1
|
Wan X, Gong R, Zhao X, Li Y, Shan T, Zhong C, Zhu R, Chen Z, Jiang S, He L, Cao S, Tian S, Yang J, Ye N, Yi W, Cheng Y. Identification of a Novel Substrate for eEF2K and the AURKA-SOX8 as the Related Pathway in TNBC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412985. [PMID: 39950798 PMCID: PMC11984844 DOI: 10.1002/advs.202412985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/27/2024] [Indexed: 04/12/2025]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) has been considered as a putative target for cancer therapy; however, the underlying mechanisms of eEF2K in triple-negative breast cancer (TNBC) progression remain to be fully elucidated. In this study, it is shown that eEF2K is highly expressed in TNBC and is associated with poor prognosis. In vitro, in vivo, and patient-derived organoid experiments demonstrate that knockdown of eEF2K significantly impedes progression of TNBC. Proteomic analysis and confirmation experiments reveal that eEF2K positively regulates the mRNA and protein expressions of sex-determining region Y-box 8 (SOX8). Mechanistically, eEF2K binds to and phosphorylates aurora kinase A (AURKA) at S391, a newly identified phosphorylation site critical for maintaining AURKA protein stability and kinase activity. Moreover, the compound C1, a molecular glue to degrade eEF2K, is optimized by designing and synthesizing its derivatives using reasonable structure-based optimization approach. The new compound C4 shows better ability to degrade eEF2K and stronger anti-cancer activity than C1. These findings not only uncover the pivotal role of the eEF2K/AURKA/SOX8 axis in TNBC progression, but also provide a promising lead compound for developing novel drug for treatment of TNBC.
Collapse
Affiliation(s)
- Xiaoya Wan
- Department of PharmacyThe Second Xiangya HospitalCentral South UniversityChangsha410011China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative DrugChangsha410011China
| | - Rong Gong
- Department of PharmacyThe Second Xiangya HospitalCentral South UniversityChangsha410011China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative DrugChangsha410011China
| | - Xiaobao Zhao
- Department of Medicinal ChemistryJiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhou215123China
| | - Yizhi Li
- Department of PharmacyThe Second Xiangya HospitalCentral South UniversityChangsha410011China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative DrugChangsha410011China
| | - Tianjiao Shan
- Department of PharmacyThe Second Xiangya HospitalCentral South UniversityChangsha410011China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative DrugChangsha410011China
| | - Changxin Zhong
- Department of PharmacyThe Second Xiangya HospitalCentral South UniversityChangsha410011China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative DrugChangsha410011China
| | - Rongfeng Zhu
- Department of Medicinal ChemistryJiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhou215123China
| | - Zonglin Chen
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Shilong Jiang
- Department of PharmacyXiangya HospitalCentral South UniversityChangsha410028China
| | - Linhao He
- Department of PharmacyThe Second Xiangya HospitalCentral South UniversityChangsha410011China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative DrugChangsha410011China
| | - Shijun Cao
- Department of PharmacyThe Second Xiangya HospitalCentral South UniversityChangsha410011China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative DrugChangsha410011China
| | - Sheng Tian
- Department of Medicinal ChemistryJiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhou215123China
| | - Jinming Yang
- Department of Cancer Biology and ToxicologyDepartment of PharmacologyCollege of Medicine and Markey Cancer CenterUniversity of KentuckyLexingtonKY40536USA
| | - Na Ye
- Department of Medicinal ChemistryJiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhou215123China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics DevelopmentSoochow UniversitySuzhou215123China
| | - Wenjun Yi
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangsha410011China
- Clinical Research Center For Breast Disease In Hunan ProvinceChangsha410011China
| | - Yan Cheng
- Department of PharmacyThe Second Xiangya HospitalCentral South UniversityChangsha410011China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative DrugChangsha410011China
- FuRong LaboratoryChangshaHunan410078China
- Key Laboratory of Diabetes ImmunologyCentral South UniversityMinistry of EducationChangsha410011China
- NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer DrugsXiangya HospitalCentral South UniversityChangsha410008China
| |
Collapse
|
2
|
Rodríguez-Campuzano AG, Castelán F, Hernández-Kelly LC, Felder-Schmittbuhl MP, Ortega A. Yin Yang 1: Function, Mechanisms, and Glia. Neurochem Res 2025; 50:96. [PMID: 39904836 PMCID: PMC11794380 DOI: 10.1007/s11064-025-04345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Yin Yang 1 is a ubiquitously expressed transcription factor that has been extensively studied given its particular dual transcriptional regulation. Yin Yang 1 is involved in various cellular processes like cell cycle progression, cell differentiation, DNA repair, cell survival and apoptosis among others. Its malfunction or alteration leads to disease and even to malignant transformation. This transcription factor is essential for the proper central nervous system development and function. The activity of Yin Yang 1 depends on its interacting partners, promoter environment and chromatin structure, however, its mechanistic activity is not completely understood. In this review, we briefly discuss the Yin Yang 1 structure, post-translational modifications, interactions, mechanistic functions and its participation in neurodevelopment. We also discuss its expression and critical involvement in the physiology and physiopathology of glial cells, summarizing the contribution of Yin Yang 1 on different aspects of cellular function.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Francisco Castelán
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico.
