1
|
Collin SP, Yopak KE, Crowe-Riddell JM, Camilieri-Asch V, Kerr CC, Robins H, Ha MH, Ceddia A, Dutka TL, Chapuis L. Bioimaging of sense organs and the central nervous system in extant fishes and reptiles in situ: A review. Anat Rec (Hoboken) 2024. [PMID: 39223842 DOI: 10.1002/ar.25566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Bioimaging is changing the field of sensory biology, especially for taxa that are lesser-known, rare, and logistically difficult to source. When integrated with traditional neurobiological approaches, developing an archival, digital repository of morphological images can offer the opportunity to improve our understanding of whole neural systems without the issues of surgical intervention and negate the risk of damage and artefactual interpretation. This review focuses on current approaches to bioimaging the peripheral (sense organs) and central (brain) nervous systems in extant fishes (cartilaginous and bony) and non-avian reptiles in situ. Magnetic resonance imaging (MRI), micro-computed tomography (μCT), both super-resolution track density imaging and diffusion tensor-based imaging, and a range of other new technological advances are presented, together with novel approaches in optimizing both contrast and resolution, for developing detailed neuroanatomical atlases and enhancing comparative analyses of museum specimens. For MRI, tissue preparation, including choice of fixative, impacts tissue MR responses, where both resolving power and signal-to-noise ratio improve as field strength increases. Time in fixative, concentration of contrast agent, and duration of immersion in the contrast agent can also significantly affect relaxation times, and thus image quality. For μCT, the use of contrast-enhancing stains (iodine-, non-iodine-, or nanoparticle-based) is critical, where the type of fixative used, and the concentration of stain and duration of staining time often require species-specific optimization. Advanced reconstruction algorithms to reduce noise and artifacts and post-processing techniques, such as deconvolution and filtering, are now being used to improve image quality and resolution.
Collapse
Affiliation(s)
- Shaun P Collin
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Kara E Yopak
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Jenna M Crowe-Riddell
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Victoria Camilieri-Asch
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Caroline C Kerr
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Hope Robins
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Myoung Hoon Ha
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Annalise Ceddia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Travis L Dutka
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Lucille Chapuis
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- School of Biological Sciences, University of Bristol, Bristol, UK
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| |
Collapse
|
2
|
Bontonou G, Saint-Leandre B, Kafle T, Baticle T, Hassan A, Sánchez-Alcañiz JA, Arguello JR. Evolution of chemosensory tissues and cells across ecologically diverse Drosophilids. Nat Commun 2024; 15:1047. [PMID: 38316749 PMCID: PMC10844241 DOI: 10.1038/s41467-023-44558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024] Open
Abstract
Chemosensory tissues exhibit significant between-species variability, yet the evolution of gene expression and cell types underlying this diversity remain poorly understood. To address these questions, we conducted transcriptomic analyses of five chemosensory tissues from six Drosophila species and integrated the findings with single-cell datasets. While stabilizing selection predominantly shapes chemosensory transcriptomes, thousands of genes in each tissue have evolved expression differences. Genes that have changed expression in one tissue have often changed in multiple other tissues but at different past epochs and are more likely to be cell type-specific than unchanged genes. Notably, chemosensory-related genes have undergone widespread expression changes, with numerous species-specific gains/losses including novel chemoreceptors expression patterns. Sex differences are also pervasive, including a D. melanogaster-specific excess of male-biased expression in sensory and muscle cells in its forelegs. Together, our analyses provide new insights for understanding evolutionary changes in chemosensory tissues at both global and individual gene levels.
