1
|
Miao G, Yang Y, Yang X, Chen D, Liu L, Lei X. The multifaceted potential of TPT1 as biomarker and therapeutic target. Heliyon 2024; 10:e38819. [PMID: 39397949 PMCID: PMC11471257 DOI: 10.1016/j.heliyon.2024.e38819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Protein Translationally-Controlled 1 (TPT1) is a highly conserved gene found across eukaryotic species. The protein encoded by TPT1 is ubiquitously expressed both intracellularly and extracellularly across various tissues, and its levels are influenced by various external factors. TPT1 interacts with several key proteins, including p53, MCL1, and immunoglobulins, highlighting its crucial role in cellular processes. The dysregulation of TPT1 expression has been documented in a wide range of diseases, indicating its potential as a valuable biomarker. Additionally, targeting TPT1 presents a promising approach for treating and preventing various conditions. This review will assess the potential of TPT1 as a biomarker and evaluate the effectiveness of current strategies designed to inhibit TPT1 in disease contexts.
Collapse
Affiliation(s)
- Gelan Miao
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yulian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xuelian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Dexiu Chen
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xianying Lei
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
2
|
Sattler JM, Keiber L, Abdelrahim A, Zheng X, Jäcklin M, Zechel L, Moreau CA, Steinbrück S, Fischer M, Janse CJ, Hoffmann A, Hentzschel F, Frischknecht F. Experimental vaccination by single dose sporozoite injection of blood-stage attenuated malaria parasites. EMBO Mol Med 2024; 16:2060-2079. [PMID: 39103697 PMCID: PMC11392930 DOI: 10.1038/s44321-024-00101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Malaria vaccination approaches using live Plasmodium parasites are currently explored, with either attenuated mosquito-derived sporozoites or attenuated blood-stage parasites. Both approaches would profit from the availability of attenuated and avirulent parasites with a reduced blood-stage multiplication rate. Here we screened gene-deletion mutants of the rodent parasite P. berghei and the human parasite P. falciparum for slow growth. Furthermore, we tested the P. berghei mutants for avirulence and resolving blood-stage infections, while preserving sporozoite formation and liver infection. Targeting 51 genes yielded 18 P. berghei gene-deletion mutants with several mutants causing mild infections. Infections with the two most attenuated mutants either by blood stages or by sporozoites were cleared by the immune response. Immunization of mice led to protection from disease after challenge with wild-type sporozoites. Two of six generated P. falciparum gene-deletion mutants showed a slow growth rate. Slow-growing, avirulent P. falciparum mutants will constitute valuable tools to inform on the induction of immune responses and will aid in developing new as well as safeguarding existing attenuated parasite vaccines.
Collapse
Affiliation(s)
- Julia M Sattler
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Lukas Keiber
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Aiman Abdelrahim
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Xinyu Zheng
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Jäcklin
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Luisa Zechel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Catherine A Moreau
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Smilla Steinbrück
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
- Department of Neuroradiology, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, 3010, Bern, Switzerland
| | - Franziska Hentzschel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany.
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
3
|
Belhimeur S, Briquet S, Peronet R, Pham J, Commere PH, Formaglio P, Amino R, Scherf A, Silvie O, Mecheri S. Plasmodium-encoded murine IL-6 impairs liver stage infection and elicits long-lasting sterilizing immunity. Front Immunol 2023; 14:1143012. [PMID: 37143657 PMCID: PMC10152192 DOI: 10.3389/fimmu.2023.1143012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Plasmodium sporozoites (SPZ) inoculated by Anopheles mosquitoes into the skin of the mammalian host migrate to the liver before infecting hepatocytes. Previous work demonstrated that early production of IL-6 in the liver is detrimental for the parasite growth, contributing to the acquisition of a long-lasting immune protection after immunization with live attenuated parasites. Methods Considering that IL-6 as a critical pro-inflammatory signal, we explored a novel approach whereby the parasite itself encodes for the murine IL-6 gene. We generated transgenic P. berghei parasites that express murine IL-6 during liver stage development. Results and Discussion Though IL-6 transgenic SPZ developed into exo-erythrocytic forms in hepatocytes in vitro and in vivo, these parasites were not capable of inducing a blood stage infection in mice. Furthermore, immunization of mice with transgenic IL-6-expressing P. berghei SPZ elicited a long-lasting CD8+ T cell-mediated protective immunity against a subsequent infectious SPZ challenge. Collectively, this study demonstrates that parasite-encoded IL-6 attenuates parasite virulence with abortive liver stage of Plasmodium infection, forming the basis of a novel suicide vaccine strategy to elicit protective antimalarial immunity.