| |
Collapse
|
3
|
Lam JC, Aboreden NG, Midla SC, Wang S, Huang A, Keller CA, Giardine B, Henderson KA, Hardison RC, Zhang H, Blobel GA. YY1-controlled regulatory connectivity and transcription are influenced by the cell cycle. Nat Genet 2024; 56:1938-1952. [PMID: 39210046 PMCID: PMC11687402 DOI: 10.1038/s41588-024-01871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Few transcription factors have been examined for their direct roles in physically connecting enhancers and promoters. Here acute degradation of Yin Yang 1 (YY1) in erythroid cells revealed its requirement for the maintenance of numerous enhancer-promoter loops, but not compartments or domains. Despite its reported ability to interact with cohesin, the formation of YY1-dependent enhancer-promoter loops does not involve stalling of cohesin-mediated loop extrusion. Integrating mitosis-to-G1-phase dynamics, we observed partial retention of YY1 on mitotic chromatin, predominantly at gene promoters, followed by rapid rebinding during mitotic exit, coinciding with enhancer-promoter loop establishment. YY1 degradation during the mitosis-to-G1-phase interval revealed a set of enhancer-promoter loops that require YY1 for establishment during G1-phase entry but not for maintenance in interphase, suggesting that cell cycle stage influences YY1's architectural function. Thus, as revealed here for YY1, chromatin architectural functions of transcription factors can vary in their interplay with CTCF and cohesin as well as by cell cycle stage.
Collapse
Affiliation(s)
- Jessica C Lam
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas G Aboreden
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susannah C Midla
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Siqing Wang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Genomics Research Incubator, Pennsylvania State University, University Park, PA, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Kate A Henderson
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Kumari P, Beeraka NM, Tengli A, Bannimath G, Baath RK, Patil M. Recent Updates on Oncogenic Signaling of Aurora Kinases in Chemosensitive, Chemoresistant Cancers: Novel Medicinal Chemistry Approaches for Targeting Aurora Kinases. Curr Med Chem 2024; 31:3502-3528. [PMID: 37138483 DOI: 10.2174/0929867330666230503124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 05/05/2023]
Abstract
The Aurora Kinase family (AKI) is composed of serine-threonine protein kinases involved in the modulation of the cell cycle and mitosis. These kinases are required for regulating the adherence of hereditary-related data. Members of this family can be categorized into aurora kinase A (Ark-A), aurora kinase B (Ark-B), and aurora kinase C (Ark-C), consisting of highly conserved threonine protein kinases. These kinases can modulate cell processes such as spindle assembly, checkpoint pathway, and cytokinesis during cell division. The main aim of this review is to explore recent updates on the oncogenic signaling of aurora kinases in chemosensitive/chemoresistant cancers and to explore the various medicinal chemistry approaches to target these kinases. We searched Pubmed, Scopus, NLM, Pubchem, and Relemed to obtain information pertinent to the updated signaling role of aurora kinases and medicinal chemistry approaches and discussed the recently updated roles of each aurora kinases and their downstream signaling cascades in the progression of several chemosensitive/chemoresistant cancers; subsequently, we discussed the natural products (scoulerine, Corynoline, Hesperidin