1
|
Bertollo AG, Mingoti MED, de Medeiros J, da Silva GB, Capoani GT, Lindemann H, Cassol J, Manica D, de Oliveira T, Garcez ML, Bagatini MD, Bohnen LC, Junior WAR, Ignácio ZM. Hydroalcoholic Extract of Centella asiatica and Madecassic Acid Reverse Depressive-Like Behaviors, Inflammation and Oxidative Stress in Adult Rats Submitted to Stress in Early Life. Mol Neurobiol 2024; 61:10182-10197. [PMID: 38703344 DOI: 10.1007/s12035-024-04198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Major depressive disorder (MDD) is a severe disorder that causes enormous loss of quality of life, and among the factors underlying MDD is stress in maternal deprivation (MD). In addition, classic pharmacotherapy has presented severe adverse effects. Centella asiatica (C. asiatica) demonstrates a potential neuroprotective effect but has not yet been evaluated in MD models. This study aimed to evaluate the effect of C. asiatica extract and the active compound madecassic acid on possible depressive-like behavior, inflammation, and oxidative stress in the hippocampus and serum of young rats submitted to MD in the first days of life. Rats (after the first day of birth) were separated from the mother for 3 h a day for 10 days. When adults, these animals were divided into groups and submitted to treatment for 14 days. After subjecting the animals to protocols of locomotor activity in the open field and behavioral despair in the forced swimming test, researchers then euthanized the animals. The hippocampus and serum were collected and analyzed for the inflammatory cytokines and oxidative markers. The C. asiatica extract and active compound reversed or reduced depressive-like behaviors, inflammation in the hippocampus, and oxidative stress in serum and hippocampus. These results suggest that C. asiatica and madecassic acid have potential antidepressant action, at least partially, through anti-inflammatory and antioxidant profiles.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Jesiel de Medeiros
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Giovana Tamara Capoani
- Laboratory of Pharmacognosy, Community University of Chapecó Region, Unochapecó, Chapecó, SC, Brazil
| | - Heloisa Lindemann
- Laboratory of Pharmacognosy, Community University of Chapecó Region, Unochapecó, Chapecó, SC, Brazil
| | - Joana Cassol
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Daiane Manica
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Tacio de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Michelle Lima Garcez
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Margarete Dulce Bagatini
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Lilian Caroline Bohnen
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Unochapecó, Chapecó, SC, Brazil
| | - Walter Antônio Roman Junior
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Unochapecó, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
2
|
Georg Jensen M, Goode M, Heinrich M. Herbal medicines and botanicals for managing insomnia, stress, anxiety, and depression: A critical review of the emerging evidence focusing on the Middle East and Africa. PHARMANUTRITION 2024; 29:100399. [DOI: 10.1016/j.phanu.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Rowe K, Gray NE, Zweig JA, Law A, Techen N, Maier CS, Soumyanath A, Kretzschmar D. Centella asiatica and its caffeoylquinic acid and triterpene constituents increase dendritic arborization of mouse primary hippocampal neurons and improve age-related locomotion deficits in Drosophila. FRONTIERS IN AGING 2024; 5:1374905. [PMID: 39055970 PMCID: PMC11269084 DOI: 10.3389/fragi.2024.1374905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024]
Abstract
Introduction Centella asiatica (CA) is known in Ayurvedic medicine as a rejuvenating herb with particular benefits in the nervous system. Two groups of specialized metabolites found in CA and purported to contribute to its beneficial effects are triterpenes (TTs) and caffeoylquinic acids (CQAs). In order to evaluate the role and interactions of TTs and CQAs in the effects of CA, we examined the neurotrophic effects of a water extract of CA (CAW) and combinations of its TT and CQA components in mouse primary hippocampal neurons in vitro and in Drosophila melanogaster flies in vivo. Methods Primary hippocampal neurons were isolated from mouse embryos and exposed in vitro for 5 days to CAW (50 μg/mL), mixtures of TTs, CQAs or TT + CQA components or to 4 TTs or 8 individual CQA compounds of CAW. Dendritic arborization was evaluated using Sholl analysis. Drosophila flies were aged to 28 days and treated for 2 weeks with CAW (10 mg/mL) in the food, mixtures of TTs, CQAs or TT + CQA and individual TT and CQA compounds. TTs and CQAs were tested at concentrations matching their levels in the CAW treatment used. After 2 weeks of treatment, Drosophila aged 42 days were evaluated for phototaxis responses. Results In mouse primary hippocampal neurons, CAW (50 μg/mL), the TT mix, CQA mix, all individual TTs and most CQAs significantly increased dendritic arborization to greater than control levels. However, the TT + CQA combination significantly decreased dendritic arborization. In Drosophila, a marked age-related decline in fast phototaxis response was observed in both males and females over a 60 days period. However, resilience to this decline was afforded in both male and female flies by treatment from 28 days onwards with CAW (10 mg/mL), or equivalent concentrations of mixed TTs, mixed CQAs and a TT + CQA mix. Of all the individual compounds, only 1,5-diCQA slowed age-related decline in phototaxis in male and female flies. Discussion This study confirmed the ability of CAW to increase mouse neuronal dendritic arborization, and to provide resilience to age-related neurological decline in Drosophila. The TT and CQA components both contribute to these effects but do not have a synergistic effect. While individual TTs and most individual CQAs increased dendritic arborization at CAW equivalent concentrations, in the Drosophila model, only 1,5-diCQA was able to slow down the age-related decline in phototaxis. This suggests that combinations (or potentially higher concentrations) of the other compounds are needed to provide resilience in this model.
Collapse
Affiliation(s)
- Karon Rowe
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Nora E. Gray
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Jonathan A. Zweig
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Alexander Law
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Natascha Techen
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- National Center for Natural Products Research, University of Mississippi, Oxford, MS, United States
| | - Claudia S. Maier
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Doris Kretzschmar
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
4
|
Guo Q, Li Q, Liang W, Zhang Y, Jiang C, Zhang Y, Tan J, Zhao H. Asiatic acid and madecassic acid cause cardiotoxicity via inflammation and production of excessive reactive oxygen species in zebrafish. J Appl Toxicol 2024; 44:1028-1039. [PMID: 38527925 DOI: 10.1002/jat.4602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Centella asiatica (L.) Urban is a famous Chinese traditional medicine, which is widely used for treating various chronic inflammatory diseases. Although there are reports that Centella total glycosides exhibit heart-protective properties, our previous experiment showed that it has cardiac toxic effects in zebrafish. The components of Centella total glycosides are complex, so we recommend further research to determine their key components and mechanisms. In this study, sample quantification was done using liquid chromatography-tandem mass spectrometry. The cardiotoxicity of Centella total glycosides, asiaticoside, madecassoside, asiatic acid, and madecassic acid was evaluated using zebrafish and cell models. The zebrafish oxidative stress model and myocarditis model were used to explore further the mechanisms through which cardiotoxicity is achieved. Asiatic acid and madecassic acid caused zebrafish cardiotoxicity and H9C2 cell death. However, no toxicity effects were observed for asiaticoside and madecassoside in zebrafish, until the solution was saturated. The results from the cell model study showed that asiatic acid and madecassic acid changed the expression of apoptosis-related genes in myocardial cells. In the zebrafish model, high concentrations of these components raised the levels of induced systemic inflammation, neutrophils gathered in the heart, and oxidative stress injury. Asiatic acid and madecassic acid are the main components causing cardiotoxicity in zebrafish. This may be due to enhanced inflammation and reactive oxygen species injury, which causes myocardial cell apoptosis, which further leads to cardiac toxicity.
Collapse
Affiliation(s)
- Qingquan Guo
- Guangdong University of Technology, Guangzhou, China
| | - Qiuru Li
- Guangdong University of Technology, Guangzhou, China
| | - Wenyao Liang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Yudong Zhang
- Guangdong University of Technology, Guangzhou, China
| | | | - Yihan Zhang
- BYHEALTH Institute of Nutrition and Health, Guangzhou, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Haishan Zhao
- Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
5
|
Gui S, Ni J, Mizutani S, Shigematsu N, Nakanishi H, Kashiwazaki H, Wu Z. A mixture of extracts from natural ingredients reduces the neurotoxic polarization of microglia via modulating NF-κB/NF-E2-related factor 2 activation. Food Sci Nutr 2024; 12:3745-3758. [PMID: 38726426 PMCID: PMC11077187 DOI: 10.1002/fsn3.4045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/09/2024] [Accepted: 02/07/2024] [Indexed: 05/12/2024] Open
Abstract
Neurotoxic microglia-provoked neuroinflammation is implicated in cognitive decline in Alzheimer's disease (AD). Supplementation with Ginkgo biloba, phosphatidylserine, Curcuma longa, and propolis is reported to improve the cognitive functions of elderly people; however, the underlying mechanisms of this combination of natural ingredients are unknown. We investigated the effects of a mixture of extracts from propolis, Coffea arabica, Gotu kola, phosphatidylserine, Ginkgo biloba, and Curcuma longa (mixture) on microglia polarization after exposure to amyloid β1-42 (Aβ1-42, 1 μM) and lipopolysaccharide from Porphyromonas gingivalis (PgLPS, 1 μg/mL), using MG6 and BV2 microglial cells. Exposure to Aβ1-42 and PgLPS (AL) raised the mRNA expression of IL-1β, TNF-α, and IL-6, nuclear translocation of p65 NF-κB in MG6 cells and BV2 cells, and mitochondrial reactive oxygen species (ROS) production in MG6 cells. The mixture dramatically suppressed the mRNA expression of IL-1β, TNF-α, and IL-6, but significantly promoted that of IL-10, TGFβ1, and BDNF in AL-exposed MG6 and BV2 cells. Furthermore, the mixture significantly suppressed the nuclear translocation of p65 NF-κB but significantly promoted that of NF-E2-related factor 2 (Nrf2) in AL-exposed MG6 and BV2 cells. Furthermore, the mixture significantly ameliorated mitochondrial ROS production but increased mitochondrial membrane potential in MG6 cells. These observations strongly suggest that the mixture demotes the neuropathic polarization of microglia by modulating NF-κB/Nrf2 activation and improving mitochondrial functions. This study supplies the potential mechanisms of the efficacy of a combination of natural ingredients that can be applied in the prevention of cognitive decline in AD and aging by targeting microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Shuge Gui
- Department of Oral and Maxillofacial Surgery, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Shinsuke Mizutani
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Norihiro Shigematsu
- Yamada Institute for Health Science, R & D DepartmentYamada Bee Company, Inc.OkayamaJapan
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of PharmacyYasuda Women's UniversityHiroshimaJapan
| | - Haruhiko Kashiwazaki
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
- OBT Research Center, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| |
Collapse
|
6
|
Wiciński M, Fajkiel-Madajczyk A, Kurant Z, Gajewska S, Kurant D, Kurant M, Sousak M. Can Asiatic Acid from Centella asiatica Be a Potential Remedy in Cancer Therapy?-A Review. Cancers (Basel) 2024; 16:1317. [PMID: 38610995 PMCID: PMC11011005 DOI: 10.3390/cancers16071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Centella asiatica has been recognized for centuries in Eastern medicine for its pharmacological properties. Due to the increasing prevalence of oncological diseases worldwide, natural substances that could qualify as anticancer therapeutics are becoming increasingly important subjects of research. This review aims to find an innovative use for asiatic acid (AA) in the treatment or support of cancer therapy. It has been demonstrated that AA takes part in inhibiting phosphorylation, inducing cell death, and reducing tumor growth and metastasis by influencing important signaling pathways, such as PI3K, Akt, mTOR, p70S6K, and STAT3, in cancer cells. It is also worth mentioning the high importance of asiatic acid in reducing the expression of markers such as N-cadherin, β-catenin, claudin-1, and vimentin. Some studies have indicated the potential of asiatic acid to induce autophagy in cancer cells through changes in the levels of specific proteins such as LC3 and p62. It can also act as an anti-tumor immunotherapeutic agent, thanks to its inductive effect on Smad7 in combination with naringenin (an Smad3 inhibitor). It seems that asiatic acid may be a potential anticancer drug or form of adjunctive therapy. Further studies should take into account safety and toxicity issues, as well as limitations related to the pharmacokinetics of AA and its low oral bioavailability.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (D.K.)
