1
|
Pauly R, Johnson L, Feltus FA, Casanova EL. Enrichment of a subset of Neanderthal polymorphisms in autistic probands and siblings. Mol Psychiatry 2024; 29:3452-3461. [PMID: 38760502 PMCID: PMC11541192 DOI: 10.1038/s41380-024-02593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Homo sapiens and Neanderthals underwent hybridization during the Middle/Upper Paleolithic age, culminating in retention of small amounts of Neanderthal-derived DNA in the modern human genome. In the current study, we address the potential roles Neanderthal single nucleotide polymorphisms (SNP) may be playing in autism susceptibility in samples of black non-Hispanic, white Hispanic, and white non-Hispanic people using data from the Simons Foundation Powering Autism Research (SPARK), Genotype-Tissue Expression (GTEx), and 1000 Genomes (1000G) databases. We have discovered that rare variants are significantly enriched in autistic probands compared to race-matched controls. In addition, we have identified 25 rare and common SNPs that are significantly enriched in autism on different ethnic backgrounds, some of which show significant clinical associations. We have also identified other SNPs that share more specific genotype-phenotype correlations but which are not necessarily enriched in autism and yet may nevertheless play roles in comorbid phenotype expression (e.g., intellectual disability, epilepsy, and language regression). These results strongly suggest Neanderthal-derived DNA is playing a significant role in autism susceptibility across major populations in the United States.
Collapse
Affiliation(s)
- Rini Pauly
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC, 29634, USA
| | - Layla Johnson
- Department of Psychology, Loyola University, New Orleans, New Orleans, LA, 70118, USA
| | - F Alex Feltus
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC, 29634, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Clemson, SC, 29634, USA
| | - Emily L Casanova
- Department of Psychology, Loyola University, New Orleans, New Orleans, LA, 70118, USA.
| |
Collapse
|
2
|
Mishima K, Obika S, Shimojo M. Splice-switching antisense oligonucleotide controlling tumor suppressor REST is a novel therapeutic medicine for neuroendocrine cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102250. [PMID: 39377066 PMCID: PMC11456559 DOI: 10.1016/j.omtn.2024.102250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/10/2024] [Indexed: 10/09/2024]
Abstract
RNA splicing regulation has revolutionized the treatment of challenging diseases. Neuroendocrine cancers, including small cell lung cancer (SCLC) and neuroendocrine prostate cancer (PCa), are highly aggressive, with metastatic neuroendocrine phenotypes, leading to poor patient outcomes. We investigated amido-bridged nucleic acid (AmNA)-based splice-switching oligonucleotides (SSOs) targeting RE1-silencing transcription factor (REST) splicing as a novel therapy. We designed AmNA-based SSOs to alter REST splicing. Tumor xenografts were generated by subcutaneously implanting SCLC or PCa cells into mice. SSOs or saline were intraperitoneally administered and tumor growth was monitored. Blood samples were collected from mice after SSO administration, and serum alanine aminotransferase and aspartate aminotransferase levels were measured to assess hepatotoxicity using a biochemical analyser. In vitro, REST_SSO reduced cancer cell viability. In a tumor xenograft model, it exhibited significant antitumor effects. It repressed REST-controlled RE1-harboring genes and upregulated miR-4516, an SCLC biomarker. Our findings suggest that REST_SSO suppresses tumorigenesis in neuroendocrine cancers by restoring REST function. This novel therapeutic approach holds promise for intractable neuroendocrine cancers such as SCLC and neuroendocrine PCa.
Collapse
Affiliation(s)
- Keishiro Mishima
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
- National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Masahito Shimojo
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
3
|
McKay L, Petrelli B, Pind M, Reynolds JN, Wintle RF, Chudley AE, Drögemöller B, Fainsod A, Scherer SW, Hanlon-Dearman A, Hicks GG. Risk and Resilience Variants in the Retinoic Acid Metabolic and Developmental Pathways Associated with Risk of FASD Outcomes. Biomolecules 2024; 14:569. [PMID: 38785976 PMCID: PMC11117505 DOI: 10.3390/biom14050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a common neurodevelopmental disorder that affects an estimated 2-5% of North Americans. FASD is induced by prenatal alcohol exposure (PAE) during pregnancy and while there is a clear genetic contribution, few genetic factors are currently identified or understood. In this study, using a candidate gene approach, we performed a genetic variant analysis of retinoic acid (RA) metabolic and developmental signaling pathway genes on whole exome sequencing data of 23 FASD-diagnosed individuals. We found risk and resilience alleles in ADH and ALDH genes known to normally be involved in alcohol detoxification at the expense of RA production, causing RA deficiency, following PAE. Risk and resilience variants were also identified in RA-regulated developmental pathway genes, especially in SHH and WNT pathways. Notably, we also identified significant variants in the causative genes of rare neurodevelopmental disorders sharing comorbidities with FASD, including STRA6 (Matthew-Wood), SOX9 (Campomelic Dysplasia), FDG1 (Aarskog), and 22q11.2 deletion syndrome (TBX1). Although this is a small exploratory study, the findings support PAE-induced RA deficiency as a major etiology underlying FASD and suggest risk and resilience variants may be suitable biomarkers to determine the risk of FASD outcomes following PAE.