Jadomycin-B, fisetin), and synthetic, medicinal chemistry molecules as aurora kinase inhibitors (AKIs). Several natural products' efficacy was explained as AKIs in chemosensitization and chemoresistant cancers. For instance, novel triazole molecules have been used against gastric cancer, whereas cyanopyridines are used against colorectal cancer and trifluoroacetate derivatives could be used for esophageal cancer. Furthermore, quinolone hydrazine derivatives can be used to target breast cancer and cervical cancer. In contrast, the indole derivatives can be preferred to target oral cancer whereas thiosemicarbazone-indole could be used against prostate cancer, as reported in an earlier investigation against cancerous cells. Moreover, these chemical derivatives can be examined as AKIs through preclinical studies. In addition, the synthesis of novel AKIs through these medicinal chemistry substrates in the laboratory using in silico and synthetic routes could be beneficial to develop prospective novel AKIs to target chemoresistant cancers. This study is beneficial to oncologists, chemists, and medicinal chemists to explore novel chemical moiety synthesis to target specifically the peptide sequences of aurora kinases in several chemoresistant cancer cell types.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha Murthy Beeraka
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya str., Moscow 119991, Russia
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Gurupadayya Bannimath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Ramandeep Kaur Baath
- Department of Pharmaceautics, IFTM University, Lodhipur Rajput, NH-24 Delhi Road, Moradabad 244102, Uttar Pradesh, India
| | - Mayuri Patil
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
5
|
Qiao X, Yang Y, Zhao Y, Wu X, Zhang L, Cai X, Ji J, Boström KI, Yao Y. Aurora Kinase A Regulates Cell Transitions in Glucocorticoid-Induced Bone Loss. Cells 2023; 12:2434. [PMID: 37887278 PMCID: PMC10605378 DOI: 10.3390/cells12202434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Glucocorticoid-induced bone loss is a severe and toxic effect of long-term therapy with glucocorticoids, which are currently prescribed for millions of people worldwide. Previous studies have uncovered that glucocorticoids reciprocally converted osteoblast lineage cells into endothelial-like cells to cause bone loss and showed that the modulations of Foxc2 and Osterix were the causative factors that drove this harmful transition of osteoblast lineage cells. Here, we find that the inhibition of aurora kinase A halts this transition and prevents glucocorticoid-induced bone loss. We find that aurora A interacts with the glucocorticoid receptor and show that this interaction is required for glucocorticoids to modulate Foxc2 and Osterix. Together, we identify a new potential approach to counteracting unwanted transitions of osteoblast lineage cells in glucocorticoid treatment and may provide a novel strategy for ameliorating glucocorticoid-induced bone loss.
Collapse
Affiliation(s)
- Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Yang Yang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
- The Molecular Biology Institute at UCLA, Los Angeles, CA 90095-1570, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| |
Collapse
|
6
|
Jung M, Bui I, Bonavida B. Role of YY1 in the Regulation of Anti-Apoptotic Gene Products in Drug-Resistant Cancer Cells. Cancers (Basel) 2023; 15:4267. [PMID: 37686541 PMCID: PMC10486809 DOI: 10.3390/cancers15174267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.