Collapse
Affiliation(s)
- Gwénaëlle Bontonou
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Bastien Saint-Leandre
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Tane Kafle
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tess Baticle
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Afrah Hassan
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - J Roman Arguello
- Department of Ecology & Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Mangiacotti M, Baeckens S, Fumagalli M, Martín J, Scali S, Sacchi R. Protein-lipid Association in Lizard Chemical Signals. Integr Org Biol 2023; 5:obad016. [PMID: 37228571 PMCID: PMC10205002 DOI: 10.1093/iob/obad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Chemical communication in terrestrial vertebrates is often built on complex blends, where semiochemical and structural compounds may form an integrated functional unit. In lizards, many species have specialized epidermal glands whose secretions are waxy, homogeneous blends of lipids and proteins, both active in communication. The intimate co-occurrence of such compounds allows us to hypothesize that they should undergo a certain degree of covariation, considering both their semiochemical role and the support-to-lipid function hypothesized for the protein fraction. In order to assess the occurrence and level of protein-lipid covariation, we compared the composition and complexity of the two fractions in the femoral gland secretions of 36 lizard species, combining phylogenetically-informed analysis with tandem mass spectrometry. We found the composition and complexity of the two fractions to be strongly correlated. The composition of the protein fraction was mostly influenced by the relative proportion of cholestanol, provitamin D3, stigmasterol, and tocopherol, while the complexity of the protein pattern increased with that of lipids. Additionally, two identified proteins (carbonic anhydrase and protein disulfide isomerase) increased their concentration as provitamin D3 became more abundant. Although our approach does not allow us to decrypt the functional relations between the proteinaceous and lipid components, nor under the semiochemical or structural hypothesis, the finding that the proteins involved in this association were enzymes opens up to new perspectives about protein role: They may confer dynamic properties to the blend, making it able to compensate predictable variation of the environmental conditions. This may expand the view about proteins in the support-to-lipid hypothesis, from being a passive and inert component of the secretions to become an active and dynamic one, thus providing cues for future research.
Collapse
Affiliation(s)
| | - S Baeckens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, 9000 Gent, Belgium
| | - M Fumagalli
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - J Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - S Scali
- Sezione Erpetologia, Museo di Storia Naturale di Milano, Corso Venezia 55, IT-20121 Milano, Italy
| | - R Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100 Pavia, Italy
| |
Collapse
|
4
|
Ibáñez A, Skupien-Rabian B, Jankowska U, Kędracka-Krok S, Zając B, Pabijan M. Functional Protein Composition in Femoral Glands of Sand Lizards ( Lacerta agilis). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072371. [PMID: 35408771 PMCID: PMC9000839 DOI: 10.3390/molecules27072371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022]
Abstract
Proteins are ubiquitous macromolecules that display a vast repertoire of chemical and enzymatic functions, making them suitable candidates for chemosignals, used in intraspecific communication. Proteins are present in the skin gland secretions of vertebrates but their identity, and especially, their functions, remain largely unknown. Many lizard species possess femoral glands, i.e., epidermal organs primarily involved in the production and secretion of chemosignals, playing a pivotal role in mate choice and intrasexual communication. The lipophilic fraction of femoral glands has been well studied in lizards. In contrast, proteins have been the focus of only a handful of investigations. Here, we identify and describe inter-individual expression patterns and the functionality of proteins present in femoral glands of male sand lizards (Lacerta agilis) by applying mass spectrometry-based proteomics. Our results show that the total number of proteins varied substantially among individuals. None of the identified femoral gland proteins could be directly linked to chemical communication in lizards, although this result hinges on protein annotation in databases in which squamate semiochemicals are poorly represented. In contrast to our expectations, the proteins consistently expressed across individuals were related to the immune system, antioxidant activity and lipid metabolism as their main functions, showing that proteins in reptilian epidermal glands may have other functions besides chemical communication. Interestingly, we found expression of the Major Histocompatibility Complex (MHC) among the multiple and diverse biological processes enriched in FGs, tentatively supporting a previous hypothesis that MHC was coopted for semiochemical function in sand lizards, specifically in mate recognition. Our study shows that mass spectrometry-based proteomics are a powerful tool for characterizing and deciphering the role of proteins secreted by skin glands in non-model vertebrates.
Collapse
Affiliation(s)
- Alejandro Ibáñez
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland;
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
- Correspondence:
| | - Bozena Skupien-Rabian
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (B.S.-R.); (U.J.)
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (B.S.-R.); (U.J.)