Collapse
Affiliation(s)
- Leo McKay
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Berardino Petrelli
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Molly Pind
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - James N. Reynolds
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Richard F. Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Albert E. Chudley
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Britt Drögemöller
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12271, Jerusalem 9112102, Israel
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON M5G 1L7, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ana Hanlon-Dearman
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Geoffrey G. Hicks
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
4
|
Pal P, Roy S, Chowdhury A, Chatterjee R, Ray K, Ray J. Parkinson's disease-associated 18 bp promoter variant of DJ-1 alters REST binding and regulates its expression. Neurosci Lett 2023; 795:137051. [PMID: 36603736 DOI: 10.1016/j.neulet.2023.137051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/17/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with a complex etiology. Presence of autosomal mutations in PARK7/DJ-1 gene has been associated with early-onset PD. Growing evidence has suggested that DJ-1 acts as a putative sensor of oxidative stress. Reduced levels of DJ-1 protein have been reported in the cerebrospinal fluid of sporadic PD patients. Several case-control association studies have identified DJ-1 g.168_185del (rs200968609) variants conferring susceptibility towards PD pathogenesis. Similarly, among the PD patients in eastern India, the deletion allele (g.168_185) of this DJ-1 promoter polymorphism was found to be associated with PD. Hence, we aimed to find out the functional contribution of this promoter variant of DJ-1 in PD pathogenesis. The expression of DJ-1 was observed to be significantly reduced in the presence of both deletion and duplication sequences as identified from the luciferase promoter activity assay. The transcription factor binding prediction tool identified DJ-1 promoter 18 bp insertion polymorphism as the only binding partner of REST (RE1 Silencing Transcription Factor). Transient Chromatin Immuno-precipitation (ChIP) assay further confirmed this prediction. Previous reports have highlighted the role of REST in regulating the expression of stress-responsive genes. Our study has identified the functional involvement of DJ-1 promoter variants and REST-mediated regulation of DJ-1 expression in PD pathogenesis.
Collapse
Affiliation(s)
- Prosenjit Pal
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| | - Shubhrajit Roy
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Abhishek Chowdhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Molecular and Human Genetics Division, Kolkata, India
| | | | - Kunal Ray
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, India
| | - Jharna Ray
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| |
Collapse
|
5
|
Pajarillo E, Demayo M, Digman A, Nyarko-Danquah I, Son DS, Aschner M, Lee E. Deletion of RE1-silencing transcription factor in striatal astrocytes exacerbates manganese-induced neurotoxicity in mice. Glia 2022; 70:1886-1901. [PMID: 35638297 PMCID: PMC9378447 DOI: 10.1002/glia.24226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
Chronic manganese (Mn) overexposure causes a neurological disorder, referred to as manganism, exhibiting symptoms similar to parkinsonism. Dysfunction of the repressor element-1 silencing transcription factor (REST) is associated with various neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Mn-induced neurotoxicity, but its cellular and molecular mechanisms have yet to be fully characterized. Although neuronal REST is known to be neuroprotective, the role of astrocytic REST in neuroprotection remains to be established. We investigated if astrocytic REST in the striatal region of the mouse brain where Mn preferentially accumulates plays a role in Mn-induced neurotoxicity. Striatal astrocytic REST was deleted by infusion of adeno-associated viral vectors containing sequences of the glial fibrillary acidic protein promoter-driven Cre recombinase into the striatum of RESTflox/flox mice for 3 weeks, followed by Mn exposure (30 mg/kg, daily, intranasally) for another 3 weeks. Striatal astrocytic REST deletion exacerbated Mn-induced impairment of locomotor activity and cognitive function with further decrease in Mn-reduced protein levels of tyrosine hydroxylase and glutamate transporter 1 (GLT-1) in the striatum. Astrocytic REST deletion also exacerbated the Mn-induced proinflammatory mediator COX-2, as well as cytokines such as TNF-α, IL-1β, and IL-6, in the striatum. Mn-induced detrimental astrocytic products such as proinflammatory cytokines on neuronal toxicity were attenuated by astrocytic REST overexpression, but exacerbated by REST inhibition in an in vitro model using primary human astrocytes and Lund human mesencephalic (LUHMES) neuronal culture. These findings indicate that astrocytic REST plays a critical role against Mn-induced neurotoxicity by modulating astrocytic proinflammatory factors and GLT-1.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Mark Demayo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Alexis Digman
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Laboratory for Molecular Nutrition of the Institute for Personalized Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| |
Collapse
|
6
|
