1
|
Jiang J, Xiang X, Zhou Q, Zhou L, Bi X, Khanal SK, Wang Z, Chen G, Guo G. Optimization of a Novel Engineered Ecosystem Integrating Carbon, Nitrogen, Phosphorus, and Sulfur Biotransformation for Saline Wastewater Treatment Using an Interpretable Machine Learning Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12989-12999. [PMID: 38982970 DOI: 10.1021/acs.est.4c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The denitrifying sulfur (S) conversion-associated enhanced biological phosphorus removal (DS-EBPR) process for treating saline wastewater is characterized by its unique microbial ecology that integrates carbon (C), nitrogen (N), phosphorus (P), and S biotransformation. However, operational instability arises due to the numerous parameters and intricates bacterial interactions. This study introduces a two-stage interpretable machine learning approach to predict S conversion-driven P removal efficiency and optimize DS-EBPR process. Stage one utilized the XGBoost regression model, achieving an R2 value of 0.948 for predicting sulfate reduction (SR) intensity from anaerobic parameters with feature engineering. Stage two involved the CatBoost classification and regression model integrating anoxic parameters with the predicted SR values for predicting P removal, reaching an accuracy of 94% and an R2 value of 0.93, respectively. This study identified key environmental factors, including SR intensity (20-45 mg S/L), influent P concentration (<9.0 mg P/L), mixed liquor volatile suspended solids (MLVSS)/mixed liquor suspended solids (MLSS) ratio (0.55-0.72), influent C/S ratio (0.5-1.0), anoxic reaction time (5-6 h), and MLSS concentration (>6.50 g/L). A user-friendly graphic interface was developed to facilitate easier optimization and control. This approach streamlines the determination of optimal conditions for enhancing P removal in the DS-EBPR process.
Collapse
Affiliation(s)
- Jinqi Jiang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Xiang
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qinhao Zhou
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lichang Zhou
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Xinqi Bi
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Ma̅noa, 1955 East-West Road, Honolulu, Hawaii 96822, United States
| | - Zongping Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Guanghao Chen
- Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong 999077, PR China
| | - Gang Guo
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Derwis D, Majtacz J, Kowal P, Al-Hazmi HE, Zhai J, Ciesielski S, Piechota G, Mąkinia J. Integration of the sulfate reduction and anammox processes for enhancing sustainable nitrogen removal in granular sludge reactors. BIORESOURCE TECHNOLOGY 2023:129264. [PMID: 37271463 DOI: 10.1016/j.biortech.2023.129264] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
The Anammox and Sulfate Reduction Ammonium Oxidation processes were compared in two granular sequencing batch reactors operated for 160 days under anammox conditions. It was hypothesized that increasing the concentration of SO42- may positively influence the rate of N removal under anaerobic conditions and it was tested whether SO42- reduction and anammox occur independently or are related to each other. The cooperation of N-S cycles by increasing the concentration of influent SO42- to 952 mg S/L in the second reactor, a higher ammonium utilization rate and sulfate utilization rate was achieved compared to the first reactor, i.e., 2.1-fold and 15-fold, respectively. Nitrosomonas played the dominant role in the N metabolism, while Thauera - in the S metabolism. This study highlights the benefits of linking the N-S cycles as an effective approach for the treatment of NH4+ and SO42- - rich wastewater, including lower substrate removal cost and reduced energy consumption.
Collapse
Affiliation(s)
- Dominika Derwis
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| | - Przemysław Kowal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| | - Jun Zhai
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, Olsztyn 10-719, Poland
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, Toruń 87-100, Poland.