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (D.K.)
| | - Zuzanna Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (D.K.)
| | - Sandra Gajewska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Dominik Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (D.K.)
| | - Marcin Kurant
- Department of Urology, District Hospital, 10 Lesna Street, 89-600 Chojnice, Poland;
| | - Masaoud Sousak
- Department of General Surgery, Paluckie Health Center Sp. o.o., Szpitalna 30, 88-400 Żnin, Poland;
| |
Collapse
|
7
|
Junsai T, Tangpanithandee S, Srimangkornkaew P, Suknuntha K, Vivithanaporn P, Khemawoot P. Sub-chronic oral toxicity of a water-soluble extract of Centella asiatica (Centell-S) in Wistar rats. Food Chem Toxicol 2024; 185:114509. [PMID: 38336016 DOI: 10.1016/j.fct.2024.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Centell-S, a water-soluble extract from Centella asiatica, is predominantly composed of madecassoside and asiaticoside, exceeding 80% w/w. Pursuing its development as an herbal medicinal product, Centell-S underwent sub-chronic toxicity assessment adhering to OECD GLP 408 standards. METHODS In a study involving 100 Wistar rats, varying doses of Centell-S (50, 200, or 800 mg/kg/day) or a vehicle control were administered orally over 90 days. To evaluate Centell-S's safety profile, assessments included clinical observations, health examinations, clinical biochemistry analyses, and detailed anatomical pathology evaluations were conducted. RESULTS Over the 90 days of treatment, the administration of Centell-S did not lead to any fatalities in the test animals. Clinical observations did not reveal any signs indicative of toxic effects. Notably, an increase in total white blood cell and lymphocyte counts was observed in both sexes, yet these levels returned to normal following a two-week discontinuation period post-treatment. CONCLUSIONS Under the specific conditions of the OECD GLP 408, Repeated Dose 90-day Oral Toxicity Study in Rodents, the no observed adverse effect level (NOAEL) of Centell-S was 800 mg/kg/day. These findings are promising for the continued development of Centell-S as a phytopharmaceutical for clinical applications.
Collapse
Affiliation(s)
- Thammaporn Junsai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | - Supawit Tangpanithandee
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | | | - Kran Suknuntha
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand.
| |
Collapse
|
8
|
Wan L, Huang Q, Li C, Yu H, Tan G, Wei S, El-Sappah AH, Sooranna S, Zhang K, Pan L, Zhang Z, Lei M. Integrated metabolome and transcriptome analysis identifies candidate genes involved in triterpenoid saponin biosynthesis in leaves of Centella asiatica (L.) Urban. FRONTIERS IN PLANT SCIENCE 2024; 14:1295186. [PMID: 38283979 PMCID: PMC10811118 DOI: 10.3389/fpls.2023.1295186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Centella asiatica (L.) Urban is a well-known medicinal plant which has multiple pharmacological properties. Notably, the leaves of C. asiatica contain large amounts of triterpenoid saponins. However, there have only been a few studies systematically elucidating the metabolic dynamics and transcriptional differences regarding triterpenoid saponin biosynthesis during the leaf development stages of C. asiatica. Here, we performed a comprehensive analysis of the metabolome and transcriptome to reveal the dynamic patterns of triterpenoid saponin accumulation and identified the key candidate genes associated with their biosynthesis in C. asiatica leaves. In this study, we found that the key precursors in the synthesis of terpenoids, including DMAPP, IPP and β-amyrin, as well as 22 triterpenes and eight triterpenoid saponins were considered as differentially accumulated metabolites. The concentrations of DMAPP, IPP and β-amyrin showed significant increases during the entire stage of leaf development. The levels of 12 triterpenes decreased only during the later stages of leaf development, but five triterpenoid saponins rapidly accumulated at the early stages, and later decreased to a constant level. Furthermore, 48 genes involved in the MVA, MEP and 2, 3-oxidosqualene biosynthetic pathways were selected following gene annotation. Then, 17 CYP450s and 26 UGTs, which are respectively responsible for backbone modifications, were used for phylogenetic-tree construction and time-specific expression analysis. From these data, by integrating metabolomics and transcriptomics analyses, we identified CaHDR1 and CaIDI2 as the candidate genes associated with DMAPP and IPP synthesis, respectively, and CaβAS1 as the one regulating β-amyrin synthesis. Two genes from the CYP716 family were confirmed as CaCYP716A83 and CaCYP716C11. We also selected two UGT73 families as candidate genes, associated with glycosylation of the terpenoid backbone at C-3 in C. asiatica. These findings will pave the way for further research on the molecular mechanisms associated with triterpenoid saponin biosynthesis in C. asiatica.
Collapse
Affiliation(s)
- Lingyun Wan
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Cui Li
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Haixia Yu
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Guiyu Tan
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Shugen Wei
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Suren Sooranna
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Kun Zhang
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Limei Pan
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhanjiang Zhang
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ming Lei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
9
|
Hambali A, Jusril NA, Md Hashim NF, Abd Manan N, Adam SK, Mehat MZ, Adenan MI, Stanslas J, Abdul Hamid H. The Standardized Extract of Centella asiatica and Its Fractions Exert Antioxidative and Anti-Neuroinflammatory Effects on Microglial Cells and Regulate the Nrf2/HO-1 Signaling Pathway. J Alzheimers Dis 2024; 99:S119-S138. [PMID: 38250772 DOI: 10.3233/jad-230875] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Background Neuroinflammation and oxidative stress can aggravate the progression of Alzheimer's disease (AD). Centella asiatica has been traditionally consumed for memory and cognition. The triterpenes (asiaticoside, madecassoside, asiatic acid, madecassic acid) have been standardized in the ethanolic extract of Centella asiatica (SECA). The bioactivity of the triterpenes in different solvent polarities of SECA is still unknown. Objective In this study, the antioxidative and anti-neuroinflammatory effects of SECA and its fractions were explored on lipopolysaccharides (LPS)-induced microglial cells. Methods HPLC measured the four triterpenes in SECA and its fractions. SECA and its fractions were tested for cytotoxicity on microglial cells using MTT assay. NO, pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), ROS, and MDA (lipid peroxidation) produced by LPS-induced microglial cells were measured by colorimetric assays and ELISA. Nrf2 and HO-1 protein expressions were measured using western blotting. Results The SECA and its fractions were non-toxic to BV2 microglial cells at tested concentrations. The levels of NO, TNF-α, IL-6, ROS, and lipid peroxidation in LPS-induced BV2 microglial cells were significantly reduced (p < 0.001) by SECA and its fractions. SECA and some of its fractions can activate the Nrf2/HO-1 signaling pathway by significantly enhancing (p < 0.05) the Nrf2 and HO-1 protein expressions. Conclusions This study suggests that the inhibitory activity of SECA and its fractions on pro-inflammatory and oxidative stress events may be the result of the activation of antioxidant defense systems. The potential of SECA and its fractions in reducing neuroinflammation and oxidative stress can be further studied as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Aqilah Hambali
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nor Atiqah Jusril
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nizar Abd Manan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti Khadijah Adam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Ilham Adenan
- Universiti Teknologi MARA, Cawangan Pahang, Bandar Tun Abdul Razak, Jengka, Pahang, Malaysia
| | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Wan L, Song Z, Wang Z, Dong J, Chen Y, Hu J. Repair effect of Centella asiatica (L.) extract on damaged HaCaT cells studied by atomic force microscopy. J Microsc 2023; 292:148-157. [PMID: 37855555 DOI: 10.1111/jmi.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
People's choice of cosmetics is no longer just 'Follow the trend', but pays more attention to the ingredients of cosmetics, whether the ingredients of cosmetics are beneficial to people's skin health; therefore, more and more skin-healthy ingredients have been discovered and used in cosmetics. In this work, atomic force microscope (AFM) is used to provide physical information about biomolecules and living cells; it brings us a new method of high-precision physical measurement. Centella asiatica (L.) extract has the ability to promote skin wound healing, but its healing effect on damaged HaCaT cells needs to be investigated, which plays a key role in judging the effectiveness of skincare ingredients. The objective of this study was to explore the impact of Centella asiatica (L.) extract on ethanol-damaged human immortalised epidermal HaCaT cells based on AFM. We established a model of cellular damage and evaluated cell viability using the MTT assay. The physical changes of cell height, roughness, adhesion and Young's modulus were measured by AFM. The findings indicated that the Centella asiatica (L.) extract had a good repair effect on injured HaCaT cells, and the optimal concentration was 75 μg/mL.
Collapse
Affiliation(s)
- Linlin Wan
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Zhengxun Song
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- JR3CN & IRAC, University of Bedfordshire, Luton, UK
| | - Jianjun Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Yujuan Chen
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- School of Life Sciences, Changchun University of Science and Technology, Changchun, China
| | - Jing Hu
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
11
|
Wright KM, Bollen M, David J, Mepham B, Alcázar Magaña A, McClure C, Maier CS, Quinn JF, Soumyanath A. Bioanalytical method validation and application to a phase 1, double-blind, randomized pharmacokinetic trial of a standardized Centella asiatica (L.) Urban water extract product in healthy older adults. Front Pharmacol 2023; 14:1228030. [PMID: 37680716 PMCID: PMC10481538 DOI: 10.3389/fphar.2023.1228030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction: Centella asiatica is an herbaceous plant reputed in Eastern medicine to improve memory. Preclinical studies have shown that C. asiatica aqueous extract (CAW) improves neuronal health, reduces oxidative stress, and positively impacts learning and cognition. This study aimed to develop and validate bioanalytical methods for detecting known bioactive compounds from C. asiatica in human biological matrices and apply them to a human pharmacokinetic trial in healthy older adults. Methods: High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used for detecting triterpenes and caffeoylquinic acids from C. asiatica, or their metabolites, in human plasma and urine. Validation parameters including linearity, precision, accuracy, recovery and thermal stability were evaluated. The method was applied to a Phase I, randomized, double-blind, crossover trial of two doses (2 or 4 g) of a standardized C. asiatica water extract product (CAP) in eight healthy older adults. Pharmacokinetic parameters were measured over a 12-h post administration period and acute safety was assessed. Results: The method satisfied US Food & Drug Administration criteria for linearity and recovery of the analytes of interest in human plasma and urine. The method also satisfied criteria for precision and accuracy at medium and high concentrations. Single administration of 2 and 4 g of CAP was well tolerated and safe in healthy older adults. The parent triterpene glycosides, asiaticoside and madecassoside, were not detected in plasma and in minimal amounts in urinary excretion analyses, while the aglycones, asiatic acid and madecassic acid, showed readily detectable pharmacokinetic profiles. Similarly, the di-caffeoylquinic acids and mono-caffeoylquinic acids were detected in low quantities, while their putative metabolites showed readily detectable pharmacokinetic profiles and urinary excretion. Discussion: This method was able to identify and calculate the concentration of triterpenes and caffeoylquinic acids from C. asiatica, or their metabolites, in human plasma and urine. The oral absorption of these key compounds from CAP, and its acute safety in healthy older adults, support the use of this C. asiatica product in future clinical trials.