Wei M, Ni J, Shi J, Li T, Xu X, Li C, Qin B, Fan D, Xie H, Wang Z, Wang Y, Lu T, Tian J. Plasma repressor element 1-silencing transcription factor levels are decreased in patients with Alzheimer's disease. BMC Geriatr 2022; 22:471. [PMID: 35650520 PMCID: PMC9158200 DOI: 10.1186/s12877-022-03163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background Repressor element 1-silencing transcription (REST)/neuron-restrictive silencer factor is considered a new therapeutic target for neurodegenerative disorders such as Alzheimer’s disease (AD). However, the relationship between AD and REST remains unclear. This study aimed to 1) examine plasma REST levels and REST gene levels in AD patients and 2) further explore the pathological relationships between REST protein levels and cognitive decline in clinical conditions, including medial temporal lobe atrophy. Methods Participants (n = 252, mean age 68.95 ± 8.78 years) were recruited in Beijing, China, and then divided into a normal cognition (NC) group (n = 89), an amnestic mild cognitive impairment (aMCI) group (n = 79), and an AD dementia group (n = 84) according to diagnostic criteria. All participants underwent neuropsychological assessments, laboratory tests, and neuroimaging scans (magnetic resonance imaging) at baseline. Plasma REST protein levels and the distribution of REST single nucleotide polymorphisms (SNPs) were compared among the three groups. Correlations between cognitive function, neuro-imaging results, and REST levels were determined by a multivariate linear regression analysis. Results The plasma REST levels in both the NC group (430.30 ± 303.43)pg/ml and aMCI group (414.27 ± 263.39)pg/ml were significantly higher than that in the AD dementia group (NC vs AD dementia group, p = 0.034; aMCI vs AD dementia group, p = 0.033). There was no significant difference between the NC and aMCI groups (p = 0.948). No significant difference was found among the three groups regarding the genotype distribution (rs2227902 and rs3976529 SNPs) of the REST gene. The REST level was correlated with the left medial temporal lobe atrophy index (r = 0.306, p = 0.023). After 6 months of follow-up, the REST level in the NC group was positively correlated with the change in the Mini-Mental State Examination score (r = 0.289, p = 0.02). Conclusion The plasma REST protein level is decreased in AD dementia patients, which is associated with memory impairment and left temporal lobe atrophy and may have potential value for clinical diagnosis of AD dementia.
Collapse
|
7
|
Swaminathan J, Maegawa S, Shaik S, Sharma A, Bravo-Alegria J, Guo L, Xu L, Harmanci A, Gopalakrishnan V. Cross-Talk Between Histone Methyltransferases and Demethylases Regulate REST Transcription During Neurogenesis. Front Oncol 2022; 12:855167. [PMID: 35600406 PMCID: PMC9120943 DOI: 10.3389/fonc.2022.855167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
The RE1 Silencing Transcription Factor (REST) is a major regulator of neurogenesis and brain development. Medulloblastoma (MB) is a pediatric brain cancer characterized by a blockade of neuronal specification. REST gene expression is aberrantly elevated in a subset of MBs that are driven by constitutive activation of sonic hedgehog (SHH) signaling in cerebellar granular progenitor cells (CGNPs), the cells of origin of this subgroup of tumors. To understand its transcriptional deregulation in MBs, we first studied control of Rest gene expression during neuronal differentiation of normal mouse CGNPs. Higher Rest expression was observed in proliferating CGNPs compared to differentiating neurons. Interestingly, two Rest isoforms were expressed in CGNPs, of which only one showed a significant reduction in expression during neurogenesis. In proliferating CGNPs, higher MLL4 and KDM7A activities opposed by the repressive polycomb repressive complex 2 (PRC2) and the G9A/G9A-like protein (GLP) complex function allowed Rest homeostasis. During differentiation, reduction in MLL4 enrichment on chromatin, in conjunction with an increase in PRC2/G9A/GLP/KDM7A activities promoted a decline in Rest expression. These findings suggest a lineage-context specific paradoxical role for KDM7A in the regulation of Rest expression in CGNPs. In human SHH-MBs (SHH-α and SHH-β) where elevated REST gene expression is associated with poor prognosis, up- or downregulation of KDM7A caused a significant worsening in patient survival. Our studies are the first to implicate KDM7A in REST regulation and in MB biology.
Collapse
Affiliation(s)
- Jyothishmathi Swaminathan
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Shinji Maegawa
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Shavali Shaik
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Ajay Sharma
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Javiera Bravo-Alegria
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Lei Guo
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Arif Harmanci
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, United States
| | - Vidya Gopalakrishnan
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
- Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
- Brain Tumor Center - University of Texas, MD Anderson Cancer Center, Houston, TX, United States
- Center for Cancer Epigenetics - University of Texas, MD Anderson Cancer Center, Houston, TX, United States
- MD Anderson-UTHealth Science Center Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
8
|
The potential roles of excitatory-inhibitory imbalances and the repressor element-1 silencing transcription factor in aging and aging-associated diseases. Mol Cell Neurosci 2021; 117:103683. [PMID: 34775008 DOI: 10.1016/j.mcn.2021.103683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/28/2022] Open
Abstract
Disruptions to the central excitatory-inhibitory (E/I) balance are thought to be related to aging and underlie a host of neural pathologies, including Alzheimer's disease. Aging may induce an increase in excitatory signaling, causing an E/I imbalance, which has been linked to shorter lifespans in mice, flies, and worms. In humans, extended longevity correlates to greater repression of genes involved in excitatory neurotransmission. The repressor element-1 silencing transcription factor (REST) is a master regulator in neural cells and is believed to be upregulated with senescent stimuli, whereupon it counters hyperexcitability, insulin/insulin-like signaling pathway activity, oxidative stress, and neurodegeneration. This review examines the putative mechanisms that distort the E/I balance with aging and neurodegeneration, and the putative roles of REST in maintaining neuronal homeostasis.