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| |
Collapse
|
3
|
Malhautier L, Rocher J, Gouello O, Jobert L, Moura C, Gauthier Y, Bertin A, Després JF, Fanlo JL. Treatment of gaseous emissions from tire manufacturing industry using lab-scale biofiltration pilot units. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126614. [PMID: 34284284 DOI: 10.1016/j.jhazmat.2021.126614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Continuously seeking the improvement of environmental protection, the limitation of exhaust emissions is of significance for the tire manufacturing industry. The aim of this study is to assess the potential of biofiltration for the treatment of such gaseous emissions. This work highlights that biofiltration is able to remove both hydrophilic and hydrophobic compounds within a single pilot unit of biofiltration. Due to Ethanol/Alkanes ratios (95/5 and 80/20), high performance levels were observed for low EBRT (16 and 12 s). After twenty days of stable running, the dynamic of stratification patterns could be explained as a result of species coexistence mechanisms. While its impact on performance has not been observed under stable operating conditions, the use of an adsorbent support such as granular activated carbon (GAC) could be relevant to promote system stability in the face of further perturbations, such as transient regimes, that are problematic in full-scale industrial applications.
Collapse
Affiliation(s)
- Luc Malhautier
- Laboratoire des Sciences des Risques (LSR), IMT Mines Ales, 6 avenue de Clavières, 30319 Alès cedex, France.
| | - Janick Rocher
- Laboratoire des Sciences des Risques (LSR), IMT Mines Ales, 6 avenue de Clavières, 30319 Alès cedex, France
| | - Olivia Gouello
- Laboratoire des Sciences des Risques (LSR), IMT Mines Ales, 6 avenue de Clavières, 30319 Alès cedex, France; Olentica SAS, 14 Boulevard Charles Peguy, 30100 Ales, France
| | - Luc Jobert
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes Dechaux, 63000 Clermont-Ferrand, France
| | - Claire Moura
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes Dechaux, 63000 Clermont-Ferrand, France
| | - Yann Gauthier
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes Dechaux, 63000 Clermont-Ferrand, France
| | - Aline Bertin
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes Dechaux, 63000 Clermont-Ferrand, France
| | | | - Jean-Louis Fanlo
- Laboratoire des Sciences des Risques (LSR), IMT Mines Ales, 6 avenue de Clavières, 30319 Alès cedex, France; Olentica SAS, 14 Boulevard Charles Peguy, 30100 Ales, France
| |
Collapse
|
4
|
Liu S, Chen Y, Xiao L. Metagenomic insights into mixotrophic denitrification facilitated nitrogen removal in a full-scale A2/O wastewater treatment plant. PLoS One 2021; 16:e0250283. [PMID: 33857258 PMCID: PMC8049308 DOI: 10.1371/journal.pone.0250283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/01/2021] [Indexed: 11/18/2022] Open
Abstract
Wastewater treatment plants (WWTPs) are important for pollutant removal from wastewater, elimination of point discharges of nutrients into the environment and water resource protection. The anaerobic/anoxic/oxic (A2/O) process is widely used in WWTPs for nitrogen removal, but the requirement for additional organics to ensure a suitable nitrogen removal efficiency makes this process costly and energy consuming. In this study, we report mixotrophic denitrification at a low COD (chemical oxygen demand)/TN (total nitrogen) ratio in a full-scale A2/O WWTP with relatively high sulfate in the inlet. Nitrogen and sulfur species analysis in different units of this A2/O WWTP showed that the internal sulfur cycle of sulfate reduction and reoxidation occurred and that the reduced sulfur species might contribute to denitrification. Microbial community analysis revealed that Thiobacillus, an autotrophic sulfur-oxidizing denitrifier, dominated the activated sludge bacterial community. Metagenomics data also supported the potential of sulfur-based denitrification when high levels of denitrification occurred, and sulfur oxidation and sulfate reduction genes coexisted in the activated sludge. Although most of the denitrification genes were affiliated with heterotrophic denitrifiers with high abundance, the narG and napA genes were mainly associated with autotrophic sulfur-oxidizing denitrifiers. The functional genes related to nitrogen removal were actively expressed even in the unit containing relatively highly reduced sulfur species, indicating that the mixotrophic denitrification process in A2/O could overcome not only a shortage of carbon sources but also the inhibition by reduced sulfur of nitrification and denitrification. Our results indicate that a mixotrophic denitrification process could be developed in full-scale WWTPs and reduce the requirement for additional carbon sources, which could endow WWTPs with more flexible and adaptable nitrogen removal.