Collapse
Affiliation(s)
- Kirsten M. Wright
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Melissa Bollen
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jason David
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Bridgette Mepham
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Armando Alcázar Magaña
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Christine McClure
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Claudia S. Maier
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
- Veterans Affairs Portland Healthcare System Center, Department of Neurology, Portland, OR, United States
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
12
|
Sawangjit R, Chuenchom C, Sanverm T, Chaiyakunapruk N, Jiranukool J, Nithipaijit R, Sadoyu S, Phianchana C, Jinatongthai P. Efficacy and safety of herbal medicine on dementia and cognitive function: An umbrella review of systematic reviews and meta-analysis. Phytother Res 2023; 37:2364-2380. [PMID: 36728740 DOI: 10.1002/ptr.7759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/09/2022] [Accepted: 01/22/2023] [Indexed: 02/03/2023]
Abstract
This study aims to summarize the effects of herbs on dementia and assess the strength of evidence. Six international and local databases were searched from inception to October 2021 for systematic reviews and meta-analyses of clinical trials investigated the effects of herbal medicine on dementia or cognitive function. Two researchers independently extracted data, assessed the methodological quality, and rated the credibility of evidence according to established criteria. Thirty-seven articles evaluating 13 herbal medicines were included. Of these, 65% were rated critically low using AMSTAR2. Of 90 unique outcomes, 41 (45.6%) were statistically significant based on random effects model (p ≤ .05). Only 3 herbs were supported by suggestive evidence whereas the others were supported by weak evidence. The suggestive evidence supported benefits of Chinese herbal medicine (CHM) plus pharmacotherapy (WMD:1.84; 95% CI: 1.34, 2.35) and Vinpocetine (WMD: -0.94; 95%CI: -1.50, -0.38) on improving cognitive function assessing by Montreal Cognitive Assessment and Syndrom-Kurz-Test, respectively. Moreover, suggestive evidence supported benefit of Huperzia serrata on improving Activities of Daily Living (WMD:-7.18; 95%CI: -9.12, -5.23). No SAE was reported. In conclusion, several herbs were used for improving dementia and cognitive function but recent evidence were limited by the small sample size and poor methodological quality. Therefore, further large and well-designed studies are needed to support the evidence.
Collapse
Affiliation(s)
- Ratree Sawangjit
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mahasarakham University, Mahasarakham, Thailand
- Clinical Trials and Evidence-Based Syntheses Research Unit (CTEBs RU), Mahasarakham University, Mahasarakham, Thailand
| | - Chorthip Chuenchom
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mahasarakham University, Mahasarakham, Thailand
| | - Thanchanok Sanverm
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mahasarakham University, Mahasarakham, Thailand
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Jariya Jiranukool
- Department of Psychiatry, Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
| | - Rodchares Nithipaijit
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mahasarakham University, Mahasarakham, Thailand
- Clinical Trials and Evidence-Based Syntheses Research Unit (CTEBs RU), Mahasarakham University, Mahasarakham, Thailand
| | | | - Chankiat Phianchana
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mahasarakham University, Mahasarakham, Thailand
| | - Peerawat Jinatongthai
- Pharmacy Practice Division, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| |
Collapse
|
13
|
Haasbroek-Pheiffer A, Viljoen A, Steenekamp J, Chen W, Hamman J. Permeation of Phytochemicals of Selected Psychoactive Medicinal Plants across Excised Sheep Respiratory and Olfactory Epithelial Tissues. Pharmaceutics 2023; 15:pharmaceutics15051423. [PMID: 37242666 DOI: 10.3390/pharmaceutics15051423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
The intranasal route of drug administration offers an opportunity to bypass the blood-brain barrier and deliver compounds directly into the brain. Scientific evidence exists for medicinal plants (e.g., Centella asiatica and Mesembryanthemum tortuosum) to treat central nervous system conditions such as anxiety and depression. The ex vivo permeation of selected phytochemicals (i.e., asiaticoside and mesembrine) has been measured across excised sheep nasal respiratory and olfactory tissue. Permeation studies were conducted on individual phytochemicals and C. asiatica and M. tortuosum crude extracts. Asiaticoside exhibited statistically significantly higher permeation across both tissues when applied alone as compared to the C. asiatica crude extract, while mesembrine permeation was similar when applied alone or as M. tortuosum crude extract. Permeation of all the phytocompounds was similar or slightly higher than that of the drug atenolol across the respiratory tissue. Permeation of all the phytocompounds was similar to or slightly lower than that of atenolol across the olfactory tissue. In general, the permeation was higher across the olfactory epithelial tissue than across the respiratory epithelial tissue and therefore showed potential for direct nose-to-brain delivery of the selected psychoactive phytochemicals.
Collapse
Affiliation(s)
- Anja Haasbroek-Pheiffer
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
- SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Jan Steenekamp
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Weiyang Chen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Josias Hamman
- SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
14
|
Thanikkal JG, Dubey AK, Thomas MT. An Efficient Mobile Application for Identification of Immunity Boosting Medicinal Plants using Shape Descriptor Algorithm. WIRELESS PERSONAL COMMUNICATIONS 2023; 131:1-17. [PMID: 37360141 PMCID: PMC10119011 DOI: 10.1007/s11277-023-10476-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
In the Covid-19 pandemic situation, the world is looking for immunity-boosting techniques for fighting against coronavirus. Every plant is medicine in one or another way, but Ayurveda explains the uses of plant-based medicines and immunity boosters for specific requirements of the human body. To help Ayurveda, botanists are trying to identify more species of medicinal immunity-boosting plants by evaluating the characteristics of the leaf. For a normal person, detecting immunity-boosting plants is a difficult task. Deep learning networks provide highly accurate results in image processing. In the medicinal plant analysis, many leaves are like each other. So, the direct analysis of leaf images using the deep learning network causes many issues for medicinal plant identification. Hence, keeping the requirement of a method at large to help all human beings, the proposed leaf shape descriptor with the deep learning-based mobile application is developed for the identification of immunity-boosting medicinal plants using a smartphone. SDAMPI algorithm explained numerical descriptor generation for closed shapes. This mobile application achieved 96%accuracy for the 64 × 64 sized images.
Collapse
Affiliation(s)
- Jibi G. Thanikkal
- Department of Computer Science and Engineering, Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, U.P. 201313 India
| | - Ashwani Kumar Dubey
- Department of Electronics and Communication Engineering, Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, U.P. 201313 India
| | - M. T. Thomas
- Department of Botany, St. Thomas College, Thrissur, Kerala India
| |
Collapse
|
15
|
Rashid MHO, Akter MM, Uddin J, Islam S, Rahman M, Jahan K, Sarker MMR, Sadik G. Antioxidant, cytotoxic, antibacterial and thrombolytic activities of Centella asiatica L.: possible role of phenolics and flavonoids. CLINICAL PHYTOSCIENCE 2023. [DOI: 10.1186/s40816-023-00353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abstract
Background
Centella asiatica L. (Apiaceae), a green leafy vegetable, has been used as a popular folk medicine in Bangladesh in the treatment of various ailments. The plant is reported to contain phenolics and flavonoids, but their bioactive potentials are not yet completely known. The present study was designed to investigate the role of the phenolic and flavonoids in the antioxidant, cytotoxicity, antibacterial and thrombolytic activities.
Methods
Four solvent fractions viz. methanol (MSF), ethyl acetate (ESF), chloroform (CSF) and petroleum ether (PSF) were prepared from the dried powder of the whole plant by the modified Kupchan method. Total phenolic content and flavonoid content were determined by Folin Ciocalteu method and aluminum chloride colorimetric method, respectively. The antioxidant activity was assessed by the DPPH radical scavenging and total antioxidant capacity assays. The antibacterial activity was determined by the disc diffusion method and cytotoxicity was evaluated by the brine shrimp lethality bioassay. Thrombolytic activity was assayed using streptokinase as standard.
Results
Qualitative analysis of phytochemical revealed the presence of phenolics and flavonoids along with other bioactive constituents. Among the extractives, CSF contained the highest content of phenolics (155.46 ± 0.52 mg GAE/g) and flavonoids (345.17 ± 1.12 mg QE/g) and exhibited the most potent antioxidant activity in terms of total antioxidant capacity (179.01 ± 0.89 mg AAE/g) and DPPH scavenging ability (IC50; 15.31 ± 0.32 µg/mL). Similarly, CSF showed the highest cytotoxicity with LC50 values of 13.80 ± 0.23 µg/mL, and thrombolytic activity with 43.94 ± 0.62% clot lysis. The fraction also exhibited broad spectrum antibacterial activity. A significant correlation was observed between the flavonoid content and total antioxidant activity (r2 = 0.894, p < 0.05), while high correlation was seen between phenolic and flavonoid content and DPPH radical scavenging, total antioxidant capacity and cytotoxicity (r2 = 0.612–0.928). Similarly, a positive correlation was found between phenolic and flavonoid content with thrombolytic and antibacterial activities.
Conclusion
These results revealed that C. asiatica is a rich source of phenolics and flavonoids and correlated with antioxidant, cytotoxicity, antibacterial and thrombolytic activities. Hence isolation of phenolics and flavonoids from this plant may offer potential candidates which may be effective in the prevention of many chronic diseases.
Collapse
|
16
|
Ganie IB, Ahmad Z, Shahzad A, Zaushintsena A, Neverova O, Ivanova S, Wasi A, Tahseen S. Biotechnological Intervention and Secondary Metabolite Production in Centella asiatica L. PLANTS (BASEL, SWITZERLAND) 2022; 11:2928. [PMID: 36365380 PMCID: PMC9656378 DOI: 10.3390/plants11212928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Centella asiatica L., commonly known as Gotu kola, Indian pennywort, and Asiatic pennyworts, is an herbaceous perennial plant that belongs to the family Apiaceae and has long been used in the traditional medicine system. The plant is known to produce a wide range of active metabolites such as triterpenoids including asiatic acid, asiaticoside, brahmoside, and madecassic acid along with other constituents including centellose, centelloside, and madecassoside, etc., which show immense pharmacological activity. Due to its beneficial role in neuroprotection activity, the plant has been considered as a brain tonic. However, limited cultivation, poor seed viability with low germination rate, and overexploitation for decades have led to severe depletion and threatened its wild stocks. The present review aimed to provide up-to-date information on biotechnological tools applied to this endangered medicinal plant for its in vitro propagation, direct or indirect regeneration, synthetic seed production, strategies for secondary metabolite productions including different elicitors. In addition, a proposed mechanism for the biosynthesis of triterpenoids is also discussed.
Collapse
Affiliation(s)
- Irfan Bashir Ganie
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Anwar Shahzad
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Alexandra Zaushintsena
- Research Institute of Biotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
- Department of Ecology and Nature Management, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
| | - Olga Neverova
- Department of Ecology and Nature Management, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street, 6, Kemerovo 650043, Russia
| | - Adla Wasi
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Sabaha Tahseen
- Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
17
|
Moragrega I, Ríos JL. Medicinal Plants in the Treatment of Depression. II: Evidence from Clinical Trials. PLANTA MEDICA 2022; 88:1092-1110. [PMID: 34157753 DOI: 10.1055/a-1517-6882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Depression is a syndrome characterized by deep sadness and the inhibition of psychic functions, sometimes accompanied by neurovegetative disorders, with symptoms of anxiety almost always present. The disease produces alterations in a variety of neural networks and neurotransmission systems, along with a dysfunction of the hypothalamic-pituitary-adrenal axis, which leads to concomitant alterations in the immunological response. Generally, there is a parallel increase in proinflammatory mediators as well as oxidative and nitrosative damage caused by a reduction of antioxidant defenses. In a previous review, we compiled and examined studies of medicinal plants that had been evaluated in preclinical assays, including existing data on 155 species studied and reported as antidepressants or as sources of active principles for treating this condition. This review will thus limit its focus to the 95 clinical trials found in PubMed among the 670 articles on antidepressant-like medicinal plants. To this end, we have reviewed the publications cited in the Cochrane Database of Systematic Reviews, PubMed, and the Science Citation Index from 2000 to 2020. Our review emphasizes those species that have demonstrated the greatest pharmacological potential when studied for their antidepressant properties in humans through clinical trials. Saffron, turmeric, St. John's wort, ginkgo, kava, and golden root are the most relevant plants that have provided important evidence for the treatment of depression in clinical trials.