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Bartłomiej Zając
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Maciej Pabijan
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland;
| |
Collapse
|
5
|
Ariano‐Sánchez D, Mortensen RM, Wilson RP, Bjureke P, Reinhardt S, Rosell F. Temperature and barometric pressure affect the activity intensity and movement of an endangered thermoconforming lizard. Ecosphere 2022. [DOI: 10.1002/ecs2.3990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Daniel Ariano‐Sánchez
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
- Centro de Estudios Ambientales y Biodiversidad Universidad del Valle de Guatemala Guatemala City Guatemala
| | - Rasmus M. Mortensen
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Rory P. Wilson
- Biosciences, College of Science Swansea University Swansea Wales UK
| | - Peder Bjureke
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Stefanie Reinhardt
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Frank Rosell
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| |
Collapse
|
6
|
Predictive Factors of Chemical and Visual Sensory Organ Size: The Roles of Sex, Environment, and Evolution. Evol Biol 2021. [DOI: 10.1007/s11692-021-09554-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Mangiacotti M, Baeckens S, Scali S, Martín J, Van Damme R, Sacchi R. Evolutionary and biogeographical support for species-specific proteins in lizard chemical signals. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The species-specific components of animal signals can facilitate species recognition and reduce the risks of mismatching and interbreeding. Nonetheless, empirical evidence for species-specific components in chemical signals is scarce and mostly limited to insect pheromones. Based on the proteinaceous femoral gland secretions of 36 lizard species (Lacertidae), we examine the species-specific component potential of proteins in lizard chemical signals. By quantitative comparison of the one-dimensional electrophoretic patterns of the protein fraction from femoral gland secretions, we first reveal that the protein composition is species specific, accounting for a large part of the observed raw variation and allowing us to discriminate species on this basis. Secondly, we find increased protein pattern divergence in sympatric, closely related species. Thirdly, lizard protein profiles show a low phylogenetic signal, a recent and steep increase in relative disparity and a high rate of evolutionary change compared with non-specifically signal traits (i.e. body size and shape). Together, these findings provide support for the species specificity of proteins in the chemical signals of a vertebrate lineage.
Collapse
Affiliation(s)
- Marco Mangiacotti
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- Museo di Storia Naturale di Milano, Milano, Italy
| | - Simon Baeckens
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | | | - José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Raoul Van Damme
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Roberto Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Campos SM, Belkasim SS. Chemical Communication in Lizards and a Potential Role for Vasotocin in Modulating Social Interactions. Integr Comp Biol 2021; 61:205-220. [PMID: 33940600 DOI: 10.1093/icb/icab044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lizards use chemical communication to mediate many reproductive, competitive, and social behaviors, but the neuroendocrine mechanisms underlying chemical communication in lizards are not well understood and understudied. By implementing a neuroendocrine approach to the study of chemical communication in reptiles, we can address a major gap in our knowledge of the evolutionary mechanisms shaping chemical communication in vertebrates. The neuropeptide arginine vasotocin (AVT) and its mammalian homolog vasopressin are responsible for a broad spectrum of diversity in competitive and reproductive strategies in many vertebrates, mediating social behavior through the chemosensory modality. In this review, we posit that, though limited, the available data on AVT-mediated chemical communication in lizards reveal intriguing patterns that suggest AVT plays a more prominent role in lizard chemosensory behavior than previously appreciated. We argue that these results warrant more research into the mechanisms used by AVT to modify the performance of chemosensory behavior and responses to conspecific chemical signals. We first provide a broad overview of the known social functions of chemical signals in lizards, the glandular sources of chemical signal production in lizards (e.g., epidermal secretory glands), and the chemosensory detection methods and mechanisms used by lizards. Then, we review the locations of vasotocinergic populations and neuronal projections in lizard brains, as well as sites of peripheral receptors for AVT in lizards. Finally, we end with a case study in green anoles (Anolis carolinensis), discussing findings from recently published work on the impact of AVT in adult males on chemosensory communication during social interactions, adding new data from a similar study in which we tested the impact of AVT on chemosensory behavior of adult females. We offer concluding remarks on addressing several fundamental questions regarding the role of AVT in chemosensory communication and social behavior in lizards.