Collapse
|
9
|
Kimura R, U Inoue Y, Kikkawa T, Tatehana M, Morimoto Y, Inada H, Oki S, Inoue T, Osumi N. Detection of REST expression in the testis using epitope-tag knock-in mice generated by genome editing. Dev Dyn 2021; 251:525-535. [PMID: 34542211 DOI: 10.1002/dvdy.417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Repressor element 1-silencing transcription factor (REST) is a master regulator that is highly expressed in multipotent stem cells to repress gene networks involving a wide range of biological processes. A recent study has suggested that REST might be involved in a misregulation of its target genes in the embryonic brain of offspring derived from aged fathers. However, detailed analyses of the REST function in spermatogenesis are lacking due to difficulty in the detection of REST protein in specific cell types. RESULTS To determine localization of REST, we generated an epitope tag knock-in (KI) mouse line with the C-terminus insertion of a podoplanin (PA)-tag at an endogenous Rest locus by the CRISPR/Cas9 system. Localization of the PA-tag was confirmed in neural stem cells marked with Pax6 in the embryonic brain. Moreover, PA-tagged REST was detected in undifferentiated and differentiating spermatogonia as well as Sertoli cells in both neonatal and adult testes. CONCLUSIONS We demonstrate that REST is expressed at the early step of spermatogenesis and suggest a possibility that REST may modulate the epigenetic state of male germline cells. Our KI mice may be useful for studying REST-associated molecular mechanisms of neurodevelopmental and age-related disorders.
Collapse
Affiliation(s)
- Ryuichi Kimura
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Misako Tatehana
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Morimoto
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Laboratory of Health and Sports Sciences, Division of Biomedical Engineering for Health and Welfare Tohoku University Graduate School of Biomedical Engineering, Sendai, Miyagi, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
10
|
The Genome-Wide Binding Profile for Human RE1 Silencing Transcription Factor Unveils a Unique Genetic Circuitry in Hippocampus. J Neurosci 2021; 41:6582-6595. [PMID: 34210779 DOI: 10.1523/jneurosci.2059-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/12/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Early studies in mouse neurodevelopment led to the discovery of the RE1 Silencing Transcription Factor (REST) and its role as a master repressor of neuronal gene expression. Recently, REST was reported to also repress neuronal genes in the human adult brain. These genes were found to be involved in pro-apoptotic pathways; and their repression, associated with increased REST levels during aging, were found to be neuroprotective and conserved across species. However, direct genome-wide REST binding profiles for REST in adult brain have not been identified for any species. Here, we apply this approach to mouse and human hippocampus. We find an expansion of REST binding sites in the human hippocampus that are lacking in both mouse hippocampus and other human non-neuronal cell types. The unique human REST binding sites are associated with genes involved in innate immunity processes and inflammation signaling which, on the basis of histology and recent public transcriptomic analyses, suggest that these new target genes are repressed in glia. We propose that the increases in REST expression in mid-adulthood presage the beginning of brain aging, and that human REST function has evolved to protect the longevity and function of both neurons and glia in human brain.SIGNIFICANCE STATEMENT The RE1 Silencing Transcription Factor (REST) repressor has served historically as a model for gene regulation during mouse neurogenesis. Recent studies of REST have also suggested a conserved role for REST repressor function across lower species during aging. However, direct genome-wide studies for REST have been lacking for human brain. Here, we perform the first genome-wide analysis of REST binding in both human and mouse hippocampus. The majority of REST-occupied genes in human hippocampus are distinct from those in mouse. Further, the REST-associated genes unique to human hippocampus represent a new set related to innate immunity and inflammation, where their gene dysregulation has been implicated in aging-related neuropathology, such as Alzheimer's disease.
Collapse
|
11
|
Mohammadnejad A, Li W, Lund JB, Li S, Larsen MJ, Mengel-From J, Michel TM, Christiansen L, Christensen K, Hjelmborg J, Baumbach J, Tan Q. Global Gene Expression Profiling and Transcription Factor Network Analysis of Cognitive Aging in Monozygotic Twins. Front Genet 2021; 12:675587. [PMID: 34194475 PMCID: PMC8236849 DOI: 10.3389/fgene.2021.675587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Cognitive aging is one of the major problems worldwide, especially as people get older. This study aimed to perform global gene expression profiling of cognitive function to identify associated genes and pathways and a novel transcriptional regulatory network analysis to identify important regulons. We performed single transcript analysis on 400 monozygotic twins using an assumption-free generalized correlation coefficient (GCC), linear mixed-effect model (LME) and kinship model and identified six probes (one significant at the standard FDR < 0.05 while the other results were suggestive with 0.18 ≤ FDR ≤ 0.28). We combined the GCC and linear model results to cover diverse patterns of relationships, and meaningful and novel genes like APOBEC3G, H6PD, SLC45A1, GRIN3B, and PDE4D were detected. Our exploratory study showed the downregulation of all these genes with increasing cognitive function or vice versa except the SLC45A1 gene, which was upregulated with increasing cognitive function. Linear models found only H6PD and SLC45A1, the other genes were captured by GCC. Significant functional pathways (FDR < 3.95e-10) such as focal adhesion, ribosome, cysteine and methionine metabolism, Huntington's disease, eukaryotic translation elongation, nervous system development, influenza infection, metabolism of RNA, and cell cycle were identified. A total of five regulons (FDR< 1.3e-4) were enriched in a transcriptional regulatory analysis in which CTCF and REST were activated and SP3, SRF, and XBP1 were repressed regulons. The genome-wide transcription analysis using both assumption-free GCC and linear models identified important genes and biological pathways implicated in cognitive performance, cognitive aging, and neurological diseases. Also, the regulatory network analysis revealed significant activated and repressed regulons on cognitive function.