Collapse
Affiliation(s)
- Inés Moragrega
- Departament de Psicobiologia, Facultat de Psicologia, Universitat de València, Valencia, Spain
| | - José Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| |
Collapse
|
18
|
Suryavanshi J, Prakash C, Sharma D. Asiatic acid attenuates aluminium chloride-induced behavioral changes, neuronal loss and astrocyte activation in rats. Metab Brain Dis 2022; 37:1773-1785. [PMID: 35554794 DOI: 10.1007/s11011-022-00998-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/29/2022] [Indexed: 12/26/2022]
Abstract
Aluminium (Al) is a potent neurotoxic metal known to cause neurodegeneration. Al exposure causes oxidative stress by accumulation of reactive oxygen species, followed by the activation of neuronal cell death in the brain. Asiatic acid (AA), the major bioactive compound of Centella asiatica (a medicinal plant), act as multifunctional drug as well as an antioxidant. Thus, the present study aimed to investigate the potential neuroprotective effect of AA against Al neurotoxicity. Rats were orally administered aluminium chloride (AlCl3; 100 mg/kg b. wt.) dissolved in distilled water for 8 weeks or AA (75 mg/kg b. wt.) in combination with AlCl3. The results showed that AlCl3-intoxication causes significant impairment of memory, enhances anxiety-like behavior, acetyl cholinesterase (AChE) activity, malondialdehydes (MDA) level, and concomitant decrease in the activities of superoxide dismutase (SOD) and catalase (CAT) in the cortex and hippocampus regions of rat brain. In addition, AlCl3-intoxication enhanced neuronal loss and reactive astrogliosis in both regions. However, co-administration of AA with AlCl3 significantly attenuated the behavioral alterations, restored SOD and CAT activities, while reduced AChE activity and MDA content. Further, the study demonstrated that AA attenuates neuronal loss and reactive astrogliosis in rat brain. In conclusion, the study suggests that AA protects rat brain from Al neurotoxicity by inhibiting oxidative stress, neuronal loss and reactive astrogliosis.
Collapse
Affiliation(s)
- Jyoti Suryavanshi
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Chandra Prakash
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Deepak Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India.
| |
Collapse
|
19
|
Therapeutic Potential of Different Natural Products for the Treatment of Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6873874. [PMID: 35910833 PMCID: PMC9337964 DOI: 10.1155/2022/6873874] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/09/2022] [Indexed: 12/03/2022]
Abstract
A high incidence of dementia (60–80%) and a high rate of memory loss are two of the most common symptoms of Alzheimer's disease (AD), which affects the elderly. Researchers have recommended that traditional Chinese medicine (TCM) and Indian medicines can be used to prevent and cure AD. Several studies have linked neuroinflammation linked to amyloid-β (Aβ) deposition in the brain to the pathophysiology of neurodegenerative disorders. As a result, more research is needed to determine the role of inflammation in neurodegeneration. Increased microglial activation, cytokine production, reactive oxygen species (ROS), and nuclear factor kappa B (NF-κB) all play a role in the inflammatory process of AD. This review focuses on the role of neuroinflammation in neuroprotection and the molecular processes used by diverse natural substances, phytochemicals, and herbal formulations in distinct signaling pathways. Currently, researchers are focusing on pharmacologically active natural compounds with the anti-neuroinflammatory potential, making them a possible contender for treating AD. Furthermore, the researchers investigated the limits of past studies on TCM, Indian Ayurveda, and AD. Numerous studies have been carried out to examine the effects of medicinal whole-plant extracts on AD. Clinical investigations have shown that lignans, flavonoids, tannins, polyphenols, triterpenoids, sterols, and alkaloids have anti-inflammatory, antiamyloidogenic, anticholinesterase, and antioxidant properties. This review summarizes information about numerous medicinal plants and isolated compounds used in the treatment of AD and a list of further references.
Collapse
|
20
|
Medicinal Plants and Their Impact on the Gut Microbiome in Mental Health: A Systematic Review. Nutrients 2022; 14:nu14102111. [PMID: 35631252 PMCID: PMC9144835 DOI: 10.3390/nu14102111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Various neurocognitive and mental health-related conditions have been associated with the gut microbiome, implicating a microbiome–gut–brain axis (MGBA). The aim of this systematic review was to identify, categorize, and review clinical evidence supporting medicinal plants for the treatment of mental disorders and studies on their interactions with the gut microbiota. Methods: This review included medicinal plants for which clinical studies on depression, sleeping disorders, anxiety, or cognitive dysfunction as well as scientific evidence of interaction with the gut microbiome were available. The studies were reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Results: Eighty-five studies met the inclusion criteria and covered thirty mental health-related medicinal plants with data on interaction with the gut microbiome. Conclusion: Only a few studies have been specifically designed to assess how herbal preparations affect MGBA-related targets or pathways. However, many studies provide hints of a possible interaction with the MGBA, such as an increased abundance of health-beneficial microorganisms, anti-inflammatory effects, or MGBA-related pathway effects by gut microbial metabolites. Data for Panax ginseng, Schisandra chinensis, and Salvia rosmarinus indicate that the interaction of their constituents with the gut microbiota could mediate mental health benefits. Studies specifically assessing the effects on MGBA-related pathways are still required for most medicinal plants.
Collapse
|
21
|
Tefagh S, Mokaberinejad R, Shakiba M, Jafari M, Salehi M, Khayatkashani M, Shakeri N. Effect of Ustukhuddus Alavi, a multi-herbal product, on the cognitive performance of adolescent female students. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114971. [PMID: 35007684 DOI: 10.1016/j.jep.2022.114971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ustukhuddus Alavi is a polyherbal formula which is introduced by Persian medicine scholars. It is traditionally used to treat brain disorders and is claimed to do so by preprocessing and cleansing the waste products from the brain. According to Persian medicine, the disposal of brain waste products is necessary for optimal cognitive performance. AIM OF THE STUDY Sustaining optimal cognitive performance is crucial for ideal quality of life and higher academic achievements in high school students. The objective of this study was to determine the effects of this multi-component herbal product on the cognitive performance and salivary cortisol levels of adolescent female students. MATERIALS AND METHODS The effect of a 6-week randomly assigned Ustukhuddus Alavi versus placebo administration on cognitive performance was assessed by the paced auditory serial addition test (PASAT) at the baseline and after the 3- and 6-week intake of Ustukhuddus Alavi or placebo and the one-month follow-up in 86 healthy female high school students in grades 10 and 11. Additionally, we measured the levels of salivary cortisol of the students pre- and post-intervention. RESULTS Significant mean difference between the Ustukhuddus Alavi and placebo groups in three of the paced auditory serial addition test (PASAT) subscales, namely mental health (p-value = 0.006), sustained attention (p-value = 0.001) and mental fatigue (p-value = 0.001), were observed after six weeks. We also found a significant difference between the mean salivary cortisol level of the two groups after the intervention (p-value = 0.047). CONCLUSIONS These findings reveal that the intake of the multi-ingredient herbal product Ustukhuddus Alavi for six weeks can be helpful for cognitive function and cortisol levels in female high school students. These positive effects seem to be related to the increase in sustained attention and the decrease in mental fatigue.
Collapse
Affiliation(s)
- Samane Tefagh
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roshanak Mokaberinejad
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Shakiba
- Pediatric Department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdi Jafari
- Department of Clinical Psychology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Salehi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nezhat Shakeri
- Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Development and Optimization of Nanoemulsion from Ethanolic Extract of Centella asiatica (NanoSECA) Using D-Optimal Mixture Design to Improve Blood-Brain Barrier Permeability. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3483511. [PMID: 35295926 PMCID: PMC8920630 DOI: 10.1155/2022/3483511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
The evidence on the neuroprotective impact of Centella asiatica (C. asiatica) has been greatly documented in recent years. However, a major obstacle that remains to be overcome is the capacity of the active molecules in C. asiatica to cross the blood-brain barrier (BBB). In this study, we explored the possibilities of using a D-optimal mixture design to fabricate nanoemulsion of C. asiatica (NanoSECA) for better brain bioavailability. The parameters for optimization were the percentage of water (10–80% w/v) and virgin coconut oil (VCO) (10–80% w/v). Nanoemulsions were formulated using a high-pressure homogenization approach and were characterized for their physicochemical properties. The optimal VCO-based nanoemulsion (VBN: F2) conditions were found at 80% (w/v) of water and 10% (w/v) of VCO. Subsequently, viability tests were conducted on neuroblastoma (SH-SY5Y) and macrophage (RAW 264.7) cell lines. NanoSECA was distinguished for its antioxidant, acetylcholinesterase (AChE), anti-inflammatory, and parallel artificial membrane permeability assay (PAMPA) activities in vitro. The NanoSECA has a particle size of 127.833 ± 8.280 nm, zeta potential (ZP) of −24.9 ± 0.011 mV, polydispersity index (PDI) of 0.493 ± 4.681, percentage prediction error (PPE) of −12.02%, and pH of 6.0 ± 0.006 and is also stable under different storage conditions. Cell viability was improved in a dose-dependent manner on SH-SY5Y and RAW 264.7 cell lines. In addition, NanoSECA significantly reduced the AChE activity, suppressing the level of proinflammatory mediators and oxidative stress. Moreover, NanoSECA showed high BBB permeation with a high value of experimental permeability to cross the BBB. Thus, NanoSECA could efficiently potentiate the central nervous system (CNS) therapeutic activities through enhanced penetration of BBB. These nano-delivery systems are crucial to unlock the full potential of C. asiatica for treating numerous CNS disorders.
Collapse
|
23
|
Masi F, Chianese G, Peterlongo F, Riva A, Taglialatela-Scafati O. Phytochemical profile of Centevita®, a Centella asiatica leaves extract, and isolation of a new oleanane-type saponin. Fitoterapia 2022; 158:105163. [PMID: 35217117 DOI: 10.1016/j.fitote.2022.105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 11/04/2022]
Abstract
Centella asiatica is a popular medicinal plant and several phytotherapic products in the market include its extracts as active constituents. A LC-MS guided phytochemical investigation on the commercial C. asiatica leaves extract named Centevita® allowed characterization and quantification of 24 secondary metabolites including 10 polyphenols and 14 ursane- or oleanane-type triterpenoids in the sapogenin or saponin form. This metabolomic analysis, besides confirming that the triterpenoid fraction roughly accounts for 45% of the extract weight, also resulted in the discovery of isoterminoloside, a new triglycoside saponin of the unprecedented 2α,3β,6β,23-tetrahydroxyolean-13(18)-en-28-oic acid (isoterminolic acid). The structure of isoterminoloside was characterized by a detailed ESI-MS and NMR investigation.
Collapse
Affiliation(s)
- Francesca Masi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giuseppina Chianese
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | | | - Antonella Riva
- Indena SpA, via Don Minzoni, 6, 20049, Settala, Milan, Italy
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
24
|
Wright KM, Bollen M, David J, Speers AB, Brandes MS, Gray NE, Alcázar Magaña A, McClure C, Stevens JF, Maier CS, Quinn JF, Soumyanath A. Pharmacokinetics and Pharmacodynamics of Key Components of a Standardized Centella asiatica Product in Cognitively Impaired Older Adults: A Phase 1, Double-Blind, Randomized Clinical Trial. Antioxidants (Basel) 2022; 11:215. [PMID: 35204098 PMCID: PMC8868383 DOI: 10.3390/antiox11020215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
Centella asiatica is reputed in Eastern medicine to improve cognitive function in humans. Preclinical studies have demonstrated that aqueous extracts of C. asiatica improve cognition in mouse models of aging and Alzheimer's disease (AD) through the modulation of mitochondrial biogenesis and nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant response genes. This randomized, double-blind, crossover Phase I trial explored the oral bioavailability and pharmacokinetics of key compounds from two doses (2 g and 4 g) of a standardized C. asiatica aqueous extract product (CAP), over 10 h, in four mildly demented older adults on cholinesterase inhibitor therapy. The analysis focused on triterpenes (TTs) and caffeoylquinic acids (CQAs), which are known to contribute to C. asiatica's neurological activity. The acute safety of CAP and the effects on NRF2 gene expression in peripheral blood mononuclear cells were evaluated. Single administration of 2 g or 4 g of CAP was safe and well-tolerated. The TT aglycones, asiatic acid and madecassic acid, were identified in plasma and urine, while the parent glycosides, asiaticoside and madecassoside, although abundant in CAP, were absent in plasma and had limited renal excretion. Similarly, mono- and di-CQAs showed delayed absorption and limited presence in plasma or urine, while the putative metabolites of these compounds showed detectable plasma pharmacokinetic profiles and urinary excretion. CAP elicited a temporal change in NRF2 gene expression, mirroring the TT aglycone's pharmacokinetic curve in a paradoxical dose-dependent manner. The oral bioavailability of active compounds or their metabolites, NRF2 target engagement, and the acute safety and tolerability of CAP support the validity of using CAP in future clinical studies.