Collapse
Affiliation(s)
- Stephanie M Campos
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| | - Selma S Belkasim
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| |
Collapse
|
9
|
Ruiz–Monachesi MR, Cruz FB, Valdecantos S, Labra A. Unravelling associations among chemosensory system components in
Liolaemus
lizards. J Zool (1987) 2020. [DOI: 10.1111/jzo.12819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- M. R. Ruiz–Monachesi
- CONICET‐ Instituto de Bio y Geo Ciencias del NOA (IBIGEO) Facultad de Ciencias Naturales Universidad Nacional de Salta Rosario de Lerma Argentina
| | - F. B. Cruz
- INIBIOMA (CONICET – UNCOMA) Centro Regional Universitario Bariloche Universidad Nacional del Comahue (CRUB)‐Bariloche Río Negro Argentina
| | - S. Valdecantos
- CONICET‐ Instituto de Bio y Geo Ciencias del NOA (IBIGEO) Facultad de Ciencias Naturales Universidad Nacional de Salta Rosario de Lerma Argentina
| | - A. Labra
- Center for Ecological and Evolutionary Synthesis Department of Biosciences University of Oslo Oslo Norway
- ONG Vida Nativa Santiago Chile
| |
Collapse
|
10
|
Guo K, Chen C, Liang XF, Qu YF, Ji X. Female northern grass lizards judge mates by body shape to reinforce local adaptation. Front Zool 2020; 17:22. [PMID: 32774436 PMCID: PMC7409496 DOI: 10.1186/s12983-020-00367-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/24/2020] [Indexed: 12/03/2022] Open
Abstract
Background Identifying the factors that contribute to divergence among populations in mate preferences is important for understanding of the manner in which premating reproductive isolation might arise and how this isolation may in turn contribute to the evolutionary process of population divergence. Here, we offered female northern grass lizards (Takydromus septentrionalis) a choice of males between their own population and another four populations to test whether the preferences that females display in the mating trials correlate with phenotypic adaptation to local environments, or to the neutral genetic distance measured by divergence of mitochondrial DNA sequence loci. Results Females showed a strong preference for native over foreign males. Females that mated with native versus foreign males did not differ from each other in mating latency, or copulation duration. From results of the structural equation modelling we knew that: 1) geographical distance directly contributed to genetic differentiation and environmental dissimilarity; 2) genetic differentiation and environmental dissimilarity indirectly contributed to female mate preference, largely through their effects on morphological divergence; and 3) females judged mates by body shape (appearance) and discriminated more strongly against morphologically less familiar allopatric males. Conclusions Local adaptation rather than neutral genetic distance influences female mate preference in T. septentrionalis. The tendency to avoid mating with foreign males may indicate that, in T. septentrionalis, local adaptations are more valuable than genetic novelties. Our results highlight the importance of comprehensive studies integrating ecological, molecular and behavioral approaches to understand population divergence in female mate preferences as the consequence of local adaptations.
Collapse
Affiliation(s)
- Kun Guo
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 Jiangsu China
| | - Chen Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 Jiangsu China
| | - Xiao-Fang Liang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 Jiangsu China
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 Jiangsu China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 Jiangsu China
| |
Collapse
|
11
|
El-Mansi AA, Al-Kahtani MA, Abumandour MMA, Ahmed AE. Structural and Functional Characterization of the Tongue and Digestive Tract of Psammophis sibilans (Squamata, Lamprophiidae): Adaptive Strategies for Foraging and Feeding Behaviors. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:524-541. [PMID: 32393413 DOI: 10.1017/s1431927620001312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We describe the morphological adaptations of the tongue and gastrointestinal tract of the striped sand snake Psammophis sibilans and discuss their functional importance. Using standard histological, histochemical, and scanning electron microscopy techniques, we analyzed 11 adult snakes of both sexes. Our findings showed that the bifurcated non-papillate tongue exhibited chemoreceptive adaptions to squamate foraging behavior. The lingual apex tapered terminally with sensory spines, and the body of the tongue possesses a characteristic central odor-receptor chamber that might serve to trap and retain scent molecules. Furthermore, the intrinsic musculature showed interwoven and well-developed transverse, vertical and longitudinal muscle fibers that control contraction and retraction during probing and flicking. The esophagus displayed highly folded mucosa lined with columnar epithelium with goblet cells. In contrast, the stomach mucosa formed finger-like gastric rugae, encompassing tubular glands with dorsal gastric pits. The intestine is distinct from other vertebrates in lacking the crypts of Lieberkühn in the tunica mucosa and submucosa. The intestine mucosa is mostly arranged in interdigitating villi oriented perpendicular to the luminal surface. We extrapolated subtle variations for both acid and neutral mucopolysaccharides and glycoproteins localization as well as collagen fibers using histochemical analyses. The elaborate histo-morphological and functional adaptation of the tongue and digestive tract plays a pivotal role in foraging and feeding behavior.