Collapse
Affiliation(s)
| | | | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Scherf M, Koy C, Röwer C, Neamtu A, Glocker MO. Characterization of Phosphorylation-Dependent Antibody Binding to Cancer-Mutated Linkers of C 2H 2 Zinc Finger Proteins by Intact Transition Epitope Mapping-Thermodynamic Weak-Force Order Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:171-181. [PMID: 36656134 DOI: 10.1021/jasms.2c00244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With Intact Transition Epitope Mapping-Thermodynamic Weak-force Order (ITEM-TWO) analysis in combination with molecular modeling, the phosphorylation-dependent molecular recognition motif of the anti-HpTGEKP antibody has been investigated with binary and ternary component mixtures consisting of antibody and (phospho-) peptides. Amino acid sequences have been selected to match either the antibody's recognition motif or the cancer-related zinc finger protein mutations and phosphorylations of the respective amino acid residues. Upon electrospraying of all the components of the mixtures, that is, hexapeptides, antibody, and intact immune complexes, the produced ions were subjected to mass spectrometric mass filtering. The antibody ions as well as the immune complex ions traversed into the mass spectrometer's collision chamber, whereas paths of unbound peptide ions were blocked prior to entering the collision cell. After dissociation of the multiply charged immune complexes in the gas phase, the complex-released peptide ions were recorded after having traversed the second mass filter. Complex-released peptides were unambiguously identified by their masses using mass analysis with isotope resolution. From the results of our studies with seven (phospho-) peptides with distinct amino acid sequences, which resembled either the antibody's binding motif or mutations, we conclude the following: (i) A negatively charged phospho group, located near the peptide's N-terminus is mandatory for antibody binding when placed on the peptide surface at a precise distance to the C-terminally located positively charged ε-amino group of a lysinyl residue. (ii) A bulky amino acid residue, such as the tyrosinyl residue at the N-terminal position of the (phospho-) threoninyl residue, abolishes antibody binding. (iii) Two closely spaced phospho groups negatively interfere with the surface polarity pattern and abolish antibody binding as well. (iv) Non-phosphorylated peptides are not binding partners of the anti-HpTGEKP antibody.
Collapse
Affiliation(s)
- Maximilian Scherf
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18059 Rostock, Germany
| | - Cornelia Koy
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18059 Rostock, Germany
| | - Claudia Röwer
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18059 Rostock, Germany
| | - Andrei Neamtu
- TRANSCEND Centre, Regional Institute of Oncology (IRO) Iasi, Str. General Henri Mathias Berthelot Nr. 2-4, 700483 Iasi, Romania
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Str. Universitatii Nr. 16, 700115 Iasi, Romania
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18059 Rostock, Germany
| |
Collapse
|
8
|
Martins Peçanha FL, Jaafar R, Werneck-de-Castro JP, Apostolopolou CC, Bhushan A, Bernal-Mizrachi E. The Transcription Factor YY1 Is Essential for Normal DNA Repair and Cell Cycle in Human and Mouse β-Cells. Diabetes 2022; 71:1694-1705. [PMID: 35594378 PMCID: PMC9490361 DOI: 10.2337/db21-0908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022]
Abstract
Identifying the mechanisms behind the β-cell adaptation to failure is important to develop strategies to manage type 2 diabetes (T2D). Using db/db mice at early stages of the disease process, we took advantage of unbiased RNA sequencing to identify genes/pathways regulated by insulin resistance in β-cells. We demonstrate herein that islets from 4-week-old nonobese and nondiabetic leptin receptor-deficient db/db mice exhibited downregulation of several genes involved in cell cycle regulation and DNA repair. We identified the transcription factor Yin Yang 1 (YY1) as a common gene between both pathways. The expression of YY1 and its targeted genes was decreased in the db/db islets. We confirmed the reduction in YY1 expression in β-cells from diabetic db/db mice, mice fed a high-fat diet (HFD), and individuals with T2D. Chromatin immunoprecipitation sequencing profiling in EndoC-βH1 cells, a human pancreatic β-cell line, indicated that YY1 binding regions regulate cell cycle control and DNA damage recognition and repair. We then generated mouse models with constitutive and inducible YY1 deficiency in β-cells. YY1-deficient mice developed diabetes early in life due to β-cell loss. β-Cells from these mice exhibited higher DNA damage, cell cycle arrest, and cell death as well as decreased maturation markers. Tamoxifen-induced YY1 deficiency in mature β-cells impaired β-cell function and induced DNA damage. In summary, we identified YY1 as a critical factor for β-cell DNA repair and cell cycle progression.