Collapse
Affiliation(s)
- Kirsten M. Wright
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| | - Melissa Bollen
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| | - Jason David
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| | - Alex B. Speers
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| | - Mikah S. Brandes
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| | - Nora E. Gray
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| | - Armando Alcázar Magaña
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (C.S.M.)
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA;
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Christine McClure
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| | - Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA;
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (C.S.M.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
- Department of Neurology, Veterans Affairs Portland Health Care System Center, Portland, OR 97239, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| |
Collapse
|
25
|
Wright KM, McFerrin J, Alcázar Magaña A, Roberts J, Caruso M, Kretzschmar D, Stevens JF, Maier CS, Quinn JF, Soumyanath A. Developing a Rational, Optimized Product of Centella asiatica for Examination in Clinical Trials: Real World Challenges. Front Nutr 2022; 8:799137. [PMID: 35096945 PMCID: PMC8797052 DOI: 10.3389/fnut.2021.799137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Botanical products are frequently sold as dietary supplements and their use by the public is increasing in popularity. However, scientific evaluation of their medicinal benefits presents unique challenges due to their chemical complexity, inherent variability, and the involvement of multiple active components and biological targets. Translation away from preclinical models, and developing an optimized, reproducible botanical product for use in clinical trials, presents particular challenges for phytotherapeutic agents compared to single chemical entities. Common deficiencies noted in clinical trials of botanical products include limited characterization of the product tested, inadequate placebo control, and lack of rationale for the type of product tested, dose used, outcome measures or even the study population. Our group has focused on the botanical Centella asiatica due to its reputation for enhancing cognition in Eastern traditional medicine systems. Our preclinical studies on a Centella asiatica water extract (CAW) and its bioactive components strongly support its potential as a phytotherapeutic agent for cognitive decline in aging and Alzheimer's disease through influences on antioxidant response, mitochondrial activity, and synaptic density. Here we describe our robust, scientific approach toward developing a rational phytotherapeutic product based on Centella asiatica for human investigation, addressing multiple factors to optimize its valid clinical evaluation. Specific aspects covered include approaches to identifying an optimal dose range for clinical assessment, design and composition of a dosage form and matching placebo, sourcing appropriate botanical raw material for product manufacture (including the evaluation of active compounds and contaminants), and up-scaling of laboratory extraction methods to available current Good Manufacturing Practice (cGMP) certified industrial facilities. We also address the process of obtaining regulatory approvals to proceed with clinical trials. Our study highlights the complexity of translational research on botanicals and the importance of identifying active compounds and developing sound analytical and bioanalytical methods for their determination in botanical materials and biological samples. Recent Phase I pharmacokinetic studies of our Centella asiatica product in humans (NCT03929250, NCT03937908) have highlighted additional challenges associated with designing botanical bioavailability studies, including specific dietary considerations that need to be considered.
Collapse
Affiliation(s)
- Kirsten M. Wright
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | | | - Armando Alcázar Magaña
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | | | - Maya Caruso
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, Veterans Affairs Portland Health Care System Center, Portland, OR, United States
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
26
|
Boondam Y, Tantisira MH, Tilokskulchai K, Tapechum S, Pakaprot N. Acute enhancing effect of a standardized extract of Centella asiatica (ECa 233) on synaptic plasticity: an investigation via hippocampal long-term potentiation. PHARMACEUTICAL BIOLOGY 2021; 59:367-374. [PMID: 33789075 PMCID: PMC8018467 DOI: 10.1080/13880209.2021.1893348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT ECa 233 is the standardized extract of Centella asiatica (L.) Urban. (Apiaceae). It contains at least 85% of triterpenoid glycosides and yields neuroprotective and memory-enhancing effects. However, the exact molecules exerting the effects might be triterpenic acid metabolites reproduced through gut metabolism after orally ingesting C. asiatica, not triterpenoid glycosides. OBJECTIVE This study demonstrates the effect of unmetabolized ECa 233 on hippocampal synaptic plasticity after directly perfusing ECa 233 over acute brain slices. MATERIALS AND METHODS The brain slices obtained from 7-week-old male Wistar rats were randomly divided into 4 groups. We perfused either artificial cerebrospinal fluid (ACSF), 0.01% DMSO, 10 µg/mL ECa 233, or 100 µg/mL on brain slices, and measured the long-term potentiation (LTP) magnitude to determine the synaptic plasticity of hippocampal circuits in each group. RESULTS The LTP magnitude of ACSF, DMSO, 10 ug/mL ECa 233, and 100 ug/mL ECa 233 groups increased from 100% to 181.26 ± 38.19%, 148.74 ± 5.40%, 273.71 ± 56.66%, 182.17 ± 18.61%, respectively. ECa 233 at the concentration of 10 µg/mL robustly and significantly enhanced hippocampal LTP magnitude. The data indicates an improvement of the hippocampal synaptic plasticity. DISCUSSION AND CONCLUSIONS This study emphasizes the effectiveness of triterpenoid glycosides in ECa 233 on synaptic plasticity enhancement. Therefore, this study supported and complimented the known effects of C. asiatica extract on the enhancement of synaptic plasticity, and subsequently, learning and memory, suggesting that ECa 233 could be a promising memory enhancing agent.
Collapse
Affiliation(s)
- Yingrak Boondam
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Kanokwan Tilokskulchai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sompol Tapechum
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
27
|
Tsoukalas D, Buga AM, Docea AO, Sarandi E, Mitrut R, Renieri E, Spandidos DA, Rogoveanu I, Cercelaru L, Niculescu M, Tsatsakis A, Calina D. Reversal of brain aging by targeting telomerase: A nutraceutical approach. Int J Mol Med 2021; 48:199. [PMID: 34515324 PMCID: PMC8448543 DOI: 10.3892/ijmm.2021.5032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
Telomeres, the protective caps of chromosomes, shorten with age, as telomerase, the enzyme responsible for the compensation of telomere erosion, is inactive in the majority of cells. Telomere shortening and subsequent cell senescence lead to tissue aging and age‑related diseases. Neurodegenerative disorders, characterized by the progressive loss of neurons among other hallmarks of aged tissue, and poor cognitive function, have been associated with a short telomere length. Thus, telomerase activity has emerged as a therapeutic target, with novel agents being under investigation. The present study aimed to examine the effects of a novel natural telomerase activator, 'Reverse™', containing Centella asiatica extract, vitamin C, zinc and vitamin D3 on the brains of 18‑month‑old rats. The administration of the 'Reverse™' supplement for 3 months restored telomerase reverse transcriptase (TERT) expression in the brains of rats, as revealed by ELISA and immunohistochemistry. In addition, the findings from PCR‑ELISA demonstrated an enhanced telomerase activity in the cerebellum and cortex cells in the brains of rats treated with the 'Reverse™' supplement. The histopathological findings confirmed a structural reversibility effect close to the differentiation observed in the young control group of rats treated with two capsules/kg body weight of the 'Reverse™' supplement. On the whole, the findings of the present study provide a strong indication that an increased telomerase activity and TERT expression may be achieved not only in the postnatal or embryonic period, but also in the brains of middle‑aged rats through nutraceutical supplementation. The use of the 'Reverse™' supplement may thus contribute to the potential alleviation of a number of central nervous system diseases.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- European Institute of Nutritional Medicine (E.I.Nu.M.), I-00198 Rome, Italy
| | - Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Evangelia Sarandi
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Radu Mitrut
- Department of Cardiology, University and Emergency Hospital, 050098 Bucharest, Romania
| | - Elisavet Renieri
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Ion Rogoveanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Liliana Cercelaru
- Department of Anatomy and Embryology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Niculescu
- Department of Anatomy and Embryology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
28
|
Hambali A, Kumar J, Hashim NFM, Maniam S, Mehat MZ, Cheema MS, Mustapha M, Adenan MI, Stanslas J, Hamid HA. Hypoxia-Induced Neuroinflammation in Alzheimer's Disease: Potential Neuroprotective Effects of Centella asiatica. Front Physiol 2021; 12:712317. [PMID: 34721056 PMCID: PMC8551388 DOI: 10.3389/fphys.2021.712317] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterised by the presence of extracellular beta-amyloid fibrillary plaques and intraneuronal neurofibrillary tau tangles in the brain. Recurring failures of drug candidates targeting these pathways have prompted research in AD multifactorial pathogenesis, including the role of neuroinflammation. Triggered by various factors, such as hypoxia, neuroinflammation is strongly linked to AD susceptibility and/or progression to dementia. Chronic hypoxia induces neuroinflammation by activating microglia, the resident immune cells in the brain, along with an increased in reactive oxygen species and pro-inflammatory cytokines, features that are common to many degenerative central nervous system (CNS) disorders. Hence, interests are emerging on therapeutic agents and plant derivatives for AD that target the hypoxia-neuroinflammation pathway. Centella asiatica is one of the natural products reported to show neuroprotective effects in various models of CNS diseases. Here, we review the complex hypoxia-induced neuroinflammation in the pathogenesis of AD and the potential application of Centella asiatica as a therapeutic agent in AD or dementia.
Collapse
Affiliation(s)
- Aqilah Hambali
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
29
|
Biswas D, Mandal S, Chatterjee Saha S, Tudu CK, Nandy S, Batiha GES, Shekhawat MS, Pandey DK, Dey A. Ethnobotany, phytochemistry, pharmacology, and toxicity of Centella asiatica (L.) Urban: A comprehensive review. Phytother Res 2021; 35:6624-6654. [PMID: 34463404 DOI: 10.1002/ptr.7248] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 06/19/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
The well-known medicinal plant Centella asiatica (L.) Urban is an Ayurvedic and traditional Chinese medicine used in the treatment of different health problems and as an edible vegetable in a regular diet. Ease of availability in the wide range of environmental conditions plus low-cost cultivation process has made the plant popular in ethno-medicinal healthcare systems. In the present review, phytochemical analysis of plant-extract and pharmacological activities of bioactive-compounds are discussed based upon the available reports to understand their therapeutic potentialities along with the mechanisms behind. The results exhibited that C. asiatica and its triterpenoids demonstrated an array of pharmacological effects and health benefits, some of which were confirmed in many preclinical and clinical studies. Those reports also provided considerable evidences in support of the principles of folk treatment in different countries. Increase and maintenance of the prospective plant secondary metabolites would provide an enriched resource of drug molecules. Development of suitable derivatives of the therapeutic compounds can give an assurance for getting more effective drug candidates with reduced side effects. The review also enumerates the application of advanced nanotechnology, toxicology, and clinical-trial reports on the plant with notes on the shortcomings in the present research and future perspectives of using this medicinal plant.
Collapse
Affiliation(s)
- Dew Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Sujata Mandal
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | | | - Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mahipal S Shekhawat
- Department of Plant Biology and Biotechnology, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Pondicherry, India
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
30
|
Umesh C, Ramakrishna KK, Jasti N, Bhargav H, Varambally S. Role of Ayurveda and Yoga-Based lifestyle in the COVID-19 Pandemic - A Narrative Review. J Ayurveda Integr Med 2021; 13:100493. [PMID: 34305355 PMCID: PMC8286865 DOI: 10.1016/j.jaim.2021.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 01/20/2023] Open
Abstract
The COVID-19 pandemic has posed an immense challenge to health care systems around the globe in terms of limited health care facilities and proven medical therapeutics to address the symptoms of the infection. The current health care strategies have primarily focused on either the pathogen on the environmental factors. However, efforts towards strengthening the host immunity are important from public health perspective to prevent the spread of infection and downregulate the potency of the agent. While a vaccine can induce specific immunity in the host, non-specific ways of improving overall host immunity are the need. This scenario has paved the way for the use of traditional Indian therapies such as Ayurveda and Yoga. This review aims at collating available evidence on Ayurveda, Yoga and COVID-19. Further, it draws inferences from recent studies on Yoga and Ayurveda on immunity, respiratory health and mental health respectively to approximate its probable role in prophylaxis and as an add-on management option for the current pandemic.