Collapse
Affiliation(s)
- Shulei Liu
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University, Nanjing, China
| | - Yasong Chen
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University, Nanjing, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University, Nanjing, China
- * E-mail:
| |
Collapse
|
5
|
Wu Z, Guo G, Kumar Biswal B, Dai J, Chen G. Denitrifying sulfur conversion-EBPR (DS-EBPR) process for treatment of seawater-based highly saline wastewater: Evaluation on performance, kinetics and microbial community structure. BIORESOURCE TECHNOLOGY 2020; 313:123574. [PMID: 32512430 DOI: 10.1016/j.biortech.2020.123574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
DS-EBPR is an alternative to the conventional activated sludge process which face great challenge for treatment of seawater-based highly saline wastewater. This study aims to investigate the impacts of long-term (248 days) 20% and 30% seawater fractions and short-term shock of 30%, 40%, 70% and 100% seawater fractions (corresponding to 1.0, 1.4, 2.5 and 3.5% of salinity) on the DS-EBPR performance, kinetics and microbial community structure. Long-term operation with high fraction (30%) of seawater marginally decreased the sulfur conversion and phosphorus uptake, which correlated well with the microbial dynamics. Temporal salinity shock from 1.0% (30% seawater) to 3.5% (100% seawater) remarkably reduced the phosphorus release/uptake by 36-44%, which was partly due to the decrease in the abundance of functional bacteria and chlorapatite (Ca5[PO4]3Cl) forming as P precipitates with 70-100% seawater addition. The formed chlorapatite contributed to approximately 8-26% of total P removal estimated by X-ray photoelectron spectroscopy analysis.
Collapse
Affiliation(s)
- Zhongwei Wu
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China.
| | - Basanta Kumar Biswal
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ji Dai
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
6
|
Hu Y, Wu G, Li R, Xiao L, Zhan X. Iron sulphides mediated autotrophic denitrification: An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment. WATER RESEARCH 2020; 179:115914. [PMID: 32413614 DOI: 10.1016/j.watres.2020.115914] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/16/2020] [Accepted: 05/02/2020] [Indexed: 05/09/2023]
Abstract
Iron sulphides, mainly in the form of mackinawite (FeS), pyrrhotite (Fe1-xS, x = 0-0.125) and pyrite (FeS2), are the most abundant sulphide minerals and can be oxidized under anoxic and circumneutral pH conditions by chemoautotrophic denitrifying bacteria to reduce nitrate to N2. Iron sulphides mediated autotrophic denitrification (ISAD) represents an important natural attenuation process of nitrate pollution and plays a pivotal role in linking nitrogen, sulphur and iron cycles in a variety of anoxic environments. Recently, it has emerged as a promising bioprocess for nutrient removal from various organic-deficient water and wastewater, due to its specific advantages including high denitrification capacity, simultaneous nitrogen and phosphorus removal, self-buffering properties, and fewer by-products generation (sulphate, waste sludge, N2O, NH4+, etc.). This paper provides a critical overview of fundamental and engineering aspects of ISAD, including the theoretical knowledge (biochemistry, and microbial diversity), its natural occurrence and engineering applications. Its potential and limitations are elucidated by summarizing the key influencing factors including availability of iron sulphides, low denitrification rates, sulphate emission and leaching heavy metals. This review also put forward two key questions in the mechanism of anoxic iron sulphides oxidation, i.e. dissolution of iron sulphides and direct substrates for denitrifiers. Finally, its prospects for future sustainable wastewater treatment are highlighted. An iron sulphides-based biotechnology towards next-generation wastewater treatment (NEO-GREEN) is proposed, which can potentially harness bioenergy in wastewater, incorporate resources (P and Fe) recovery, achieve simultaneous nutrient and emerging contaminants removal, and minimize waste sludge production.