Collapse
Affiliation(s)
- Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 641, Abha61421, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed A Al-Kahtani
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 641, Abha61421, Saudi Arabia
| | - Mohamed M A Abumandour
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Behera, Egypt
| | - Ahmed E Ahmed
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 641, Abha61421, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
12
|
Van Moorleghem C, Van Damme R. The Asian grass lizard (
Takydromus sexlineatus
) does not respond to the scent of a native mammalian predator. Ethology 2020. [DOI: 10.1111/eth.13002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charlotte Van Moorleghem
- Laboratory for Functional Morphology Department of Biology University of Antwerp Wilrijk Belgium
| | - Raoul Van Damme
- Laboratory for Functional Morphology Department of Biology University of Antwerp Wilrijk Belgium
| |
Collapse
|
13
|
Pereira IF, Costa APFD, Srbek-Araujo AC, Guimarães LJ, Merencio AF, Silva AGD. The Dispersion of Diaspores of Protium icicariba (Burseraceae) - a Networked or Multifactorial System? J Chem Ecol 2020; 46:163-175. [PMID: 32026207 DOI: 10.1007/s10886-019-01140-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/31/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022]
Abstract
The adaptive radiation of the angiosperms was strongly affected by fruit and seed dispersal since the establishment of the seedlings is a fundamental process for the recruitment of juveniles to the populations. Among the species of Burseraceae, seeds with fleshy attachments and high caloric value suggest mammaliochory as an ancestral dispersal way. In Protium icicariba, at the same time as there is a visual pattern typical of ornithochory, with a report of effective demonstration, the diaspores present the highest levels of essential oils of the whole plant, suggesting other dispersion processes by olfactory guided vectors. This work aims to monitor the diasporic dispersal process in P. icicariba in situ, aiming to identify dispersers and to investigate the role of the essential oil in the dispersion of diaspores of this plant species. The natural dispersion was monitored in situ, in weekly campaigns throughout eight months, using visual and photographic records, in daily shifts of six hours, distributed along the dawn, morning, afternoon, dusk, and night. We used both direct observation and continuous picture capturing along 43 days with photographic traps. Mature diaspores removed from pseudocapsules were pooled to determine potential dispersers. Artificial models of the diaspores, in white and green colors, were also used to test hypotheses on the role of scent in the dispersion, added 1%, weight/weight, of the essential oil extracted from the mature diaspores, which chemical composition determined by gas chromatography coupled to mass spectrometry. Besides, the analysis of stomach contents of lizards collected in adjacent area was also performed. In daytime and nighttime monitoring in nature, no vertebrates were recorded dispersing diaspores. The most common was the primary wind-facilitated autochory of diaspores to the substrate, near the plant matrices. Secondarily, workers of the ant species Atta robusta can remove the pseudoarils or move the pyrenes to the anthills. The lizard species Tropidurus torquatus ingests pyrenes with the pseudoarils, and the sclerified pericarp of the pyrene is potentially resistant to chemical action of the digestive juices. Ants and lizards have also accessed the caves with natural diaspores. Concerning the artificial diaspore models, ants accessed, indistinctly, white and the green models that contained essential oils. The lizards accessed the white models, with or without essential oils, and showed insignificant access to green ones, with or without essential oil. The ingestion of pyrenes by lizards was also confirmed through analysis of stomach contents. The aggregate spatial pattern of P. icicariba at the study site, associated with clumps, may be derived from germination in the substrate near the matrices, or in the anthills or after diaspora defecation and / or regurgitation of the lizard, which is a species strongly associated with clumps of this vegetation. As the access to the diaspores by ants and lizards depends on the primary autochory, and no impediments to the germination near to the matrix plant were found, the dispersion is compatible with a multifactorial characteristic of the diplochory.