Collapse
Affiliation(s)
- Chikkanna Umesh
- Department of Integrative Medicine, NIMHANS, Bangalore, India
| | | | - Nishitha Jasti
- Department of Integrative Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Hemant Bhargav
- Department of Integrative Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Shivarama Varambally
- Department of Integrative Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
31
|
Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs. Neurochem Int 2021; 149:105124. [PMID: 34245808 DOI: 10.1016/j.neuint.2021.105124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Brain and neuronal circuits constitute the most complex organ networks in human body. They not only control and coordinate functions of all other organs, but also represent one of the most-affected systems with stress, lifestyle and age. With global increase in aging populations, these neuropathologies have emerged as major concern for maintaining quality of life. Recent era has witnessed a surge in nutritional remediation of brain dysfunctions primarily by "nutraceuticals" that refer to functional foods and supplements with pharmacological potential. Specific dietary patterns with a balanced intake of carbohydrates, fatty acids, vitamins and micronutrients have also been ascertained to promote brain health. Dietary herbs and their phytochemicals with wide range of biological and pharmacological activities and minimal adverse effects have gained remarkable attention as neuro-nutraceuticals. Neuro-nutraceutical potentials of herbs are often expressed as effects on cognitive response, circadian rhythm, neuromodulatory, antioxidant and anti-inflammatory activities that are mediated by effects on gene expression, epigenetics, protein synthesis along with their turnover and metabolic pathways. Epidemiological and experimental evidence have implicated enormous applications of herbal supplementation in neurodegenerative and psychiatric disorders. The present review highlights the identification, experimental evidence and applications of some herbs including Bacopa monniera, Withania somnifera, Curcuma longa, Helicteres angustifolia, Undaria pinnatifida, Haematococcus pluvialis, and Vitis vinifera, as neuro-nutraceuticals.
Collapse
|
32
|
Khan MA, Srivastava V, Kabir M, Samal M, Insaf A, Ibrahim M, Zahiruddin S, Ahmad S. Development of Synergy-Based Combination for Learning and Memory Using in vitro, in vivo and TLC-MS-Bioautographic Studies. Front Pharmacol 2021; 12:678611. [PMID: 34276370 PMCID: PMC8283279 DOI: 10.3389/fphar.2021.678611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
The present study is aimed at developing a synergistic combination to enhance learning and memory in Alzheimer’s patients with the help of eight common medicinal plants used in the AYUSH system. Aqueous and hydroalcoholic extracts of eight medicinal plants from the AYUSH system of medicine were prepared. These were subjected to in vitro anticholinesterase activity, to find out the combination index of synergistic combination. The synergistic combination and their individual extracts were subjected to total phenol, flavonoid and antioxidant activity estimation. Further, in vivo neurobehavioral studies in rats were carried out followed by TLC-MS-bioautographic identification of bioactive metabolites. Out of the sixteen extracts, aqueous extracts of Withania somnifera (L.) Dunal (WSA) and Myristica fragrans (L.) Dunal (MFA) were selected for the development of synergistic combination based on their IC50 value in vitro anticholinesterase assay. The synergistic combination inhibited the anticholinesterase activity significantly as compared to the individual extracts of WSA and MFA. The synergistic combination also showed more phenolic and flavonoid contents with potential antioxidant activity. The TLC-bioautography showed four white spots in WSA, signifying sitoindosides VII, VIII, quercetin, isopelletierine and Withanolide S as AChE inhibitory compounds while showing five white spots of anti-cholinesterase active metabolites identified as eugenol, methyl eugenol, myristic acid, galbacin and β-sitosterol in MFA. The observation of neurocognitive behavior in amnesia induced subjects manifested that both the synergistic combinations showed comparable results to that of standard piracetam, though the synergistic combination containing a higher concentration of WSA showed more appreciable results in ameliorating dementia in rats. The study suggests that the synergy based combination successfully enhanced memory and learning by abating free radical and acetylcholine levels, and increased learning and memory in rats, providing a strong rationale for its use in the treatment of dementia and Alzheimer’s disease.
Collapse
Affiliation(s)
- Maaz Ahmed Khan
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Varsha Srivastava
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mariya Kabir
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Monalisha Samal
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Areeba Insaf
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Ibrahim
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
33
|
Firdaus Z, Singh TD. An Insight in Pathophysiological Mechanism of Alzheimer's Disease and its Management Using Plant Natural Products. Mini Rev Med Chem 2021; 21:35-57. [PMID: 32744972 DOI: 10.2174/1389557520666200730155928] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an age-associated nervous system disorder and a leading cause of dementia worldwide. Clinically, it is described by cognitive impairment and pathophysiologically by deposition of amyloid plaques and neurofibrillary tangles in the brain and neurodegeneration. This article reviews the pathophysiology, course of neuronal degeneration, and the various possible hypothesis of AD progression. These hypotheses include amyloid cascade, tau hyperphosphorylation, cholinergic disruption, metal dysregulation, vascular dysfunction, oxidative stress, and neuroinflammation. There is an exponential increase in the occurrence of AD in the recent few years that indicate an urgent need to develop some effective treatment. Currently, only 2 classes of drugs are available for AD treatment, namely acetylcholinesterase inhibitor and NMDA receptor antagonist. Since AD is a complex neurological disorder and these drugs use a single target approach, alternatives are needed due to limited effectiveness and unpleasant side-effects of these drugs. Currently, plants have been used for drug development research especially because of their multiple sites of action and fewer side effects. Uses of some herbs and phytoconstituents for the management of neuronal disorders like AD have been documented in this article. Phytochemical screening of these plants shows the presence of many beneficial constituents like flavonoids, triterpenes, alkaloids, sterols, polyphenols, and tannins. These compounds show a wide array of pharmacological activities, such as anti-amyloidogenic, anticholinesterase, and antioxidants. This article summarizes the present understanding of AD progression and gathers biochemical evidence from various works on natural products that can be useful in the management of this disease.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| | - Tryambak Deo Singh
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi - 221005, India
| |
Collapse
|
34
|
You YX, Shahar S, Mohamad M, Rajab NF, Haron H, Che Din N, Abdul Hamid H. Neuroimaging Functional Magnetic Resonance Imaging Task-Based Dorsolateral Prefrontal Cortex Activation Following 12 Weeks of Cosmos caudatus Supplementation Among Older Adults With Mild Cognitive Impairment. J Magn Reson Imaging 2021; 54:1804-1818. [PMID: 34080265 DOI: 10.1002/jmri.27762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Cosmos caudatus (CC) is traditional Asian vegetable, commonly consumed among the Southeast Asian population. It has been reported to be high in flavonoids and might potentially improve brain activity among older adults with mild cognitive impairment (MCI). The effect of CC in brain activation improvement using neuroimaging is yet to be discovered. PURPOSE To investigate the effects of CC supplement on brain activity using functional magnetic resonance imaging (fMRI) among older adults with MCI. STUDY TYPE Prospective, randomized, double-blind, placebo-controlled trial. POPULATION/SUBJECTS Twenty older adults with mild cognitive impairment (60-75 years old), 14 of them (70%) were female subjects. FIELD STRENGTH/SEQUENCE A 3.0-T, T1-weighted anatomical images, T2*-weighted imaging data, A single shot, gradient echo-echo planar imaging (EPI) sequence. ASSESSMENT All subjects were asked to consume two 500 mg capsules of either CC supplement or placebo (maltodextrin) daily for 12 weeks. Cognitive function was measured using validated neuropsychological tests (i.e. Mini-mental State Examination and Digit Span) and task-based fMRI (N-back and Stroop Color Word Test) at baseline and 12th week. Brodmann's area 9, 46 and anterior cingulate cortex were selected as the regions of interest to define dorsolateral prefrontal cortex (DLPFC) in fMRI analysis. STATISTICAL TESTS Normality test was performed with the Shapiro-Wilk test. Two-way repeated ANOVA determined the intervention effects of the CC supplementation on brain activity after adjustments for covariates. Significance level at P < 0.05 for independent-t test and Chi square test; adjusted P < 0.0042 for two-way repeated ANOVA after Bonferroni correction. RESULTS Findings showed significant improvements in digit span (partial η2 = 0.559), increment in right DLPFC activation while performing 1-back task (partial η2 = 0.586) and left DLPFC activation while performing Stroop Color Word Test (SCWT) (congruent) task (partial η2 = 0.432) at 12th week of CC supplementation. CONCLUSION CC supplementation might have the ability to improve DLPFC activation, potentially leading to improved working memory among older adults with MCI after 12 weeks of administration. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Yee Xing You
- Dietetics Program and Center for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Suzana Shahar
- Dietetics Program and Center for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mazlyfarina Mohamad
- Diagnostic Imaging and Radiotherapy Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Biomedical Sciences Program and Center for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hasnah Haron
- Nutritional Sciences Program and Center for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Normah Che Din
- Health Psychology Program, Centre of Rehabilitation and Special Needs, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hamzaini Abdul Hamid
- Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Gregory J, Vengalasetti YV, Bredesen DE, Rao RV. Neuroprotective Herbs for the Management of Alzheimer's Disease. Biomolecules 2021; 11:biom11040543. [PMID: 33917843 PMCID: PMC8068256 DOI: 10.3390/biom11040543] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background—Alzheimer’s disease (AD) is a multifactorial, progressive, neurodegenerative disease that is characterized by memory loss, personality changes, and a decline in cognitive function. While the exact cause of AD is still unclear, recent studies point to lifestyle, diet, environmental, and genetic factors as contributors to disease progression. The pharmaceutical approaches developed to date do not alter disease progression. More than two hundred promising drug candidates have failed clinical trials in the past decade, suggesting that the disease and its causes may be highly complex. Medicinal plants and herbal remedies are now gaining more interest as complementary and alternative interventions and are a valuable source for developing drug candidates for AD. Indeed, several scientific studies have described the use of various medicinal plants and their principal phytochemicals for the treatment of AD. This article reviews a subset of herbs for their anti-inflammatory, antioxidant, and cognitive-enhancing effects. Methods—This article systematically reviews recent studies that have investigated the role of neuroprotective herbs and their bioactive compounds for dementia associated with Alzheimer’s disease and pre-Alzheimer’s disease. PubMed Central, Scopus, and Google Scholar databases of articles were collected, and abstracts were reviewed for relevance to the subject matter. Conclusions—Medicinal plants have great potential as part of an overall program in the prevention and treatment of cognitive decline associated with AD. It is hoped that these medicinal plants can be used in drug discovery programs for identifying safe and efficacious small molecules for AD.
Collapse
Affiliation(s)
- Julie Gregory
- Apollo Health, P.O. Box 117040, Burlingame, CA 94011, USA;
| | | | - Dale E. Bredesen
- Apollo Health, P.O. Box 117040, Burlingame, CA 94011, USA;
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90024, USA
- Correspondence: (D.E.B.); (R.V.R.)
| | - Rammohan V. Rao
- Apollo Health, P.O. Box 117040, Burlingame, CA 94011, USA;
- California College of Ayurveda, 700 Zion Street, Nevada City, CA 95959, USA
- Correspondence: (D.E.B.); (R.V.R.)
| |
Collapse
|
36
|
Huang J, Zhou X, Xia L, Liu W, Guo F, Liu J, Liu W. Inhibition of hypertrophic scar formation with oral asiaticoside treatment in a rabbit ear scar model. Int Wound J 2021; 18:598-607. [PMID: 33666348 PMCID: PMC8450800 DOI: 10.1111/iwj.13561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Hypertrophic scar (HS) is a fibrotic skin disease characterised by over‐productive collagen and excessive inflammatory reaction, which can be functionally and cosmetically problematic. A scar‐prone constitute will accelerate HS formation and functional disorder, which deserves systemic therapy with oral medicine. To examine the oral therapeutic effectiveness on HS with convincing evidence of gross view and histological improvement, a rabbit ear HS model was employed with oral administration of asiaticoside (AS) at the doses of 12 and 24 mg kg−1 d−1 daily for 60 consecutive days. Gross observation and histological findings showed that oral AS treatment could significantly inhibit HS formation in a dose dependent manner. Semi‐quantification of scar elevation index at days 7, 15, 30, and 60, and quantitative polymerase chain reaction at days 30 and 60 also provided the evidences of reduced scar thickness and inhibited fibrotic gene expressions of collagens I, III, TGF‐β1, interleukins 1β, 6 and 8, and enhanced gene expression of SMAD 7 and PPAR‐γ with a dose‐dependent manner. These results indicated that AS is likely to serve as a systemic therapeutic agent of HS treatment for those who may have scar‐prone constitute via anti‐inflammation, inhibiting fibrotic process, and enhancing matrix degradation.