Collapse
Affiliation(s)
- Yuansheng Hu
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| | - Guangxue Wu
- Institute of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Ruihua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Avenue, Nanjing, 210023, China
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland; MaREI Centre for Marine and Renewable Energy, Ireland.
| |
Collapse
|
7
|
Zhao Q, Yu M, Zhang X, Lu H, Biswal BK, Chen GH, Wu D. Intracellularly stored polysulfur maintains homeostasis of pH and provides bioenergy for phosphorus metabolism in the sulfur-associated enhanced biological phosphorus removal (SEBPR) process. CHEMOSPHERE 2019; 235:211-219. [PMID: 31255762 DOI: 10.1016/j.chemosphere.2019.06.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Sulfur-associated enhanced biological phosphorus removal has recently been developed for the removal of biological nutrients. In this new bioprocess, the polymeric sulfur compound (poly-S) is crucial to connecting sulfur conversions and polyphosphate accumulation; however, its mechanisms are still elusive. This study investigated the role of poly-S in maintaining the system stability by operating a lab-scale reactor for 720 d and conducting batch experiments with various initial pH values. The main findings were as follows: i) intracellular poly-S increased from 30 to 95 mg S (g VSS)-1, whereas polyhydroxyalkanoates increased from 8 to 22 mg C (g VSS)-1; ii) glycogen increased from 7.5 to 12.5 mg C (g VSS)-1 during the first 520 d before decreasing; and 3) P removal could be maintained at 8-12.5 mg P (L)-1. The decrease in glycogen was likely because the accumulation of enough poly-S could replace glycogen to provide reducing power and buffer the inner pH. The results of batch tests confirmed that poly-S could adjust the intracellular protons under anaerobic conditions (pH always returned to neutral or neutral levels at the end of anaerobic phase) and provide cellular bioenergy (adenosine triphosphate, for P uptake, thereby maintaining net P removal). The predominant microbial communities were facultative denitrifying Thauera (11%), sulfide-oxidizing Thiobacillus (8%), and sulfate-reducing Desulfobacter (9%). However, the conventional polyphosphate-accumulating organisms were detected at very low abundance (e.g. Tetrasphaera at only 0.02%). Overall, poly-S could regulate intracellular protons and energy balance and reduce glycogen accumulation, keeping good biological P removal performance.
Collapse
Affiliation(s)
- Qing Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Mei Yu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Xin Zhang
- School of Civil and Architecture Engineering, Heilongjiang Institute of Technology, Harbin, China
| | - Hui Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch), and FYT Research Institute (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch), and FYT Research Institute (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch), and FYT Research Institute (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
8
|
Zhao Q, Yu M, Lu H, Zhang YH, Biswal BK, Chen GH, Wu D. Formation and characterization of the micro-size granular sludge in denitrifying sulfur-conversion associated enhanced biological phosphorus removal (DS-EBPR) process. BIORESOURCE TECHNOLOGY 2019; 291:121871. [PMID: 31369924 DOI: 10.1016/j.biortech.2019.121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) bioprocess has been recently developed for saline sewage treatment. This study investigated the applicability of granulation technology in DS-EBPR by long-term operation (272 days) of a lab-scale reactor to cultivate sludge granules, then analyzed important physicochemical and biological properties. The findings of this research showed that the net P removal and denitrification efficiencies in DS-EBPR were 80% and 98%, respectively. The average particle size was about 100 μm, and the ratio of SVI5 and SVI30 was <1.3, indicating the activated sludge was well aggregated as micro-granules. The dry density was between 32 and 56 mg/mL, and the specific surface area was 28 m2/g, demonstrating good microporous structure. FISH reveals absence of PAOs, but enriched with SRB (predominant) and denitrifying bacteria in the DS-EBPR granular sludge. Overall, this study provided essential characterization information of DS-EBPR granular sludge which can be used for future development.