Collapse
Affiliation(s)
| | - Rami Jaafar
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL
- Miami Veterans Affairs Health Care System, Miami, FL
| | | | - Anil Bhushan
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL
- Miami Veterans Affairs Health Care System, Miami, FL
- Corresponding author: Ernesto Bernal-Mizrachi,
| |
Collapse
|
9
|
Dual Role of YY1 in HPV Life Cycle and Cervical Cancer Development. Int J Mol Sci 2022; 23:ijms23073453. [PMID: 35408813 PMCID: PMC8998550 DOI: 10.3390/ijms23073453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Human papillomaviruses (HPVs) are considered to be key etiological agents responsible for the induction and development of cervical cancer. However, it has been suggested that HPV infection alone may not be sufficient to promote cervical carcinogenesis, and other unknown factors might be required to establish the disease. One of the suggested proteins whose deregulation has been linked with oncogenesis is transcription factor Yin Yang 1 (YY1). YY1 is a multifunctional protein that is involved not only in the regulation of gene transcription and protein modification, but can also control important cell signaling pathways, such as cell growth, development, differentiation, and apoptosis. Vital functions of YY1 also indicate that the protein could be involved in tumorigenesis. The overexpression of this protein has been observed in different tumors, and its level has been correlated with poor prognoses of many types of cancers. YY1 can also regulate the transcription of viral genes. It has been documented that YY1 can bind to the HPV long control region and regulate the expression of viral oncogenes E6 and E7; however, its role in the HPV life cycle and cervical cancer development is different. In this review, we explore the role of YY1 in regulating the expression of cellular and viral genes and subsequently investigate how these changes inadvertently contribute toward the development of cervical malignancy.
Collapse
|
10
|
Rizor A, Pajarillo E, Son DS, Aschner M, Lee E. Manganese phosphorylates Yin Yang 1 at serine residues to repress EAAT2 in human H4 astrocytes. Toxicol Lett 2022; 355:41-46. [PMID: 34800614 DOI: 10.1016/j.toxlet.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Impairment of the astrocytic glutamate transporter excitatory amino acid transporter 2 (EAAT2) is associated with neurological disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), and manganism, a neurological disorder caused by overexposure to manganese (Mn) which shares the features of sporadic PD. Mechanisms of Mn-induced neurotoxicity include dysregulation of EAAT2 following activation of the transcription factor Yin Yang 1 (YY1) by transcriptional upregulation, but the posttranslational mechanisms by which YY1 is activated to repress EAAT2 remain to be elucidated. In the present study, we tested if Mn activates YY1 through posttranslational phosphorylation in cultured H4 human astrocytes, leading to EAAT2 repression. The results demonstrate that Mn exposure induced phosphorylation of YY1 at serine residues via kinases Aurora B kinase (AurkB) and Casein kinase II (CK2), leading to YY1 nuclear translocation, YY1/HDAC interactions, binding to the EAAT2 promoter, and consequent decreases in EAAT2 promoter activity and mRNA/protein levels. Although further studies are warranted to fully elucidate the mechanisms of Mn-induced YY1 phosphorylation and resultant EAAT2 impairment, our findings indicate that serine phosphorylation of YY1 via AurkB and CK2 is critical, at least in part, to its activation and transcriptional repression of EAAT2.
Collapse
Affiliation(s)
- Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, New York, NY, 10461, USA; Sechenov First Moscow State Medical University, Moscow, Russia
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA.
| |
Collapse
|
11
|
CRL4Cdt2 Ubiquitin Ligase, A Genome Caretaker Controlled by Cdt2 Binding to PCNA and DNA. Genes (Basel) 2022; 13:genes13020266. [PMID: 35205311 PMCID: PMC8871960 DOI: 10.3390/genes13020266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin ligase CRL4Cdt2 plays a vital role in preserving genomic integrity by regulating essential proteins during S phase and after DNA damage. Deregulation of CRL4Cdt2 during the cell cycle can cause DNA re-replication, which correlates with malignant transformation and tumor growth. CRL4Cdt2 regulates a broad spectrum of cell cycle substrates for ubiquitination and proteolysis, including Cdc10-dependent transcript 1 or Chromatin licensing and DNA replication factor 1 (Cdt1), histone H4K20 mono-methyltransferase (Set8) and cyclin-dependent kinase inhibitor 1 (p21), which regulate DNA replication. However, the mechanism it operates via its substrate receptor, Cdc10-dependent transcript 2 (Cdt2), is not fully understood. This review describes the essential features of the N-terminal and C-terminal parts of Cdt2 that regulate CRL4 ubiquitination activity, including the substrate recognition domain, intrinsically disordered region (IDR), phosphorylation sites, the PCNA-interacting protein-box (PIP) box motif and the DNA binding domain. Drugs targeting these specific domains of Cdt2 could have potential for the treatment of cancer.