Collapse
Affiliation(s)
- Selma Belhimeur
- Institut Pasteur, Université Paris Cité, CNRS ERL9195 and Inserm U1201, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Sylvie Briquet
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Paris, France
| | - Roger Peronet
- Institut Pasteur, Université Paris Cité, CNRS ERL9195 and Inserm U1201, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Jennifer Pham
- Institut Pasteur, Université Paris Cité, Centre d’élevage et de production des anophèles (CEPIA), Paris, France
| | | | - Pauline Formaglio
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity Unit, Paris, France
| | - Rogerio Amino
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity Unit, Paris, France
| | - Artur Scherf
- Institut Pasteur, Université Paris Cité, CNRS ERL9195 and Inserm U1201, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Olivier Silvie
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Paris, France
| | - Salaheddine Mecheri
- Institut Pasteur, Université Paris Cité, CNRS ERL9195 and Inserm U1201, Unité de Biologie des Interactions Hôte Parasites, Paris, France
- *Correspondence: Salaheddine Mecheri,
| |
Collapse
|
4
|
Brandi J, Lehmann C, Kaminski LC, Schulze Zur Wiesch J, Addo M, Ramharter M, Mackroth M, Jacobs T, Riehn M. T cells expressing multiple co-inhibitory molecules in acute malaria are not exhausted but exert a suppressive function in mice. Eur J Immunol 2021; 52:312-327. [PMID: 34752634 DOI: 10.1002/eji.202149424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/17/2021] [Accepted: 11/04/2021] [Indexed: 01/21/2023]
Abstract
Overwhelming activation of T cells in acute malaria is associated with severe outcomes. Thus, counter-regulation by anti-inflammatory mechanisms is indispensable for an optimal resolution of disease. Using Plasmodium berghei ANKA (PbA) infection of C57BL/6 mice, we performed a comprehensive analysis of co-inhibitory molecules expressed on CD4+ and CD8+ T cells using an unbiased cluster analysis approach. We identified similar T cell clusters co-expressing several co-inhibitory molecules like programmed cell death protein 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) in the CD4+ and the CD8+ T cell compartment. Interestingly, despite expressing co-inhibitory molecules, which are associated with T cell exhaustion in chronic settings, these T cells were more functional compared to activated T cells that were negative for co-inhibitory molecules. However, T cells expressing high levels of PD-1 and LAG-3 also conferred suppressive capacity and thus resembled type I regulatory T cells. To our knowledge, this is the first description of malaria-induced CD8+ T cells with suppressive capacity. Importantly, we found an induction of T cells with a similar co-inhibitory rich phenotype in Plasmodium falciparum-infected patients. In conclusion, we demonstrate that malaria-induced T cells expressing co-inhibitory molecules are not exhausted, but acquire additional suppressive capacity, which might represent an immune regulatory pathway to prevent further activation of T cells during acute malaria.
Collapse
Affiliation(s)
- Johannes Brandi
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Cari Lehmann
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Julian Schulze Zur Wiesch
- Medical Department, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems
| | - Marylyn Addo
- Medical Department, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems
| | - Michael Ramharter
- Medical Department, Division of Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Maria Mackroth
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Medical Department, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems
| | - Mathias Riehn
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
5
|
Baltayeva J, Konwar C, Castellana B, Mara DL, Christians JK, Beristain AG. Obesogenic diet exposure alters uterine natural killer cell biology and impairs vasculature remodeling in mice†. Biol Reprod 2021; 102:63-75. [PMID: 31436293 DOI: 10.1093/biolre/ioz163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/16/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Prepregnancy obesity associates with adverse reproductive outcomes that impact maternal and fetal health. While obesity-driven mechanisms underlying adverse pregnancy outcomes remain unclear, local uterine immune cells are strong but poorly studied candidates. Uterine immune cells, particularly uterine natural killer cells (uNKs), play central roles in orchestrating developmental events in pregnancy. However, the effect of obesity on uNK biology is poorly understood. Using an obesogenic high-fat/high-sugar diet (HFD) mouse model, we set out to examine the effects of maternal obesity on uNK composition and establishment of the maternal-fetal interface. HFD exposure resulted in weight gain-dependent increases in systemic inflammation and rates of fetal resorption. While HFD did not affect total uNK frequencies, HFD exposure did lead to an increase in natural cytotoxicity receptor-1 expressing uNKs as well as overall uNK activity. Importantly, HFD-associated changes in uNK coincided with impairments in uterine artery remodeling in mid but not late pregnancy. Comparison of uNK mRNA transcripts from control and HFD mice identified HFD-directed changes in genes that play roles in promoting activity/cytotoxicity and vascular biology. Together, this work provides new insight into how obesity may impact uNK processes central to the establishment of the maternal-fetal interface in early and mid pregnancy. Moreover, these findings shed light on the cellular processes affected by maternal obesity that may relate to overall pregnancy health.