Collapse
Affiliation(s)
- Qing Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Mei Yu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Hui Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Yu-Hua Zhang
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch), and FYT Research Institute (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch), and FYT Research Institute (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch), and FYT Research Institute (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (Hong Kong Branch), and FYT Research Institute (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
9
|
Dorofeev AG, Nikolaev YA, Mardanov AV, Pimenov NV. Cyclic Metabolism as a Mode of Microbial Existence. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719040052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Guo G, Ekama GA, Wang Y, Dai J, Biswal BK, Chen G, Wu D. Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2019; 285:121303. [PMID: 30952535 DOI: 10.1016/j.biortech.2019.03.142] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Recently an innovative sulfur conversion-associated enhanced biological phosphorus removal (S-EBPR) process has been developed for treating sulfate-rich wastewater. This process has successfully integrated sulfur (S), carbon (C), nitrogen (N) and P cycles for simultaneous metabolism or removal of C, N and P; moreover this new process relies on the synergy among the slow-growing sulfate-reducing bacteria and sulfur-oxidizing bacteria, hence generating little excess sludge. To elucidate this new process, researchers have investigated the microorganisms proliferated in the system, identified the biochemical pathways and assessed the impact of operational and environmental factors on process performance as well as trials on process optimization. This paper for the first time reviews the recent advances that have been achieved, particularly relating to the areas of S-EBPR microbiology and biochemistry, as well as the effects of environmental factors (e.g., electron donors/acceptors, pH, temperature, etc.). Moreover, future directions for researches and applications are proposed.
Collapse
Affiliation(s)
- Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China; Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Ji Dai
- Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Basanta Kumar Biswal
- Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China
| | - Di Wu
- Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
11
|
Guo G, Wu D, Ekama GA, Ivleva NP, Hao X, Dai J, Cui Y, Kumar Biswal B, Chen G. Investigation of multiple polymers in a denitrifying sulfur conversion-EBPR system: The structural dynamics and storage states. WATER RESEARCH 2019; 156:179-187. [PMID: 30913421 DOI: 10.1016/j.watres.2019.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Polyhydroxyalkanoates (PHAs), polyphosphate (poly-P) and polysulfide or elemental sulfur (poly-S) are the key functionally relevant polymers involved in the recently reported Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) process. However, little is known about the structural dynamics and storage states of these polymers. In particular, investigating the poly-S generated in this process is quite a superior challenge. This study was thus aimed at simultaneously qualitative-quantitative investigating poly-S and associated poly-P and PHAs through the integrated chemical analysis and Raman micro-spectroscopy coupled with multiple microscopic methods (i.e. optical microscopy, confocal laser scanning microscopy, and differential interference contrast microscopy). The chemical analytical results displayed a stable DS-EBPR phenotype in terms of sulfur conversion, P release/uptake and the dynamics of relevant polymers. The multiple microscopic images and Raman spectrum profiles further clearly demonstrated the existence of the polymers and their dynamic changes under alternating anaerobic-anoxic conditions, consistent with the chemical analytical results. In particular, Raman analysis for the first time unraveled the co-existence of S0/Sn2- species stored either intracellularly or extracellularly; and the dynamic conversions between S0/Sn2- and other sulfur species suggest that there might be a universal pool of bioavailable sulfur. The results reveal the mechanisms underlying the structural dynamics and changes in storage states of the relevant polymers that are functionally relevant to the carbon/phosphorus/sulfur-cycles during different metabolic phases. These mechanisms would otherwise not be obtained only using a traditional chemical analysis-based approach.
Collapse
Affiliation(s)
- Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan, 430074, China; Department of Civil & Environmental Engineering, Hong Kong Branch of the Chinese, National Engineering Research Center for Control, Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil & Environmental Engineering, Hong Kong Branch of the Chinese, National Engineering Research Center for Control, Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Natalia P Ivleva
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technical University of Munich, Munich, Germany
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Center of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China
| | - Ji Dai
- Department of Civil & Environmental Engineering, Hong Kong Branch of the Chinese, National Engineering Research Center for Control, Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanxiang Cui
- Department of Civil & Environmental Engineering, Hong Kong Branch of the Chinese, National Engineering Research Center for Control, Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Basanta Kumar Biswal
- Department of Civil & Environmental Engineering, Hong Kong Branch of the Chinese, National Engineering Research Center for Control, Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering, Hong Kong Branch of the Chinese, National Engineering Research Center for Control, Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China
| |
Collapse
|
12
|
Zhang Y, Hua ZS, Lu H, Oehmen A, Guo J. Elucidating functional microorganisms and metabolic mechanisms in a novel engineered ecosystem integrating C, N, P and S biotransformation by metagenomics. WATER RESEARCH 2019; 148:219-230. [PMID: 30388523 DOI: 10.1016/j.watres.2018.10.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/11/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Denitrifying sulfur conversion-associated enhanced biological phosphorous removal (DS-EBPR) system is not only a novel wastewater treatment process, but also an ideal model for microbial ecology in a community context. However, it exists the knowledge gap on the roles and interactions of functional microorganisms in the DS-EBPR system for carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) bioconversions. We use genome-resolved metagenomics to build up an ecological model of microbial communities in a lab-scale DS-EBPR system with stable operation for more than 400 days. Our results yield 11 near-complete draft genomes that represent a substantial portion of the microbial community (39.4%). Sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB) promote complex metabolic processes and interactions for C, N, P and S conversions. Bins 1-4 and 10 are considered as new potential polyphosphate-accumulating organisms (PAOs), in which Bins 1-4 can be considered as S-related PAOs (S-PAOs) with no previously cultivated or reported members. Our findings give an insight into a new ecological system with C, N, P and S simultaneous bioconversions and improve the understanding of interactions among SRB, SOB, denitrifiers and PAOs within a community context.