Collapse
Affiliation(s)
- Afsaneh Mohammadnejad
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Weilong Li
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - Jesper Beltoft Lund
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Digital Health & Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany
| | - Shuxia Li
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Martin J Larsen
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Tanja Maria Michel
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark.,Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lene Christiansen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jacob Hjelmborg
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Computational Biomedicine, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Qihua Tan
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Wang YC, Liu P, Yue LY, Huang F, Xu YX, Zhu CQ. NRSF deficiency leads to abnormal postnatal development of dentate gyrus and impairment of progenitors in subgranular zone of hippocampus. Hippocampus 2021; 31:935-956. [PMID: 33960056 DOI: 10.1002/hipo.23336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 02/05/2023]
Abstract
Neuron-restrictive silencing factor (NRSF) is a zinc-finger transcription factor that regulates expression of a diverse set of genes. However, NRSF function in brain development still remains elusive. In the present study, we generated NRSF-conditional knockout (NRSF-cKO) mice by hGFAP-Cre/loxp system to study the effect of NRSF deficiency on brain development. Results showed that NRSF conditional knockout caused a smaller hippocampus and a thinner granule cell layer (GCL) in mice. Moreover, the reduction and disarrangement of GFAP+ cells in subgranular zone (SGZ) of NRSF-cKO mice was accompanied with the decreased number of premature neurons, neural stem cells (NSCs) and neural progenitor cells (NPCs), as well as compromising the majority of mitotically active cells. The analysis of postnatal development of hippocampus indicated the existence of an abnormality at postnatal day (P) 8, rather than at P1, in NRSF-cKO mice, although the densities of Ki67+ cells with mitotic ability in dentate gyrus were relatively unaffected at P1 and P8. Meanwhile, NRSF deficiency led to abnormal organization of SGZ at P8 during postnatal development. RNA-Seq analysis revealed 79 deregulated genes in hippocampus of NRSF-cKO mice at P8, which were involved in p53 signal transduction, neuron migration and negative regulation of cell proliferation, etc. The deregulation of p53 pathway in NRSF-cKO mice at P1 and P8 was evidenced, of which p21/Cdkn1a was accumulated in a portion of NSCs and NPCs in hippocampus during postnatal development. Together, these results, for the first time, revealed that NRSF could significantly influence the postnatal development of hippocampus, especially the formation of SGZ.
Collapse
Affiliation(s)
- Yan-Cong Wang
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Pu Liu
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ling-Yun Yue
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Xia Xu
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Cui-Qing Zhu
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Changeux JP, Goulas A, Hilgetag CC. A Connectomic Hypothesis for the Hominization of the Brain. Cereb Cortex 2021; 31:2425-2449. [PMID: 33367521 PMCID: PMC8023825 DOI: 10.1093/cercor/bhaa365] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cognitive abilities of the human brain, including language, have expanded dramatically in the course of our recent evolution from nonhuman primates, despite only minor apparent changes at the gene level. The hypothesis we propose for this paradox relies upon fundamental features of human brain connectivity, which contribute to a characteristic anatomical, functional, and computational neural phenotype, offering a parsimonious framework for connectomic changes taking place upon the human-specific evolution of the genome. Many human connectomic features might be accounted for by substantially increased brain size within the global neural architecture of the primate brain, resulting in a larger number of neurons and areas and the sparsification, increased modularity, and laminar differentiation of cortical connections. The combination of these features with the developmental expansion of upper cortical layers, prolonged postnatal brain development, and multiplied nongenetic interactions with the physical, social, and cultural environment gives rise to categorically human-specific cognitive abilities including the recursivity of language. Thus, a small set of genetic regulatory events affecting quantitative gene expression may plausibly account for the origins of human brain connectivity and cognition.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, 75724 Paris, France
- Communications Cellulaires, Collège de France, 75005 Paris, France
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, 20246 Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, 20246 Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
14
|
