated in vitro and in vivo cell growth, invasion, cell cycle progression, and decreased paclitaxel-induced apoptosis. RNA-sequencing (RNA-seq) followed by gene set enrichment analysis (GSEA) analysis showed that Ajuba overexpression regulated the Hippo signaling pathway. Ajuba overexpression also increased glucose uptake and increased expression of TAZ, GLUT3, and Survivin. TAZ knockdown abolished the role of Ajuba on GLUT3 and Survivin induction. The ChIP assay showed that TEAD4, a major TAZ binding transcription factor, could bind to the GLUT3 and Survivin promoter regions. In conclusion, our data demonstrated that elevated Ajuba expression is correlated with poor BC prognosis and regulated malignant behavior through TAZ-GLUT3/Survivin signaling in BC cells.
Collapse
|
4
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
5
|
CdGAP promotes prostate cancer metastasis by regulating epithelial-to-mesenchymal transition, cell cycle progression, and apoptosis. Commun Biol 2021; 4:1042. [PMID: 34493786 PMCID: PMC8423782 DOI: 10.1038/s42003-021-02520-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
High mortality of prostate cancer patients is primarily due to metastasis. Understanding the mechanisms controlling metastatic processes remains essential to develop novel therapies designed to prevent the progression from localized disease to metastasis. CdGAP plays important roles in the control of cell adhesion, migration, and proliferation, which are central to cancer progression. Here we show that elevated CdGAP expression is associated with early biochemical recurrence and bone metastasis in prostate cancer patients. Knockdown of CdGAP in metastatic castration-resistant prostate cancer (CRPC) PC-3 and 22Rv1 cells reduces cell motility, invasion, and proliferation while inducing apoptosis in CdGAP-depleted PC-3 cells. Conversely, overexpression of CdGAP in DU-145, 22Rv1, and LNCaP cells increases cell migration and invasion. Using global gene expression approaches, we found that CdGAP regulates the expression of genes involved in epithelial-to-mesenchymal transition, apoptosis and cell cycle progression. Subcutaneous injection of CdGAP-depleted PC-3 cells into mice shows a delayed tumor initiation and attenuated tumor growth. Orthotopic injection of CdGAP-depleted PC-3 cells reduces distant metastasic burden. Collectively, these findings support a pro-oncogenic role of CdGAP in prostate tumorigenesis and unveil CdGAP as a potential biomarker and target for prostate cancer treatments. Mehra et al. investigate the role of CdGAP in early biochemical recurrence and bone metastasis in prostate cancer. The authors find that knocking down CdGAP leads to reduced cell motility, invasion and proliferation in PC-3 and 22Rv1 cells while orthotopic injection of CdGAP-depleted PC-3 cells reduces distant metastatic burden.
Collapse
|
6
|
Schleicher K, Schramek D. AJUBA: A regulator of epidermal homeostasis and cancer. Exp Dermatol 2021; 30:546-559. [PMID: 33372298 DOI: 10.1111/exd.14272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
The epidermis, outermost layer of the skin, is constantly renewing itself through proliferative and differentiation processes. These processes are vital to maintain proper epidermal integrity during skin development and homeostasis and for preventing skin diseases and cancers. The biological mechanisms that permit this balancing act are vast, where individual pathway regulators are known, but the exact regulatory control and cross-talk between simultaneously turning one biological pathway on and an opposing one off remain elusive. This review explores the diverse roles the scaffolding protein AJUBA plays during epidermal homeostasis and cancer. Initially identified for its role in promoting meiotic progression in oocytes through Grb2 and MAP kinase activity, AJUBA also maintains cytoskeletal tension permitting epidermal tissue development and responds to retinoic acid committing cells to initiate development of surface epidermal layer. AJUBA regulates proliferation of skin stem cells through Hippo and Wnt signalling and encourages mitotic commitment through Aurora-A, Aurora-B and CDK1. In addition, AJUBA also induces epidermal differentiation to maintain appropriate epidermal thickness and barrier function by activating Notch signalling and stabilizing catenins and actin during cellular remodelling. AJUBA also plays an imperative context-dependent tumor-promoting and tumor-suppressive role within epithelial cancers. AJUBA's abundant roles within the epidermis signify its importance as a molecular switchboard, vetting multiple signalling pathways to control epidermal biology.