Collapse
Affiliation(s)
- Jia Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Xiaobo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Lingling Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Weiwei Liu
- Department of marketing, Shanghai Modern Pharmaceutical Company, Shanghai, China
| | - Fei Guo
- Department of marketing, Shanghai Modern Pharmaceutical Company, Shanghai, China
| | - Jianhui Liu
- Department of marketing, Shanghai Modern Pharmaceutical Company, Shanghai, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| |
Collapse
|
37
|
Phaisan S, Makkliang F, Putalun W, Sakamoto S, Yusakul G. Development of a colorless Centella asiatica (L.) Urb. extract using a natural deep eutectic solvent (NADES) and microwave-assisted extraction (MAE) optimized by response surface methodology. RSC Adv 2021; 11:8741-8750. [PMID: 35423359 PMCID: PMC8695212 DOI: 10.1039/d0ra09934a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/19/2021] [Indexed: 12/01/2022] Open
Abstract
This study outlines a green process for Centella asiatica (L.) Urb. (CA) extraction. Natural deep eutectic solvents (NADESs) and microwave-assisted extraction (MAE) were combined to provide a high bioactive compound yield and high antioxidant activity. Among the NADESs evaluated, the combination of acetylcholine chloride : malic acid : water (1 : 2 : 2): water (40 : 60) was the best for extraction. These conditions provide high madecassoside (MS) (21.7 mg g-1 dry weight) and asiaticoside (AS) (12.7 mg g-1 dry weight) yields, with greater than 80% (v/v) EtOH (13.3 mg g-1 MS and 7.80 mg g-1 AS). In addition, the extracts from this process showed higher antioxidant activity (IC50 = 0.26 mg mL-1) than the CA aqueous EtOH and water extracts. Moreover, the color of the extract products was less green than that of the extracts prepared using EtOH and aqueous EtOH as solvents, which are suitable for cosmeceutical products. Response surface methodology (RSM) was used for MAE optimization. The ANOVA data from the central composition design (CCD) of RSM were fitted with quadratic models yielding acceptable R 2 (>0.93), adjusted R 2 (>0.87), predicted R 2 (>0.81), and nonsignificant lack of fit (p > 0.05) values. The quadratic model was validated using optimal conditions (30 s, power 300 W, and a liquid to solid ratio 20 mL g-1), and the model validation showed more than 80% accuracy in both MS and AS yields. This research presented an effective green process for CA extraction, which resulted in an environmentally friendly CA extract requiring little energy consumption and no organic solvents.
Collapse
Affiliation(s)
- Suppalak Phaisan
- School of Pharmacy, Walailak University Thaiburi, Thasala Nakhon Si Thammarat 80160 Thailand
| | - Fonthip Makkliang
- School of Pharmacy, Walailak University Thaiburi, Thasala Nakhon Si Thammarat 80160 Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University Khon Kaen 40002 Thailand
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), National Research University-Khon Kaen University Khon Kaen 40002 Thailand
| | - Seiichi Sakamoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University Fukuoka 812-8582 Japan
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University Thaiburi, Thasala Nakhon Si Thammarat 80160 Thailand
| |
Collapse
|
38
|
Tsoukalas D, Zlatian O, Mitroi M, Renieri E, Tsatsakis A, Izotov BN, Burada F, Sosoi S, Burada E, Buga AM, Rogoveanu I, Docea AO, Calina D. A Novel Nutraceutical Formulation Can Improve Motor Activity and Decrease the Stress Level in a Murine Model of Middle-Age Animals. J Clin Med 2021; 10:624. [PMID: 33562115 PMCID: PMC7915416 DOI: 10.3390/jcm10040624] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Ageing is a genetically programmed physiological process that is modulated by numerous environmental factors, associated with decreasing physiological function, decreasing reproductive rate and increasing age-related mortality rate. Maintaining mobility performance and physical function in the elderly is the main objective of the successful ageing concept. In this study, we aimed to evaluate the beneficial effect of a novel nutraceutical formulation containing Centella asiatica L. extract, vitamin C, zinc and vitamin D3 (as cholecalciferol) on motor activity and anxiety with the use of a murine model of old animals, as a means of providing proof for clinical use in the elderly, for enhancing physical strength and improving life quality. Eighteen Sprague Dawley 18 months old male rats were divided into three groups and received corn oil (the control group) or 1 capsule/kg bw Reverse supplement (treatment group 1) or 2 capsules/kg bw Reverse supplement (treatment group 2), for a period of 3 months. The Reverse supplement (Natural Doctor S.A, Athens, Greece) contains 9 mg Centella asiatica L. extract, vitamin C (200 mg as magnesium ascorbate), zinc (5 mg as zinc citrate), vitamin D3 (50 µg as cholecalciferol) per capsule. Before and after the treatment, the motor function and behavioral changes for anxiety and depression were evaluated using the open-field test, elevated plus-maze test and rotarod test. The supplementation with Reverse (Natural Doctor S.A) supplement can improve the locomotor activity in old rats in a dose-dependent manner, as demonstrated by an increase in the latency to leave from the middle square, in the number of rearings in the open field test, in the time spent in the open arms and time spent in the center in the elevated plus-maze test and the latency to all in all three consecutive trials in the rotarod test. Stress also decreased significantly in a dose-dependent manner, following the treatment with Reverse supplement, as was demonstrated by the decrease in the number of groomings at the open field test and time spent in the dark and the number of groomings at the elevated plus-maze test.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- European Institute of Nutritional Medicine (E.I.Nu.M.), 00198 Rome, Italy
| | - Ovidiu Zlatian
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mihaela Mitroi
- ENT Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Elisavet Renieri
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (E.R.); (A.T.)
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (E.R.); (A.T.)
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia;
| | - Boris Nikolaevich Izotov
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia;
| | - Florin Burada
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (F.B.); (S.S.)
| | - Simona Sosoi
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (F.B.); (S.S.)
| | - Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ion Rogoveanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
39
|
Lawal OM, Wakel F, Dekker M. Consumption of fresh Centella asiatica improves short term alertness and contentedness in healthy females. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
40
|
You YX, Shahar S, Rajab NF, Haron H, Yahya HM, Mohamad M, Din NC, Maskat MY. Effects of 12 Weeks Cosmos caudatus Supplement among Older Adults with Mild Cognitive Impairment: A Randomized, Double-Blind and Placebo-Controlled Trial. Nutrients 2021; 13:nu13020434. [PMID: 33572715 PMCID: PMC7912368 DOI: 10.3390/nu13020434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/10/2023] Open
Abstract
Cosmos caudatus (CC) contains high flavonoids and might be beneficial in neuroprotection. It has the potential to prevent neurodegenerative diseases. Therefore, we aimed to investigate the effects of 12 weeks of Cosmos caudatus supplement on cognitive function, mood status, blood biochemical profiles and biomarkers among older adults with mild cognitive impairment (MCI) through a double-blind, placebo-controlled trial. The subjects were randomized into CC supplement (n = 24) and placebo group (n = 24). Each of them consumed one capsule of CC supplement (250 mg of CC/capsule) or placebo (500 mg maltodextrin/capsule) twice daily for 12 weeks. Cognitive function and mood status were assessed at baseline, 6th week, and 12th week using validated neuropsychological tests. Blood biochemical profiles and biomarkers were measured at baseline and 12th week. Two-way mixed analysis of variance (ANOVA) analysis showed significant improvements in mini mental state examination (MMSE) (partial η2 = 0.150, p = 0.049), tension (partial η2 = 0.191, p = 0.018), total mood disturbance (partial η2 = 0.171, p = 0.028) and malondialdehyde (MDA) (partial η2 = 0.097, p = 0.047) following CC supplementation. In conclusion, 12 weeks CC supplementation potentially improved global cognition, tension, total mood disturbance, and oxidative stress among older adults with MCI. Larger sample size and longer period of intervention with incorporation of metabolomic approach should be conducted to further investigate the underlying mechanism of CC supplementation in neuroprotection.
Collapse
Affiliation(s)
- Yee Xing You
- Dietetics Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Suzana Shahar
- Dietetics Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Correspondence: ; Tel.: +60-3-9289-7651
| | - Nor Fadilah Rajab
- Biomedical Science Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Hasnah Haron
- Nutritional Sciences Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.H.); (H.M.Y.)
| | - Hanis Mastura Yahya
- Nutritional Sciences Programme and Centre for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.H.); (H.M.Y.)
| | - Mazlyfarina Mohamad
- Diagnostic Imaging and Radiotherapy Programme and Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Normah Che Din
- Health Psychology Programme, Centre of Rehabilitation and Special Needs, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Mohamad Yusof Maskat
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia;
| |
Collapse
|
41
|
Khuanekkaphan M, Noysang C, Khobjai W. Anti-aging potential and phytochemicals of Centella asiatica, Nelumbo nucifera, and Hibiscus sabdariffa extracts. J Adv Pharm Technol Res 2021; 11:174-178. [PMID: 33425700 PMCID: PMC7784944 DOI: 10.4103/japtr.japtr_79_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/04/2022] Open
Abstract
Centella asiatica, Nelumbo nucifera Gaertn, and Hibiscus sabdariffa have been used as medicinal plants in Thailand. They are sources of phytochemicals that applications for esthetic and healthcare. The aim of this research was to examine the phytochemical constituents and anti-aging potential of these plants. The phytochemical compounds were performed using gas chromatography-mass spectrometry. The anti-aging activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sunfonic acid) (ABTS), anti-collagenase, and anti-elastase assays. The main interest phytochemical compounds of ethanolic extracts of C. asiatica, N. nucifera, H. sabdariffa were ethanol, 2-(-Octadecenyloxy), γ-sitosterol and hexadecanoic acid, and ethyl ester, respectively. The DPPH half-maximal inhibitory concentration (IC50) results of C. asiatica, N. nucifera, and H. sabdariffa were 0.32 ± 0.01, 0.34 ± 0.00, and 0.35 ± 0.01 mg/mL, respectively. The ABTS result of H. sabdariffa extract showed high inhibitory activity at IC50 of the extract was 0.62 ± 0.12 mg/mL. The percentage of collagenase inhibition of C. asiatica, N. nucifera, and H. sabdariffa at 1.0 mg/mL was 78.13 ± 4.42, 85.94 ± 2.21, and 90.63 ± 0.00, respectively. The C. asiatica extract had a high percentage of elastase inhibition. Consequently, these research results suggest that phytochemicals may also provide a range of esthetic and health benefits. The phytochemical constituent could be used as anti-aging active ingredient for cosmetic and pharmaceutical industrials.