Ho NTT, Rahane CS, Pramanik S, Kim PS, Kutzner A, Heese K. FAM72, Glioblastoma Multiforme (GBM) and Beyond. Cancers (Basel) 2021; 13:cancers13051025. [PMID: 33804473 PMCID: PMC7957592 DOI: 10.3390/cancers13051025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is a serious and aggressive cancer disease that has not allowed scientists to rest for decades. In this review, we consider the new gene pair |-SRGAP2–FAM72-| and discuss its role in the cell cycle and the possibility of defining new therapeutic approaches for the treatment of GBM and other cancers via this gene pair |-SRGAP2–FAM72-|. Abstract Neural stem cells (NSCs) offer great potential for regenerative medicine due to their excellent ability to differentiate into various specialized cell types of the brain. In the central nervous system (CNS), NSC renewal and differentiation are under strict control by the regulation of the pivotal SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2)—Family with sequence similarity 72 (FAM72) master gene (i.e., |-SRGAP2–FAM72-|) via a divergent gene transcription activation mechanism. If the gene transcription control unit (i.e., the intergenic region of the two sub-gene units, SRGAP2 and FAM72) gets out of control, NSCs may transform into cancer stem cells and generate brain tumor cells responsible for brain cancer such as glioblastoma multiforme (GBM). Here, we discuss the surveillance of this |-SRGAP2–FAM72-| master gene and its role in GBM, and also in light of FAM72 for diagnosing various types of cancers outside of the CNS.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Ho
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
| | - Chinmay Satish Rahane
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Maharashtra 410507, India;
| | - Subrata Pramanik
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany;
| | - Pok-Son Kim
- Department of Mathematics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Korea;
| | - Arne Kutzner
- Department of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
- Correspondence:
| |
Collapse
|
15
|
Bliźniewska-Kowalska K, Gałecki P, Szemraj J, Talarowska M. Expression of Selected Genes Involved in Neurogenesis in the Etiopathogenesis of Depressive Disorders. J Pers Med 2021; 11:jpm11030168. [PMID: 33804468 PMCID: PMC7998568 DOI: 10.3390/jpm11030168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/30/2021] [Accepted: 02/23/2021] [Indexed: 11/27/2022] Open
Abstract
(1) Background: The neurogenic theory suggests that impaired neurogenesis within the dentate gyrus of the hippocampus is one of the factors causing depression. Immunology also has an impact on neurotrophic factors. The aim of the study was to assess the importance of selected genes involved in the process of neurogenesis i.e., nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF) and neuron-restrictive silencer factor (REST gene) in the etiopathogenesis of depressive disorders. (2) Methods: A total of 189 subjects took part in the study (95 depressed patients, 94 healthy controls). Sociodemographic data were collected. The severity of depressive symptoms was assessed using the Hamilton Depression Rating Scale (HDRS). RT-PCR was used to assess gene expression at the mRNA levels, while Enzyme-Linked Immunosorbent Assay (ELISA) was used to assess gene expression at the protein level. (3) Results: Expression of NGF, BDNF, REST genes is lower in depressed patients than in the control group, whereas the expression of GDNF gene is higher in patients with depressive disorders than in the group of healthy volunteers. (4) Conclusions: The expression of selected genes might serve as a biomarker of depression.
Collapse
Affiliation(s)
- Katarzyna Bliźniewska-Kowalska
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
- Correspondence: ; Tel.: +48-608-203-624
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Monika Talarowska
- Department of Clinical Psychology, Institute of Psychology University of Lodz, 91-433 Lodz, Poland;
| |
Collapse
|
16
|
Yu T, Quan H, Xu Y, Dou Y, Wang F, Lin Y, Qi X, Zhao Y, Liu X. A β-Induced Repressor Element 1-Silencing Transcription Factor (REST) Gene Delivery Suppresses Activation of Microglia-Like BV-2 Cells. Neural Plast 2020; 2020:8888871. [PMID: 33029126 PMCID: PMC7528025 DOI: 10.1155/2020/8888871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
Compelling evidence from basic molecular biology has demonstrated the crucial role of microglia in the pathogenesis of Alzheimer's disease (AD). Microglia were believed to play a dual role in both promoting and inhibiting Alzheimer's disease progression. It is of great significance to regulate the function of microglia and make them develop in a favorable way. In the present study, we investigated the function of repressor element 1-silencing transcription factor (REST) in Aβ 1-42-induced BV-2 cell dysfunction. We concluded that Aβ 1-42 could promote type I activation of BV-2 cells and induce cell proliferation, migration, and proinflammation cytokine TNF-α, IL-1β, and IL-6 expression. Meanwhile, REST was upregulated, and nuclear translocalization took place due to Aβ 1-42 stimulation. When REST was knocked down by a specific short hairpin RNA (sh-RNA), BV-2 cell proliferation, migration, and proinflammation cytokine expression and secretion induced by Aβ 1-42 were increased, demonstrating that REST may act as a repressor of microglia-like BV-2 cell activation.