Collapse
Affiliation(s)
- Izalnei Feres Pereira
- Laboratório de Ecologia Funcional. Programa de Pós-graduação em Ecologia de Ecossistemas, Universidade Vila Velha - UVV, Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil
| | - Ana Paula Ferreira da Costa
- Laboratório de Ecologia Funcional. Programa de Pós-graduação em Ecologia de Ecossistemas, Universidade Vila Velha - UVV, Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil
| | - Ana Carolina Srbek-Araujo
- Laboratório de Ecologia e Conservação de Biodiversidade, Programa de Pós-graduação em Ecologia de Ecossistemas, Universidade Vila Velha - UVV, Rua Comissário José Dantas de Melo, n° 21, Boa Vista. 29, Vila Velha, ES, 102-920, Brazil.,Instituto SerraDiCal de Pesquisa e Conservação, Belo Horizonte, Minas Gerais, Brazil
| | - Lílian Jardim Guimarães
- Laboratório de Ecologia e Conservação de Biodiversidade, Programa de Pós-graduação em Ecologia de Ecossistemas, Universidade Vila Velha - UVV, Rua Comissário José Dantas de Melo, n° 21, Boa Vista. 29, Vila Velha, ES, 102-920, Brazil
| | - André Falcão Merencio
- Laboratório de Ecologia Funcional. Programa de Pós-graduação em Biotecnologia Vegetal, Universidade Vila Velha - UVV, Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil
| | - Ary Gomes da Silva
- Gerência de Pesquisa, Desenvolvimento e Inovação, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural - Incaper, R. Afonso Sarlo, 160, Bento Ferreira, Vitória, ES, Brazil.
| |
Collapse
|
14
|
Bels VL, Jamniczky HA, Montuelle S, Pallandre J, Kardong KV, Russell AP. Mechanics and kinematics of fluid uptake and intraoral transport in the leopard gecko. J Zool (1987) 2020. [DOI: 10.1111/jzo.12763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- V. L. Bels
- Muséum National d’Histoire Naturelle Sorbonne Université Institut de Systématique, Evolution, Biodiversité UMR 7205 CNRS/MNHN/EPHE/UA Paris Cedex 05 France
| | - H. A. Jamniczky
- Department of Cell Biology and Anatomy Cumming School of Medicine University of Calgary Calgary AB Canada
| | - S. Montuelle
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Warrensville Heights OH USA
| | - J.‐P. Pallandre
- Muséum National d’Histoire Naturelle Sorbonne Université Institut de Systématique, Evolution, Biodiversité UMR 7205 CNRS/MNHN/EPHE/UA Paris Cedex 05 France
| | - K. V. Kardong
- School of Biological Sciences Washington State University Pullman WA USA
| | - A. P. Russell
- Department of Biological Sciences University of Calgary Calgary AB Canada
| |
Collapse
|
15
|
Abbate F, Guerrera MC, Levanti M, Laurà R, Montalbano G, Cavallaro M, Germanà A. The tongue of Leopard Gecko (Eublepharis macularius): LM, SEM and confocal laser study. Anat Histol Embryol 2019; 49:51-59. [PMID: 31512785 DOI: 10.1111/ahe.12483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/04/2019] [Indexed: 12/01/2022]
Abstract
The leopard gecko is a crepuscular and insectivorous reptile. The role of the tongue in this reptile is fundamental for the prey capture and ingestion and is not related with eyes cleaning as usual in other geckos. The elongated tongue can be divided into a foretongue with a slightly bifurcated apex and a hindtongue. Scanning electron microscopy demonstrated that several different papillae are present on the dorsal surface, foliate and dome-shaped in the foretongue, becoming thicker and stouter with reduced interpapillary spaces in the lateral parts. The hindtongue is characterised by wide foliate papillae with indented margins and deep fissures of the mucosa. Light microscopy showed the presence of a stratified slightly keratinized squamous epithelium in the apex of the foretongue, a stratified non-keratinized squamous epithelium in the fore and in the hindtongue. In the foretongue, numerous muciparous caliciform cells were observed. Moreover, the presence of taste buds on the tongue ventral surface was demonstrated for the first time in this species and the confocal laser study revealed a strong immunoreactivity for the S-100 protein in the sensory cells. Therefore, the results obtained could give a contribution to the knowledge of the tongue anatomy and are a basis for eventual further studies regarding the feeding habits in a reptile become a popular pet.