Collapse
Affiliation(s)
- Krista Schleicher
- Molecular, Structural and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Faculty of Medicine, Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniel Schramek
- Molecular, Structural and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Faculty of Medicine, Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Jauregi-Miguel A. The tight junction and the epithelial barrier in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:105-132. [PMID: 33707052 DOI: 10.1016/bs.ircmb.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epithelial barriers are essential to maintain multicellular organisms well compartmentalized and protected from external environment. In the intestine, the epithelial layer orchestrates a dynamic balance between nutrient absorption and prevention of microorganisms, and antigen intrusion. Intestinal barrier function has been shown to be altered in coeliac disease but whether it contributes to the pathogenesis development or if it is merely a phenomenon secondary to the aberrant immune response is still unknown. The tight junction complexes are multiprotein cell-cell adhesions that seal the epithelial intercellular space and regulate the paracellular permeability of ions and solutes. These structures have a fundamental role in epithelial barrier integrity as well as in signaling mechanisms that control epithelial-cell polarization, the formation of apical domains and cellular processes such as cell proliferation, migration, differentiation, and survival. In coeliac disease, the molecular structures and function of tight junctions appear disrupted and are not completely recovered after treatment with gluten-free diet. Moreover, zonulin, the only known physiological regulator of the tight junction permeability, appears augmented in autoimmune conditions associated with TJ dysfunction, including coeliac disease. This chapter will examine recent discoveries about the molecular architecture of tight junctions and their functions. We will discuss how different factors contribute to tight junction disruption and intestinal barrier impairment in coeliac disease. To conclude, new insights into zonulin-driven disruption of tight junction structures and barrier integrity in coeliac disease are presented together with the advancements in novel therapy to treat the barrier defect seen in pathogenesis.
Collapse
Affiliation(s)
- Amaia Jauregi-Miguel
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden.
| |
Collapse
|
8
|
Ajuba: An emerging signal transducer in oncogenesis. Pharmacol Res 2019; 151:104546. [PMID: 31740385 DOI: 10.1016/j.phrs.2019.104546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
The LIM protein Ajuba contains an unstructured proline/glycine-rich preLIM region in the N terminus and conserved tandem LIM motifs in the C terminus. Additionally, Ajuba contains both nuclear export sequences (NES) and nuclear localization sequences (NLS), which enable Ajuba shuttle between the cytoplasm and the nucleus. Thus, Ajuba can act as a versatile scaffold participating in assembly of variety of protein complexes to execute multiple cellular functions including cell adhesion, motility, mitosis, survival, gene expression, microRNA processing and mechanical force sensing. Numerous studies have demonstrated that Ajuba plays important roles in oncogenesis and progression by regulating major signalling pathways such as Wnt, RAS/ERK, JAK/STAT and Hippo, and by acting as a co-regulator of key transcription factors such as Snail, Sp1 and nuclear hormone receptors. Clinically, Ajuba is highly expressed in various types of tumors and can be a marker for prognosis and diagnosis. In this review, we aim to summarize the up-to-date literatures on the signaling pathways mediated by Ajuba and its associated protein complexes in oncogenesis, and to discuss Ajuba as a potential target for new therapeutics to treat cancers.