Collapse
|
12
|
Xu C, Tsai YH, Galbo PM, Gong W, Storey AJ, Xu Y, Byrum SD, Xu L, Whang YE, Parker JS, Mackintosh SG, Edmondson RD, Tackett AJ, Huang J, Zheng D, Earp HS, Wang GG, Cai L. Cistrome analysis of YY1 uncovers a regulatory axis of YY1:BRD2/4-PFKP during tumorigenesis of advanced prostate cancer. Nucleic Acids Res 2021; 49:4971-4988. [PMID: 33849067 PMCID: PMC8136773 DOI: 10.1093/nar/gkab252] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a terminal disease and the molecular underpinnings of CRPC development need to be better understood in order to improve its treatment. Here, we report that a transcription factor Yin Yang 1 (YY1) is significantly overexpressed during prostate cancer progression. Functional and cistrome studies of YY1 uncover its roles in promoting prostate oncogenesis in vitro and in vivo, as well as sustaining tumor metabolism including the Warburg effect and mitochondria respiration. Additionally, our integrated genomics and interactome profiling in prostate tumor show that YY1 and bromodomain-containing proteins (BRD2/4) co-occupy a majority of gene-regulatory elements, coactivating downstream targets. Via gene loss-of-function and rescue studies and mutagenesis of YY1-bound cis-elements, we unveil an oncogenic pathway in which YY1 directly binds and activates PFKP, a gene encoding the rate-limiting enzyme for glycolysis, significantly contributing to the YY1-enforced Warburg effect and malignant growth. Altogether, this study supports a master regulator role for YY1 in prostate tumorigenesis and reveals a YY1:BRD2/4-PFKP axis operating in advanced prostate cancer with implications for therapy.
Collapse
Affiliation(s)
- Chenxi Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Phillip M Galbo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yuemei Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Nanjing Drum Tower Hospital and The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Young E Whang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Neurology and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
A flexible microfluidic system for single-cell transcriptome profiling elucidates phased transcriptional regulators of cell cycle. Sci Rep 2021; 11:7918. [PMID: 33846365 PMCID: PMC8041752 DOI: 10.1038/s41598-021-86070-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/07/2021] [Indexed: 02/06/2023] Open
Abstract
Single cell transcriptome profiling has emerged as a breakthrough technology for the high-resolution understanding of complex cellular systems. Here we report a flexible, cost-effective and user-friendly droplet-based microfluidics system, called the Nadia Instrument, that can allow 3' mRNA capture of ~ 50,000 single cells or individual nuclei in a single run. The precise pressure-based system demonstrates highly reproducible droplet size, low doublet rates and high mRNA capture efficiencies that compare favorably in the field. Moreover, when combined with the Nadia Innovate, the system can be transformed into an adaptable setup that enables use of different buffers and barcoded bead configurations to facilitate diverse applications. Finally, by 3' mRNA profiling asynchronous human and mouse cells at different phases of the cell cycle, we demonstrate the system's ability to readily distinguish distinct cell populations and infer underlying transcriptional regulatory networks. Notably this provided supportive evidence for multiple transcription factors that had little or no known link to the cell cycle (e.g. DRAP1, ZKSCAN1 and CEBPZ). In summary, the Nadia platform represents a promising and flexible technology for future transcriptomic studies, and other related applications, at cell resolution.