Collapse
Affiliation(s)
- Francesco Abbate
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | | | - Maria Levanti
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Rosaria Laurà
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | | | - Mauro Cavallaro
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Antonino Germanà
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
16
|
Mangiacotti M, Fumagalli M, Cagnone M, Viglio S, Bardoni AM, Scali S, Sacchi R. Morph-specific protein patterns in the femoral gland secretions of a colour polymorphic lizard. Sci Rep 2019; 9:8412. [PMID: 31182789 PMCID: PMC6557888 DOI: 10.1038/s41598-019-44889-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/27/2019] [Indexed: 01/04/2023] Open
Abstract
Colour polymorphism occurs when two or more genetically-based colour morphs permanently coexist within an interbreeding population. Colouration is usually associated to other life-history traits (ecological, physiological, behavioural, reproductive …) of the bearer, thus being the phenotypic marker of such set of genetic features. This visual badge may be used to inform conspecifics and to drive those decision making processes which may contribute maintaining colour polymorphism under sexual selection context. The importance of such information suggests that other communication modalities should be recruited to ensure its transfer in case visual cues were insufficient. Here, for the first time, we investigated the potential role of proteins from femoral gland secretions in signalling colour morph in a polymorphic lizard. As proteins are thought to convey identity-related information, they represent the ideal cues to build up the chemical modality used to badge colour morphs. We found strong evidence for the occurrence of morph-specific protein profiles in the three main colour-morphs of the common wall lizard, which showed both qualitative and quantitative differences in protein expression. As lizards are able to detect proteins by tongue-flicking and vomeronasal organ, this result support the hypothesis that colour polymorphic lizards may use a multimodal signal to inform about colour-morph.
Collapse
Affiliation(s)
- Marco Mangiacotti
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100, Pavia, Italy.
| | - Marco Fumagalli
- Department of Biology and Biotechnologies "L.Spallanzani", Unit of Biochemistry, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Maddalena Cagnone
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Via T. Taramelli 3, 27100, Pavia, Italy
| | - Simona Viglio
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Via T. Taramelli 3, 27100, Pavia, Italy
| | - Anna Maria Bardoni
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Via T. Taramelli 3, 27100, Pavia, Italy
| | - Stefano Scali
- Museo di Storia Naturale di Milano, Corso Venezia 55, 20121, Milan, Italy
| | - Roberto Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100, Pavia, Italy
| |
Collapse
|
17
|
Ruiz-Monachesi M, Paz A, Quipildor M. Hemipenes eversion behavior: a new form of communication in two Liolaemus lizards (Iguania: Liolaemidae). CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Males of several animals have intromittent organs and may use these in a communicative context during sexual or intrasexual interactions. In some lizards, hemipenes eversion behavior have been observed, and the aim of this study is to find out whether this behavior is functionally significant under a communicative approach. Here, we investigated the eversion of hemipenes in the Light Blue Lizard (Liolaemus coeruleus Cei and Ortiz-Zapata, 1983) and in the Valley Lizard (Liolaemus quilmes Etheridge, 1993) by filming the response of male focal lizards in different experimental settings: (i) an agonistic context, i.e., with a conspecific male, (ii) a sexual context, i.e., with a conspecific female, and (iii) a control treatment, i.e., without a treatment lizard. In both species, focal lizards showed this behavior only in an agonistic context, with interspecific differences as follows. Liolaemus coeruleus has longer times until eversion and dragging of hemipenes; however, it has shorter time of eversion and exposition of the hemipenes. Liolaemus quilmes has the opposite pattern compared with L. coeruleus. These indicate that eversion of the hemipenes can act as a visual display and as a signal of aggressive behavior towards conspecific rival males. The present study offers a new behavioral perspective on the use of masculine genitalia in lizards.