Collapse
|
9
|
Chiu SC, Chen KC, Hsia JY, Chuang CY, Wan CX, Wei TYW, Huang YRJ, Chen JMM, Liao YTA, Yu CTR. Overexpression of Aurora-A bypasses cytokinesis through phosphorylation of suppressed in lung cancer. Am J Physiol Cell Physiol 2019; 317:C600-C612. [PMID: 31314582 DOI: 10.1152/ajpcell.00032.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitosis is a complicated process by which eukaryotic cells segregate duplicated genomes into two daughter cells. To achieve the goal, numerous regulators have been revealed to control mitosis. The oncogenic Aurora-A is a versatile kinase responsible for the regulation of mitosis including chromosome condensation, spindle assembly, and centrosome maturation through phosphorylating a range of substrates. However, overexpression of Aurora-A bypasses cytokinesis, thereby generating multiple nuclei by unknown the mechanisms. To explore the underlying mechanisms, we found that SLAN, a potential tumor suppressor, served as a substrate of Aurora-A and knockdown of SLAN induced immature cytokinesis. Aurora-A phosphorylates SLAN at T573 under the help of the scaffold protein 14-3-3η. The SLAN phosphorylation-mimicking mutants T573D or T573E, in contrast to the phosphorylation-deficiency mutant T573A, induced higher level of multinucleated cells, and the endogenous SLAN p573 resided at spindle midzone and midbody with the help of the microtubule motor MKLP1. The Aurora-A- or SLAN-induced multiple nuclei was prevented by the knockdown of 14-3-3η or Aurora-A respectively, thereby revealing a 14-3-3η/Aurora-A/SLAN cascade negatively controlling cytokinesis. Intriguingly, SLAN T573D or T573E inactivated and T573A activated the key cytokinesis regulator RhoA. RhoA interacted with SLAN np573, i.e., the nonphosphorylated form of SLAN at T573, which localized to the spindle midzone dictated by RhoA and ECT2. Therefore, we report here that SLAN mediates the Aurora-A-triggered cytokinesis bypass and SLAN plays dual roles in that process depending on its phosphorylation status.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Center for Cell Therapy, China Medical University Hospital, Taichung, Taiwan, Republic of China.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, Republic of China
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Jiun-Yi Hsia
- Department of Surgery, Chung Shan Hospital, Taichung, Taiwan, Republic of China.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Cheng-Yen Chuang
- Division of Thoracic Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China.,Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Chang-Xin Wan
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Tong-You Wade Wei
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan, Republic of China.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yun-Ru Jaoying Huang
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Yu-Ting Amber Liao
- Center for Cell Therapy, China Medical University Hospital, Taichung, Taiwan, Republic of China.,Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China.,Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan, Republic of China
| |
Collapse
|
10
|
Razzell W, Bustillo ME, Zallen JA. The force-sensitive protein Ajuba regulates cell adhesion during epithelial morphogenesis. J Cell Biol 2018; 217:3715-3730. [PMID: 30006462 PMCID: PMC6168262 DOI: 10.1083/jcb.201801171] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/16/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
The reorganization of cells in response to mechanical forces converts simple epithelial sheets into complex tissues of various shapes and dimensions. Epithelial integrity is maintained throughout tissue remodeling, but the mechanisms that regulate dynamic changes in cell adhesion under tension are not well understood. In Drosophila melanogaster, planar polarized actomyosin forces direct spatially organized cell rearrangements that elongate the body axis. We show that the LIM-domain protein Ajuba is recruited to adherens junctions in a tension-dependent fashion during axis elongation. Ajuba localizes to sites of myosin accumulation at adherens junctions within seconds, and the force-sensitive localization of Ajuba requires its N-terminal domain and two of its three LIM domains. We demonstrate that Ajuba stabilizes adherens junctions in regions of high tension during axis elongation, and that Ajuba activity is required to maintain cell adhesion during cell rearrangement and epithelial closure. These results demonstrate that Ajuba plays an essential role in regulating cell adhesion in response to mechanical forces generated by epithelial morphogenesis.
Collapse
Affiliation(s)
- William Razzell
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Maria E Bustillo
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
- Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
| |
Collapse
|