Collapse
Affiliation(s)
- Jennet Baltayeva
- British Columbia Children's Hospital Research Institute, Vancouver, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, Canada
| | - Chaini Konwar
- British Columbia Children's Hospital Research Institute, Vancouver, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, Canada
| | - Barbara Castellana
- British Columbia Children's Hospital Research Institute, Vancouver, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, Canada
| | - Danielle L Mara
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Julian K Christians
- British Columbia Children's Hospital Research Institute, Vancouver, Canada.,Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| | - Alexander G Beristain
- British Columbia Children's Hospital Research Institute, Vancouver, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Briquet S, Lawson-Hogban N, Peronet R, Mécheri S, Vaquero C. A genetically hmgb2 attenuated blood stage P. berghei induces crossed-long live protection. PLoS One 2020; 15:e0232183. [PMID: 32379764 PMCID: PMC7205229 DOI: 10.1371/journal.pone.0232183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/08/2020] [Indexed: 01/16/2023] Open
Abstract
Due to the lack of efficiency to control malaria elicited by sub-unit vaccine preparations, vaccination with live-attenuated Plasmodium parasite as reported 70 years ago with irradiated sporozoites regained recently a significant interest. The complex life cycle of the parasite and the different stages of development between mammal host and anopheles do not help to propose an easy vaccine strategy. In order to achieve a complete long-lasting protection against Plasmodium infection and disease, we considered a genetically attenuated blood stage parasite in the hmgb2 gene coding for the high-mobility-group-box 2 (HMGB2). This Plasmodium protein belongs to the HMGB family and hold as the mammal proteins, a double life since it acts first as a nuclear factor involved in chromatin remodelling and transcription regulation and second, when secreted as an active pro-inflammatory alarmin protein. Even though the number of reports on whole living attenuated blood stage parasites is limited when compared to attenuated sporozoites, the results reported with Plasmodium KO parasites are very encouraging. In this report, we present a novel strategy based on pre-immunization with Δhmgb2PbNK65 parasitized red blood cells that confer long-lasting protection in a murine experimental cerebral malaria model against two highly pathogenic homologous and heterologous parasites.
Collapse
Affiliation(s)
- Sylvie Briquet
- Sorbonne Université, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
- CNRS, ERL 8255, CIMI-Paris, Paris, France
| | - Nadou Lawson-Hogban
- Sorbonne Université, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
- CNRS, ERL 8255, CIMI-Paris, Paris, France
| | - Roger Peronet
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
- Centre National de Recherche Scientifique ou CNRS, Unité de Recherche Associée 2581, Paris, France
| | - Salaheddine Mécheri
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
- Centre National de Recherche Scientifique ou CNRS, Unité de Recherche Associée 2581, Paris, France
| | - Catherine Vaquero
- Sorbonne Université, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- INSERM, U1135, CIMI-Paris, Paris, France
- CNRS, ERL 8255, CIMI-Paris, Paris, France
- * E-mail:
| |
Collapse
|
7
|
Demarta‐Gatsi C, Rivkin A, Di Bartolo V, Peronet R, Ding S, Commere P, Guillonneau F, Bellalou J, Brûlé S, Abou Karam P, Cohen SR, Lagache T, Janse CJ, Regev‐Rudzki N, Mécheri S. Histamine releasing factor and elongation factor 1 alpha secreted via malaria parasites extracellular vesicles promote immune evasion by inhibiting specific T cell responses. Cell Microbiol 2019; 21:e13021. [DOI: 10.1111/cmi.13021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Claudia Demarta‐Gatsi
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| | - Anna Rivkin
- Department of Biomolecular SciencesWeizmann Institute of Science Rehovot Israel
| | - Vincenzo Di Bartolo
- Institut Pasteur, Lymphocyte Cell Biology Unit, Department of ImmunologyINSERM U1221 Paris France
| | - Roger Peronet