Collapse
Affiliation(s)
- Tongya Yu
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Hui Quan
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yuzhen Xu
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yunxiao Dou
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Feihong Wang
- Shanghai Tenth People's Hospital of Tongji University, Nanjing Medical University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yingying Lin
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Xue Qi
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yanxin Zhao
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Xueyuan Liu
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| |
Collapse
|
17
|
Martinez ME, Duarte CW, Stohn JP, Karaczyn A, Wu Z, DeMambro VE, Hernandez A. Thyroid hormone influences brain gene expression programs and behaviors in later generations by altering germ line epigenetic information. Mol Psychiatry 2020; 25:939-950. [PMID: 30356120 PMCID: PMC6482106 DOI: 10.1038/s41380-018-0281-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/16/2018] [Accepted: 09/26/2018] [Indexed: 11/09/2022]
Abstract
Genetic factors do not fully account for the relatively high heritability of neurodevelopmental conditions, suggesting that non-genetic heritable factors contribute to their etiology. To evaluate the potential contribution of aberrant thyroid hormone status to the epigenetic inheritance of neurological phenotypes, we examined genetically normal F2 generation descendants of mice that were developmentally overexposed to thyroid hormone due to a Dio3 mutation. Hypothalamic gene expression profiling in postnatal day 15 F2 descendants on the paternal lineage of ancestral male and female T3-overexposed mice revealed, respectively, 1089 and 1549 differentially expressed genes. A large number of them, 675 genes, were common to both sets, suggesting comparable epigenetic effects of thyroid hormone on both the male and female ancestral germ lines. Oligodendrocyte- and neuron-specific genes were strongly overrepresented among genes showing, respectively, increased and decreased expression. Altered gene expression extended to other brain regions and was associated in adulthood with decreased anxiety-like behavior, increased marble burying and reduced physical activity. The sperm of T3-overexposed male ancestors revealed significant hypomethylation of CpG islands associated with the promoters of genes involved in the early development of the central nervous system. Some of them were candidates for neurodevelopmental disorders in humans including Nrg3, Nrxn1, Gabrb3, Gabra5, Apba2, Grik3, Reln, Nsd1, Pcdh8, En1, and Elavl2. Thus, developmental levels of thyroid hormone influence the epigenetic information of the germ line, disproportionately affecting genes with critical roles in early brain development, and leading in future generations to disease-relevant alterations in postnatal brain gene expression and adult behavior.
Collapse
Affiliation(s)
- M. Elena Martinez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| | - Christine W. Duarte
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA,Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - J. Patrizia Stohn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| | - Aldona Karaczyn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| | - Zhaofei Wu
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| | - Victoria E DeMambro
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| | - Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA. .,Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA. .,Department of Medicine, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
18
|
Taguchi YH, Turki T. Tensor Decomposition-Based Unsupervised Feature Extraction Applied to Single-Cell Gene Expression Analysis. Front Genet 2019; 10:864. [PMID: 31608111 PMCID: PMC6761323 DOI: 10.3389/fgene.2019.00864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Although single-cell RNA sequencing (scRNA-seq) technology is newly invented and a promising one, but because of lack of enough information that labels individual cells, it is hard to interpret the obtained gene expression of each cell. Because of insufficient information available, unsupervised clustering, for example, t-distributed stochastic neighbor embedding and uniform manifold approximation and projection, is usually employed to obtain low-dimensional embedding that can help to understand cell-cell relationship. One possible drawback of this strategy is that the outcome is highly dependent upon genes selected for the usage of clustering. In order to fulfill this requirement, there are many methods that performed unsupervised gene selection. In this study, a tensor decomposition (TD)-based unsupervised feature extraction (FE) was applied to the integration of two scRNA-seq expression profiles that measure human and mouse midbrain development. TD-based unsupervised FE could select not only coincident genes between human and mouse but also biologically reliable genes. Coincidence between two species as well as biological reliability of selected genes is increased compared with that using principal component analysis (PCA)-based FE applied to the same data set in the previous study. Since PCA-based unsupervised FE outperformed the other three popular unsupervised gene selection methods, highly variable genes, bimodal genes, and dpFeature, TD-based unsupervised FE can do so as well. In addition to this, 10 transcription factors (TFs) that might regulate selected genes and might contribute to midbrain development were identified. These 10 TFs, BHLHE40, EGR1, GABPA, IRF3, PPARG, REST, RFX5, STAT3, TCF7L2, and ZBTB33, were previously reported to be related to brain functions and diseases. TD-based unsupervised FE is a promising method to integrate two scRNA-seq profiles effectively.
Collapse
Affiliation(s)
- Y-h. Taguchi
- Department of Physics, Chuo University, Tokyo, Japan
| | - Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Mavrikaki M, Anastasiadou E, Ozdemir RA, Potter D, Helmholz C, Slack FJ, Chartoff EH. Overexpression of miR-9 in the Nucleus Accumbens Increases Oxycodone Self-Administration. Int J Neuropsychopharmacol 2019; 22:383-393. [PMID: 30989210 PMCID: PMC6545539 DOI: 10.1093/ijnp/pyz015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/11/2019] [Accepted: 04/12/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND There is an urgent need to identify factors that increase vulnerability to opioid addiction to help stem the opioid epidemic and develop more efficient pharmacotherapeutics. MicroRNAs are small non-coding RNAs that regulate gene expression at a posttranscriptional level and have been implicated in chronic drug-taking in humans and in rodent models. Recent evidence has shown that chronic opioid treatment regulates the microRNA miR-9. The present study was designed to test the hypothesis that miR-9 in the nucleus accumbens potentiates oxycodone addictive-like behavior. METHODS We utilized adeno-associated virus (AAV) to overexpress miR-9 in the nucleus accumbens of male rats and tested the effects on intravenous self-administration of the highly abused prescription opioid, oxycodone, in 1-hour short-access followed by 6-h long-access sessions, the latter of which leads to escalation of drug intake. In separate rats, we assessed the effects of nucleus accumbens miR-9 overexpression on mRNA targets including RE1-silencing transcription factor (REST) and dopamine D2 receptor (DRD2), which have been shown to be regulated by drugs of abuse. RESULTS Overexpression of miR-9 in the nucleus accumbens significantly increased oxycodone self-administration compared with rats expressing a control, scrambled microRNA. Analysis of the pattern of oxycodone intake revealed that miR-9 overexpression increased "burst" episodes of intake and decreased the inter-infusion interval. Furthermore, miR-9 overexpression decreased the expression of REST and increased DRD2 in the nucleus accumbens at time points that coincided with behavioral effects. CONCLUSIONS These results suggest that nucleus accumbens miR-9 regulates oxycodone addictive-like behavior as well as the expression of genes that are involved in drug addiction.