Collapse
Affiliation(s)
- M.R. Ruiz-Monachesi
- IBIGEO – Instituto de Bio y Geo Ciencias – CONICET, Avenida 9 de Julio 14, Rosario de Lerma, 4405 Salta, Argentina
- IBIGEO – Instituto de Bio y Geo Ciencias – CONICET, Avenida 9 de Julio 14, Rosario de Lerma, 4405 Salta, Argentina
| | - A. Paz
- IBIGEO – Instituto de Bio y Geo Ciencias – CONICET, Avenida 9 de Julio 14, Rosario de Lerma, 4405 Salta, Argentina
- IBIGEO – Instituto de Bio y Geo Ciencias – CONICET, Avenida 9 de Julio 14, Rosario de Lerma, 4405 Salta, Argentina
| | - M. Quipildor
- IBIGEO – Instituto de Bio y Geo Ciencias – CONICET, Avenida 9 de Julio 14, Rosario de Lerma, 4405 Salta, Argentina
- IBIGEO – Instituto de Bio y Geo Ciencias – CONICET, Avenida 9 de Julio 14, Rosario de Lerma, 4405 Salta, Argentina
| |
Collapse
|
18
|
Bels V, Paindavoine AS, Zghikh LN, Paulet E, Pallandre JP, Montuelle SJ. Feeding in Lizards: Form–Function and Complex Multifunctional System. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Halperin T, Kalyuzhny M, Hawlena D, Photopoulou T. How to use (and not to use) movement-based indices for quantifying foraging behaviour. Methods Ecol Evol 2018; 9:1088-1096. [PMID: 29938016 PMCID: PMC5993309 DOI: 10.1111/2041-210x.12943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/09/2017] [Indexed: 11/29/2022]
Abstract
Movement-based indices such as moves per minute (MPM) and proportion time moving (PTM) are common methodologies to quantify foraging behaviour. We explore fundamental drawbacks of these indices that question the ways scientists have been using them and propose new solutions.To do so, we combined analytical and simulation models with lizards foraging data at the individual and species levels.We found that the maximal value of MPM is constrained by the minimal durations of moves and stops. As a result, foragers that rarely move and those that rarely stop are bounded to similar low MPM values. This implies that (1) MPM has very little meaning when used alone, (2) MPM and PTM are interdependent, and (3) certain areas in the MPM-PTM plane cannot be occupied. We also found that MPM suffers from inaccuracy and imprecision.We introduced a new bias correction formula for already published MPM data, and a novel index of changes per minute (CPM) that uses the frequency of changes between move and stop bouts. CPM is very similar to MPM, but does not suffer from bias. Finally, we suggested a new foraging plane of average move and average stop durations. We hope that our guidelines of how to use (and not to use) movement-based indices will add rigor to the study of animals' foraging behaviour.
Collapse
Affiliation(s)
- Topaz Halperin
- Department of Ecology, Evolution & BehaviorAlexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- Herpetological CollectionNational Natural History CollectionsThe Hebrew University of JerusalemJerusalemIsrael
| | - Michael Kalyuzhny
- Department of Ecology, Evolution & BehaviorAlexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Dror Hawlena
- Department of Ecology, Evolution & BehaviorAlexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- Herpetological CollectionNational Natural History CollectionsThe Hebrew University of JerusalemJerusalemIsrael
| | | |
Collapse
|
20
|
Characterization of lipid structures in femoral secretions of Galápagos marine iguanas by shotgun lipidomics. CHEMOECOLOGY 2018. [DOI: 10.1007/s00049-018-0251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Baeckens S, Martín J, García‐Roa R, Pafilis P, Huyghe K, Van Damme R. Environmental conditions shape the chemical signal design of lizards. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12984] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simon Baeckens
- Laboratory of Functional MorphologyDepartment of BiologyUniversity of Antwerp Wilrijk Belgium
- Department of Organismic and Evolutionary BiologyHarvard University Cambridge MA USA
| | - José Martín
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesCSIC Madrid Spain
| | - Roberto García‐Roa
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesCSIC Madrid Spain
| | - Panayiotis Pafilis
- Department of Zoology and Marine BiologySchool of BiologyNational and Kapodistrian University of Athens Ilissia Greece
| | - Katleen Huyghe
- Laboratory of Functional MorphologyDepartment of BiologyUniversity of Antwerp Wilrijk Belgium
| | - Raoul Van Damme
- Laboratory of Functional MorphologyDepartment of BiologyUniversity of Antwerp Wilrijk Belgium
| |
Collapse
|
22
|
The Role of Diet in Shaping the Chemical Signal Design of Lacertid Lizards. J Chem Ecol 2017; 43:902-910. [DOI: 10.1007/s10886-017-0884-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/07/2017] [Accepted: 08/31/2017] [Indexed: 11/25/2022]
|