Collapse
|
14
|
YY1 regulated transcription-based stratification of gastric tumors and identification of potential therapeutic candidates. J Cell Commun Signal 2021; 15:251-267. [PMID: 33620645 DOI: 10.1007/s12079-021-00608-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022] Open
Abstract
Gastric cancer is one of the leading causes of cancer-related death worldwide. The transcription factor YY1 regulates diverse biological processes, including cell proliferation, development, DNA damage responses, and carcinogenesis. This study was designed to explore the role of YY1 regulated transcription in gastric cancer. YY1 silencing in gastric cancer cells has resulted in the inhibition of Wnt/β-catenin, JNK/MAPK, ERK/MAPK, ER, and HIF-1α signaling pathways. Genome-wide mRNA profiling upon silencing the expression YY1 gene in gastric cancer cells and comparison with the previously identified YY1 regulated genes from other lineages revealed a moderate overlap among the YY1 regulated genes. Despite the differing genes, all the YY1 regulated gene sets were expressed in most of the intestinal subtype gastric tumors and a subset of diffuse subtype gastric tumors. Integrative functional genomic analysis of the YY1 gene sets revealed an association among the pathways Wnt/β-catenin, Rapamycin, Cyclin-D1, Myc, E2F, PDGF, and AKT. Further, the drugs capable of inhibiting YY1 mediated transcription were identified as suitable targeted therapeutic candidates for gastric tumors with activated YY1. The data emerging from the investigation would pave the way for the development of YY1-based targeted therapeutics for gastric cancer.
Collapse
|
15
|
Du R, Huang C, Liu K, Li X, Dong Z. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy. Mol Cancer 2021; 20:15. [PMID: 33451333 PMCID: PMC7809767 DOI: 10.1186/s12943-020-01305-3] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Aurora kinase A (AURKA) belongs to the family of serine/threonine kinases, whose activation is necessary for cell division processes via regulation of mitosis. AURKA shows significantly higher expression in cancer tissues than in normal control tissues for multiple tumor types according to the TCGA database. Activation of AURKA has been demonstrated to play an important role in a wide range of cancers, and numerous AURKA substrates have been identified. AURKA-mediated phosphorylation can regulate the functions of AURKA substrates, some of which are mitosis regulators, tumor suppressors or oncogenes. In addition, enrichment of AURKA-interacting proteins with KEGG pathway and GO analysis have demonstrated that these proteins are involved in classic oncogenic pathways. All of this evidence favors the idea of AURKA as a target for cancer therapy, and some small molecules targeting AURKA have been discovered. These AURKA inhibitors (AKIs) have been tested in preclinical studies, and some of them have been subjected to clinical trials as monotherapies or in combination with classic chemotherapy or other targeted therapies.
Collapse
Affiliation(s)
- Ruijuan Du
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.
| | - Chuntian Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China. .,College of medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
16
|
Chen F, Zhou J, Li Y, Zhao Y, Yuan J, Cao Y, Wang L, Zhang Z, Zhang B, Wang CC, Cheung TH, Wu Z, Wong CCL, Sun H, Wang H. YY1 regulates skeletal muscle regeneration through controlling metabolic reprogramming of satellite cells. EMBO J 2019; 38:embj.201899727. [PMID: 30979776 DOI: 10.15252/embj.201899727] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute or chronic injuries. The lineage progression of quiescent SC toward activation, proliferation, and differentiation during the regeneration is orchestrated by cascades of transcription factors (TFs). Here, we elucidate the function of TF Yin Yang1 (YY1) in muscle regeneration. Muscle-specific deletion of YY1 in embryonic muscle progenitors leads to severe deformity of diaphragm muscle formation, thus neonatal death. Inducible deletion of YY1 in SC almost completely blocks the acute damage-induced muscle repair and exacerbates the chronic injury-induced dystrophic phenotype. Examination of SC revealed that YY1 loss results in cell-autonomous defect in activation and proliferation. Mechanistic search revealed that YY1 binds and represses mitochondrial gene expression. Simultaneously, it also stabilizes Hif1α protein and activates Hif1α-mediated glycolytic genes to facilitate a metabolic reprogramming toward glycolysis which is needed for SC proliferation. Altogether, our findings have identified YY1 as a key regulator of SC metabolic reprogramming through its dual roles in modulating both mitochondrial and glycolytic pathways.