Collapse
Affiliation(s)
- Maria Mavrikaki
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Eleni Anastasiadou
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Recep A Ozdemir
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - David Potter
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Carolin Helmholz
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Frank J Slack
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts,Correspondence: Elena H. Chartoff, PhD, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, MA ()
| |
Collapse
|
20
|
Behura SK, Kelleher AM, Spencer TE. Evidence for functional interactions between the placenta and brain in pregnant mice. FASEB J 2019; 33:4261-4272. [PMID: 30521381 PMCID: PMC6404589 DOI: 10.1096/fj.201802037r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
The placenta plays a pivotal role in the development of the fetal brain and also influences maternal brain function, but our understanding of communication between the placenta and brain remains limited. Using a gene expression and network analysis approach, we provide evidence that the placenta transcriptome is tightly interconnected with the maternal brain and fetal brain in d 15 pregnant C57BL/6J mice. Activation of serotonergic synapse signaling and inhibition of neurotrophin signaling were identified as potential mediators of crosstalk between the placenta and maternal brain and fetal brain, respectively. Genes encoding specific receptors and ligands were predicted to affect functional interactions between the placenta and brain. Paralogous genes, such as sex comb on midleg homolog 1/scm-like with 4 mbt domains 2 and polycomb group ring finger (Pcgf) 2/ Pcgf5, displayed antagonistic regulation between the placenta and brain. Additionally, conditional ablation of forkhead box a2 ( Foxa2) in the glands of the uterus altered the transcriptome of the d 15 placenta, which provides novel evidence of crosstalk between the uterine glands and placenta. Furthermore, expression of cathepsin 6 and monocyte to macrophage differentiation associated 2 was significantly different in the fetal brain of Foxa2 conditional knockout mice compared with control mice. These findings provide a better understanding of the intricacies of uterus-placenta-brain interactions during pregnancy and provide a foundation and model system for their exploration.-Behura, S. K., Kelleher, A. M., Spencer, T. E. Evidence for functional interactions between the placenta and brain in pregnant mice.
Collapse
Affiliation(s)
- Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA; and
| | - Andrew M. Kelleher
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
21
|
Abstract
During the course of evolution the human brain has increased in size and complexity, ultimately these differences are the result of changes at the genetic level. Identifying and characterizing molecular evolution requires an understanding of both the genetic underpinning of the system as well as the comparative genetic tools to identify signatures of selection. This chapter aims to describe our current understanding of the genetics of human brain evolution. Primarily this is the story of the evolution of the human brain since our last common ape ancestor, but where relevant we will also discuss changes that are unique to the primate brain (compared to other mammals) or various other lineages in the evolution of humans more generally. It will focus on genetic changes that both directly affected the development and function of the brain as well as those that have indirectly influenced brain evolution through both prenatal and postnatal environment. This review is not meant to be exhaustive, but rather to begin to construct a general framework for understanding the full array of data being generated.
Collapse
Affiliation(s)
- Eric J Vallender
- University of Mississippi Medical Center, Jackson, MS, United States; Tulane National Primate Research Center, Covington, LA, United States.
| |
Collapse
|
22
|
Alvelos MI, Juan-Mateu J, Colli ML, Turatsinze JV, Eizirik DL. When one becomes many-Alternative splicing in β-cell function and failure. Diabetes Obes Metab 2018; 20 Suppl 2:77-87. [PMID: 30230174 PMCID: PMC6148369 DOI: 10.1111/dom.13388] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cell dysfunction and death are determinant events in type 1 diabetes (T1D), but the molecular mechanisms behind β-cell fate remain poorly understood. Alternative splicing is a post-transcriptional mechanism by which a single gene generates different mRNA and protein isoforms, expanding the transcriptome complexity and enhancing protein diversity. Neuron-specific and certain serine/arginine-rich RNA binding proteins (RBP) are enriched in β-cells, playing crucial roles in the regulation of insulin secretion and β-cell survival. Moreover, alternative exon networks, regulated by inflammation or diabetes susceptibility genes, control key pathways and processes for the correct function and survival of β-cells. The challenge ahead of us is to understand the precise role of alternative splicing regulators and splice variants on β-cell function, dysfunction and death and develop tools to modulate it.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Jonàs Juan-Mateu
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Maikel Luis Colli
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Jean-Valéry Turatsinze
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Décio L. Eizirik
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| |
Collapse
|