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| | - Shuai Ding
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| | | | - François Guillonneau
- 3P5 proteomics Facility of the Université Paris DescartesInstitut Cochin Paris France
| | - Jacques Bellalou
- Platform of Recombinant ProteinsC2RT—Institut Pasteur Paris France
| | - Sébastien Brûlé
- Platform of Molecular BiophysicsInstitut Pasteur Paris France
| | - Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of Science Rehovot Israel
| | - Sidney R. Cohen
- Department of Chemical Research SupportWeizmann Institute of Science Rehovot Israel
| | - Thibault Lagache
- Department of Biological SciencesColumbia University New York New York
| | - Chris J. Janse
- Leiden Malaria Research Group, ParasitologyLeiden University Medical Center (LUMC) Leiden The Netherlands
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of Science Rehovot Israel
| | - Salaheddine Mécheri
- Institut PasteurUnité de Biologie des Interactions Hôte Parasites Paris France
- Department of Parasites and Insect vectors, Institut PasteurCNRS ERL9195 Paris France
- Department of Parasites and Insect vectors, Institut PasteurINSERM U1201 Paris France
| |
Collapse
|
8
|
Aliprandini E, Tavares J, Panatieri RH, Thiberge S, Yamamoto MM, Silvie O, Ishino T, Yuda M, Dartevelle S, Traincard F, Boscardin SB, Amino R. Cytotoxic anti-circumsporozoite antibodies target malaria sporozoites in the host skin. Nat Microbiol 2018; 3:1224-1233. [PMID: 30349082 DOI: 10.1038/s41564-018-0254-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 08/28/2018] [Indexed: 01/09/2023]
Abstract
The circumsporozoite protein (CSP) is the major surface protein of malaria sporozoites (SPZs), the motile and invasive parasite stage inoculated in the host skin by infected mosquitoes. Antibodies against the central CSP repeats of different plasmodial species are known to block SPZ infectivity1-5, but the precise mechanism by which these effectors operate is not completely understood. Here, using a rodent Plasmodium yoelii malaria model, we show that sterile protection mediated by anti-P. yoelii CSP humoral immunity depends on the parasite inoculation into the host skin, where antibodies inhibit motility and kill P. yoelii SPZs via a characteristic 'dotty death' phenotype. Passive transfer of an anti-repeat monoclonal antibody (mAb) recapitulates the skin inoculation-dependent protection, in a complement- and Fc receptor γ-independent manner. This purified mAb also decreases motility and, notably, induces the dotty death of P. yoelii SPZs in vitro. Cytotoxicity is species-transcendent since cognate anti-CSP repeat mAbs also kill Plasmodium berghei and Plasmodium falciparum SPZs. mAb cytotoxicity requires the actomyosin motor-dependent translocation and stripping of the protective CSP surface coat, rendering the parasite membrane susceptible to the SPZ pore-forming-like protein secreted to wound and traverse the host cell membrane6. The loss of SPZ fitness caused by anti-P. yoelii CSP repeat antibodies is thus a dynamic process initiated in the host skin where SPZs either stop moving7, or migrate and traverse cells to progress through the host tissues7-9 at the eventual expense of their own life.
Collapse
Affiliation(s)
| | - Joana Tavares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Raquel Hoffmann Panatieri
- Unit of Malaria Infection & Immunity, Institut Pasteur, Paris, France.,Parasitology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sabine Thiberge
- Unit of Malaria Infection & Immunity, Institut Pasteur, Paris, France.,Centre de Production et d'Infection des Anophèles, Institut Pasteur, Paris, France
| | - Marcio Massao Yamamoto
- Parasitology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Tomoko Ishino
- Department of Molecular Parasitology, Ehime University, Ehime, Japan
| | - Masao Yuda
- Department of Medical Zoology, Mie University School of Medicine, Mie, Japan
| | - Sylvie Dartevelle
- Plateforme d'Ingénierie des Anticorps, Institut Pasteur, Paris, France
| | | | - Silvia Beatriz Boscardin
- Parasitology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Rogerio Amino
- Unit of Malaria Infection & Immunity, Institut Pasteur, Paris, France.
| |
Collapse
|