Collapse
Affiliation(s)
- Monsicha Khuanekkaphan
- Department of Health and Aesthetics, Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Chanai Noysang
- Department of Innovation of Health Products, Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Warachate Khobjai
- Department of Applied Thai Traditional Medicine, Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| |
Collapse
|
42
|
Hannan MA, Haque MN, Munni YA, Oktaviani DF, Timalsina B, Dash R, Afrin T, Moon IS. Centella asiatica promotes early differentiation, axodendritic maturation and synaptic formation in primary hippocampal neurons. Neurochem Int 2021; 144:104957. [PMID: 33444677 DOI: 10.1016/j.neuint.2021.104957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Centella asiatica is a 'medhya-rasayana (nootrophic or memory booster)' herb that has been indicated in Ayurveda for improving memory function and treating dementia disorders. Although the neuroprotective effects of C. asiatica have been reported in earlier studies, the information on whether this nootropic herb could promote early differentiation and development of axon and dendrites in primary hippocampal neurons is currently limited. THE AIM OF THE STUDY To investigate the effects of C. asiatica and asiatic acid, one of the principal active constituents of C. asiatica, on the various stages of neuronal polarity, including early neuronal differentiation, axonal outgrowth, dendritic arborization, axonal maturation, and synaptic formation. MATERIALS AND METHODS Embryonic rat hippocampal neurons were incubated with C. asiatica leaf extract (CAE) or asiatic acid. After an indicated time, neurons were fixed and immunolabeled to visualize the neuronal morphology. Morphometric analyses for early neuronal differentiation, axonal and dendritic maturation and synaptogenesis were performed using Image J software. Neuronal viability was determined using trypan blue exclusion assay. RESULTS CAE at varying concentrations ranging from 3.75 to 15 μg/mL enhanced neurite outgrowth with the highest optimal concentration of 7.5 μg/mL. The effects of CAE commenced immediately after cell seeding, as indicated by its accelerating effect on neuronal differentiation. Subsequently, CAE significantly elaborated dendritic and axonal morphology and facilitated synapse formation. Asiatic acid also facilitated neurite outgrowth, but to a lesser extent than CAE. CONCLUSION These findings revealed that CAE exerted its modulatory effects in every stage of neuronal development, supporting its previously claimed neurotrophic function and suggest that this natural nootropic and its active component asiatic acid can be further investigated to explore a promising solution for degenerative brain disorders and injuries.
Collapse
Affiliation(s)
- Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Tania Afrin
- Interdisciplinary Institute for Food Security, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
43
|
Torbati FA, Ramezani M, Dehghan R, Amiri MS, Moghadam AT, Shakour N, Elyasi S, Sahebkar A, Emami SA. Ethnobotany, Phytochemistry and Pharmacological Features of Centella asiatica: A Comprehensive Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:451-499. [PMID: 33861456 DOI: 10.1007/978-3-030-64872-5_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Centella asiatica (CA) or Gotu cola is an herbal plant from the Apiaceae family with a long history of usage in different traditional medicines. It has long been used for the treatment of various ailments such as central nervous system (CNS), skin and gastrointestinal disorders especially in the Southeast Asia. This chapter focused on the phytochemical constituent and pharmacological activities of CA based on preclinical and clinical studies. Additionally, botanical description and distribution, traditional uses, interactions, and safety issues are reviewed. Electronic databases of Google Scholar, Scopus, PubMed, and Web of Science were searched to obtain relevant studies on the pharmacological activities of CA. Approximately, 124 chemical compounds including triterpenoids, polyphenolic compounds, and essential oils have been isolated and identified from CA. Ethnomedicinal applications of CA mostly include treatment of gastrointestinal diseases, wounds, nervous system disorders, circulatory diseases, skin problems, respiratory ailments, diabetes and sleep disorders in various ethnobotanical practices. Pharmacological studies revealed a wide range of beneficial effects of CA on CNS, cardiovascular, lung, liver, kidney, gastrointestinal, skin, and endocrine system. Among them, neuroprotective activity, wound healing and treatment of venous insufficiency, as well as antidiabetic activity seem to be more frequently reported. At the moment, considering various health benefits of CA, it is marketed as an oral supplement as well as a topical ingredient in some cosmetic products. Additional preclinical studies and particularly randomized controlled trials are needed to clarify the therapeutic roles of CA.
Collapse
Affiliation(s)
- Farshad Abedi Torbati
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Dehghan
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Tafazoli Moghadam
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Roe AL, Venkataraman A. The Safety and Efficacy of Botanicals with Nootropic Effects. Curr Neuropharmacol 2021; 19:1442-1467. [PMID: 34315377 PMCID: PMC8762178 DOI: 10.2174/1570159x19666210726150432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/23/2021] [Accepted: 07/17/2021] [Indexed: 11/22/2022] Open
Abstract
Recent estimates for the global brain health supplement category, i.e. nootropic market size, will grow to nearly $5.8 billion by 2023. Overall, nearly one-quarter (23%) of adults currently take a supplement to maintain or improve brain health or delay and reverse dementia. Not surprisingly, the use of such supplements increases with age - more than one-third of the oldest generation (ages 74 and older) takes a supplement for brain health. This widespread use is being driven by a strong desire both in the younger and older generations to enhance cognitive performance and achieve healthy aging. The most prevalent botanicals currently dominating the nootropic marketplace include Gingko biloba, American ginseng, and Bacopa monnieri. However, other botanicals that affect stress, focus, attention, and sleep have also been procured by dietary supplement companies developing products for improving both, short and long-term brain health. This review focuses on efficacy data for neuroactive botanicals targeted at improving cognitive function, stress reduction, memory, mood, attention, concentration, focus, and alertness, including Bacopa monnieri, Ginkgo biloba, Holy basil, American ginseng, Gotu kola, Lemon balm, Common and Spanish sages and spearmint. Botanicals are discussed in terms of available clinical efficacy data and current safety profiles. Data gaps are highlighted for both efficacy and safety to bring attention to unmet needs and future research.
Collapse
Affiliation(s)
- Amy L. Roe
- Personal Healthcare Division, The Procter & Gamble Company, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Arvind Venkataraman
- Personal Healthcare Division, The Procter & Gamble Company, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| |
Collapse
|
45
|
Tiwari AK, Tiwari BS. Cyanotherapeutics: an emerging field for future drug discovery. APPLIED PHYCOLOGY 2020; 1:44-57. [DOI: 10.1080/26388081.2020.1744480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/08/2020] [Indexed: 10/11/2024]
Affiliation(s)
- Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biological Sciences & Biotechnology, Institute of Advanced Research/IIAR, Gandhinagar, India
| | - Budhi Sagar Tiwari
- Plant Cell & Molecular Biology Laboratory Department of Biological Sciences & Biotechnology, Institute of Advanced Research/IIAR, Gandhinagar, India
| |
Collapse
|
46
|
Protein glycation and oxidation inhibitory activity of Centella asiatica phenolics (CAP) in glucose-mediated bovine serum albumin glycoxidation. Food Chem 2020; 332:127302. [DOI: 10.1016/j.foodchem.2020.127302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
47
|
Li JM, Zhao Y, Sun Y, Kong LD. Potential effect of herbal antidepressants on cognitive deficit: Pharmacological activity and possible molecular mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112830. [PMID: 32259666 DOI: 10.1016/j.jep.2020.112830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cognitive symptom is a "core" symptom of major depressive disorder (MDD) patients with clear deficit in memory, social and occupational function, and may persist during the remitting phase. Therefore, the remission of cognitive symptom has been considered as one of the main objectives in the treatment of MDD. Herbal antidepressants have been used to treat MDD, and there has been great advances in the understanding of the ability of these herbs to improve cognitive deficit linked to brain injury and various diseases including depression, Alzheimer disease, diabetes and age-related disorders. This systematic review summarizes the evidence from preclinical studies and clinical trials of herbal antidepressants with positive effects on cognitive deficit. The potential mechanisms by which herbal antidepressants prevent cognitive deficit are also reviewed. This review will facilitate further research and applications. MATERIALS AND METHODS We conducted an open-ended, English restricted search of MEDLINE (PubMed), Web of Science and Scopus for all available articles published or online before 31 December 2019, using terms pertaining to medical herb/phytomedicine/phytochemical/Chinese medicine and depression/major depressive disorder/antidepressant and/or cognitive impairment/cognitive deficit/cognitive dysfunction. RESULTS 7 prescriptions, more than 30 individual herbs and 50 phytochemicals from China, Japan, Korea and India with positive effects on the depressive state and cognitive deficit are reviewed herein. The evidence from preclinical studies and clinical trials proves that these herbal antidepressants exhibit positive effects on one or more aspects of cognitive defect including spatial, episodic, aversive, and short- and long-term memory. The action mode of the improvement of cognitive deficit by these herbal antidepressants is mediated mainly through two pathways. One pathway is to promote hippocampal neurogenesis through activating brain derived neurotrophic factor-tropomyosin-related kinase B signaling. The other pathway is to prevent neuronal apoptosis through the inhibition of neuro-inflammation and neuro-oxidation. CONCLUSION These herbal antidepressants, having potential therapy for cognitive deficit, may prevent pathological processes of neurodegenerative diseases. Furthermore, these herbal medicines should provide a treasure trove, which will accelerate the development of new antidepressants that can effectively improve cognitive symptom in MDD. Studies on their molecular mechanisms may provide more potential targets and therapeutic approaches for new drug discovery.
Collapse
Affiliation(s)
- Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
48
|
Multitarget Activities of Kleeb Bua Daeng, a Thai Traditional Herbal Formula, Against Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:ph13050079. [PMID: 32344916 PMCID: PMC7281753 DOI: 10.3390/ph13050079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
The Kleeb Bua Daeng formula (KBD) is a Thai traditional medicine for brain health promotion. On the basis of the activities of its individual components, the KBD could have good potential for the treatment of Alzheimer’s disease (AD). Herein, we investigated the KBD as an AD treatment. The ethanol extracts of KBD and its components, i.e., Nelumbo nucifera (NN), Piper nigrum fruits (BP), and the aerial part of Centella asiatica (CA) exhibited antioxidant activity, as determined by both ABTS and DPPH assays. The Ellman’s assay revealed that the KBD, NN, and BP showed an ability to inhibit acetylcholinesterase. The thioflavin T assay indicated that the KBD, NN, BP, and CA inhibited beta-amyloid aggregation. The neuroprotection and Western blot analysis revealed that the KBD reduced H2O2-induced neuronal cell death by inhibiting the expression of pro-apoptotic factors, i.e., cleaved caspase-9 and -3, p-P65, p-JNK, and p-GSK-3β, as well as by inducing expression of anti-apoptotic factors, i.e., MCl1, BClxl, and survivin. Furthermore, the KBD could improve scopolamine induced memory deficit in mice. Our results illustrate that the KBD with multimode action has the potential to be employed in AD treatment. Thus, the KBD could be used as an alternative novel choice for the prevention and treatment of patients with AD.
Collapse
|
49
|
Sbrini G, Brivio P, Fumagalli M, Giavarini F, Caruso D, Racagni G, Dell’Agli M, Sangiovanni E, Calabrese F. Centella asiatica L. Phytosome Improves Cognitive Performance by Promoting Bdnf Expression in Rat Prefrontal Cortex. Nutrients 2020; 12:nu12020355. [PMID: 32013132 PMCID: PMC7071263 DOI: 10.3390/nu12020355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 01/15/2023] Open
Abstract
A wide range of people in the world use natural remedies as primary approaches against illnesses. Accordingly, understanding the mechanisms of action of phytochemicals has become of great interest. In this context, Centella asiatica L. is extensively used, not only as anti-inflammatory or antioxidant agent but also as brain tonic. On this basis, the purpose of this study was to evaluate whether the chronic administration of C. asiatica L. to adult male rats was able to improve the expression of Bdnf, one of the main mediators of brain plasticity. Moreover, we assessed whether the treatment could affect the cognitive performance in the novel object recognition (NOR) test. We confirmed the presence of the main compounds in the plasma. Furthermore, C. asiatica L. administration induced an increase of Bdnf in the prefrontal cortex, and the administration of the higher dose of the extract was able to improve cognitive performance. Finally, the increase in the preference index in the NOR test was paralleled by a further increase in Bdnf expression. Overall, we highlight the ability of C. asiatica L. to affect brain functions by increasing Bdnf expression and by enhancing the cognitive performance.
Collapse
|
50
|
Mohammad Azmin SNH, Mat Nor MS. Chemical fingerprint of Centella Asiatica’s bioactive compounds in the ethanolic and aqueous extracts. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2020. [DOI: 10.1016/j.abst.2020.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|