Collapse
Affiliation(s)
- Fengyuan Chen
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jiajian Zhou
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Zhao
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jie Yuan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yang Cao
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Lijun Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Li Ka Shing Institute of Health Sciences, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Tom H Cheung
- The State Key Lab in Molecular Neuroscience, Division of Life Science, Center for Stem Cell Research and Center for Systems Biology and Human Diseases, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhenguo Wu
- The State Key Lab in Molecular Neuroscience, Division of Life Science, Center for Stem Cell Research and Center for Systems Biology and Human Diseases, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Hays E, Bonavida B. YY1 regulates cancer cell immune resistance by modulating PD-L1 expression. Drug Resist Updat 2019; 43:10-28. [PMID: 31005030 DOI: 10.1016/j.drup.2019.04.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023]
Abstract
Recent advances in the treatment of various cancers have resulted in the adaptation of several novel immunotherapeutic strategies. Notably, the recent intervention through immune checkpoint inhibitors has resulted in significant clinical responses and prolongation of survival in patients with several therapy-resistant cancers (melanoma, lung, bladder, etc.). This intervention was mediated by various antibodies directed against inhibitory receptors expressed on cytotoxic T-cells or against corresponding ligands expressed on tumor cells and other cells in the tumor microenvironment (TME). However, the clinical responses were only observed in a subset of the treated patients; it was not clear why the remaining patients did not respond to checkpoint inhibitor therapies. One hypothesis stated that the levels of PD-L1 expression correlated with poor clinical responses to cell-mediated anti-tumor immunotherapy. Hence, exploring the underlying mechanisms that regulate PD-L1 expression on tumor cells is one approach to target such mechanisms to reduce PD-L1 expression and, therefore, sensitize the resistant tumor cells to respond to PD-1/PD-L1 antibody treatments. Various investigations revealed that the overexpression of the transcription factor Yin Yang 1 (YY1) in most cancers is involved in the regulation of tumor cells' resistance to cell-mediated immunotherapies. We, therefore, hypothesized that the role of YY1 in cancer immune resistance may be correlated with PD-L1 overexpression on cancer cells. This hypothesis was investigated and analysis of the reported literature revealed that several signaling crosstalk pathways exist between the regulations of both YY1 and PD-L1 expressions. Such pathways include p53, miR34a, STAT3, NF-kB, PI3K/AKT/mTOR, c-Myc, and COX-2. Noteworthy, many clinical and pre-clinical drugs have been utilized to target these above pathways in various cancers independent of their roles in the regulation of PD-L1 expression. Therefore, the direct inhibition of YY1 and/or the use of the above targeted drugs in combination with checkpoint inhibitors should result in enhancing the cell-mediated anti-tumor cell response and also reverse the resistance observed with the use of checkpoint inhibitors alone.
Collapse
Affiliation(s)
- Emily Hays
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, United States
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
18
|
Magnaghi-Jaulin L, Eot-Houllier G, Gallaud E, Giet R. Aurora A Protein Kinase: To the Centrosome and Beyond. Biomolecules 2019; 9:biom9010028. [PMID: 30650622 PMCID: PMC6359016 DOI: 10.3390/biom9010028] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Accurate chromosome segregation requires the perfect spatiotemporal rearrangement of the cellular cytoskeleton. Isolated more than two decades ago from Drosophila, Aurora A is a widespread protein kinase that plays key roles during cell division. Numerous studies have described the localisation of Aurora A at centrosomes, the mitotic spindle, and, more recently, at mitotic centromeres. In this review, we will summarise the cytoskeletal rearrangements regulated by Aurora A during cell division. We will also discuss the recent discoveries showing that Aurora A also controls not only the dynamics of the cortical proteins but also regulates the centromeric proteins, revealing new roles for this kinase during cell division.
Collapse
Affiliation(s)
- Laura Magnaghi-Jaulin
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Grégory Eot-Houllier
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Emmanuel Gallaud
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| | - Régis Giet
- University of Rennes, CNRS UMR 6290, IGDR-Institute of Genetics and Development of Rennes, F-35000 Rennes, France.
| |
Collapse
|
19
|
Daraiseh SI, Kassardjian A, Alexander KE, Rizkallah R, Hurt MM. c-Abl phosphorylation of Yin Yang 1's conserved tyrosine 254 in the spacer region modulates its transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1173-1186. [PMID: 29807053 DOI: 10.1016/j.bbamcr.2018.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways.
Collapse
Affiliation(s)
- Susan I Daraiseh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Ari Kassardjian
- David Geffen School of Medicine, Department of Pathology and Laboratory Medicine at UCLA, Los Angeles, CA, USA
| | - Karen E Alexander
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Myra M Hurt
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|