Collapse
Affiliation(s)
- Yan Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Zheng-Shuang Hua
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, PR China.
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
13
|
Guo G, Wu D, Ekama GA, Hao T, Mackey HR, Chen G. Denitrifying sulfur conversion-associated EBPR: Effects of temperature and carbon source on anaerobic metabolism and performance. WATER RESEARCH 2018; 141:9-18. [PMID: 29753976 DOI: 10.1016/j.watres.2018.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
The recently developed Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) process has demonstrated simultaneous removal of organics, nitrogen and phosphorus with minimal sludge production in the treatment of saline/brackish wastewater. Its performance, however, is sensitive to operating and environmental conditions. In this study, the effects of temperature (20, 25, 30 and 35 °C) and the ratio of influent acetate to propionate (100-0, 75-25, 50-50, 25-75 and 0-100%) on anaerobic metabolism were investigated, and their optimal values/controls for performance optimization were identified. A mature DS-EBPR sludge enriched with approximately 30% sulfate-reducing bacteria (SRB) and 33% sulfide-oxidizing bacteria (SOB) was used in this study. The anaerobic stoichiometry of this process was insensitive to temperature or changes in the carbon source. However, an increase in temperature from 20 to 35 °C accelerated the kinetic reactions of the functional bacteria (i.e. SRB and SOB) and raised the energy requirement for their anaerobic maintenance, while a moderate temperature (25-30 °C) resulted in better P removal (≥93%, 18.6 mg P/L removal from total 20 mg P/L in the influent) with a maximum sulfur conversion of approximately 16 mg S/L. These results indicate that the functional bacteria are likely to be mesophilic. When a mixed carbon source (75-25 and 50-50% acetate to propionate ratios) was supplied, DS-EBPR achieved a stable P removal (≥89%, 17.8 mg P/L for 400 mg COD/L in the influent) with sulfur conversions at around 23 mg S/L, suggesting the functional bacteria could effectively adapt to changes in acetate or propionate as the carbon source. The optimal temperatures or carbon source conditions maximized the functional bacteria competition against glycogen-accumulating organisms by favoring their activity and synergy. Therefore, the DS-EBPR process can be optimized by setting the temperature in the appropriate range (25-30 °C) and/or manipulating influent carbon sources.
Collapse
Affiliation(s)
- Gang Guo
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Tianwei Hao
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Hamish Robert Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Guanghao Chen
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
14
|
Elucidating the microbial communities and anaerobic mechanisms of a new biomass capable of capturing carbon and sulfur pollutants for sulfate-laden wastewater treatment. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Kumar S, Herrmann M, Blohm A, Hilke I, Frosch T, Trumbore SE, Küsel K. Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer. FEMS Microbiol Ecol 2018; 94:5056153. [DOI: 10.1093/femsec/fiy141] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/18/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Swatantar Kumar
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
| | - Martina Herrmann
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| | - Annika Blohm
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena, Germany
| | - Ines Hilke
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Albert-Einstein-Strasse 6, D-07745, Jena, Germany
| | - Susan E Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| |
Collapse
|