1
|
Li X, Cao X, Zhang Z, Li Y, Zhang Y, Wang C, Fan W. Mechanism of phenanthrene degradation by the halophilic Pelagerythrobacter sp. N7. CHEMOSPHERE 2024; 350:141175. [PMID: 38211788 DOI: 10.1016/j.chemosphere.2024.141175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/19/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
PAHs has shown worldwide accumulation and causes a significant environmental problem especially in saline and hypersaline environments. Moderately halophilic bacteria could be useful for the bioremediation of PAH pollution in hypersaline environments. Pelagerythrobacter sp. N7 was isolated from the PAH-degrading consortium 5H, which was enriched from mixed saline soil samples collected in Shanxi Province, China. 16S rRNA in the genomic DNA revealed that strain N7 belonged to Pelagerythrobacter. Strain N7 exhibited a high tolerance to a wide range of salinities (1-10%) and was highly efficient under neutral to weak alkaline conditions (pH 6-9). The whole genome of strain N7 was sequenced and analyzed, revealing an abundance of catabolic genes. Using the whole genome information, we conducted preliminary research on key enzymes and gene clusters involved in the upstream and downstream PAH degradation pathways of strain N7, thereby inferring its degradation pathway for phenanthrene and naphthalene. This study adds to our understanding of PAH degradation in hypersaline environments and, for the first time, identifies a Pelagerythrobacter with PAH-degrading capability. Strain N7, with its high efficiency in phenanthrene degradation, represents a promising resource for the bioremediation of PAHs in hypersaline environments.
Collapse
Affiliation(s)
- Xiangjin Li
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Xinghong Cao
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yichun Li
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Yue Zhang
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Chongyang Wang
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Weihua Fan
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| |
Collapse
|
2
|
Wang J, Zhang Y, Ding Y, Zhang Y, Xu W, Zhang X, Wang Y, Li D. Adaptive characteristics of indigenous microflora in an organically contaminated high salinity groundwater. CHEMOSPHERE 2024; 349:140951. [PMID: 38101485 DOI: 10.1016/j.chemosphere.2023.140951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Salinity, a critical factor, could directly or indirectly affect the microbial community structure and diversity. Changes in salinity levels act as environmental filters that influence the transformation of key microbial species. This study investigates the adaptive characteristics of indigenous microflora in groundwater in relation to external organic pollutants under high salinity stress. A highly mineralized shallow groundwater in Northwest China was conducted as the study area, and six representative sampling points were chosen to explore the response of groundwater hydrochemical parameters and microflora, as well as to identify the tolerance mechanisms of indigenous microflora to combined pollution. The results revealed that the dominant genera found in high salinity groundwater contaminated with organic pollutants possess the remarkable ability to degrade such pollutants even under challenging high salinity conditions, including Halomonas, Pseudomonas, Halothiobacillus, Sphingomonas, Lutibacter, Aquabacterium, Thiomicrospira, Aequorivita, etc. The hydrochemical factors, including total dissolved solids (TDS), sulfide, nitrite, nitrate, oxidation reduction potential (ORP), NH3-N, Na, Fe, benzene series, phenols, and halogenated hydrocarbons, demonstrated a significant influence on microflora. High levels of sulphate and sulfide in groundwater can exhibit dual effects on microflora. On one hand, these compounds can inhibit the growth and metabolism of microorganisms. On the other hand, they can also serve as effective electron donors/receptors during the microbial degradation of organic pollutants. Microorganisms exhibit resilience to the inhibitory effects of high salinity and organic pollutants via a series of tolerance mechanisms, such as strengthening the extracellular membrane barrier, enhancing the synthesis of relevant enzymes, initiating novel biochemical reactions, improving cellular self-healing capabilities, responding to unfavorable environmental conditions by migration, and enhancing the S cycle for the microbial metabolism of organic pollutants.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yi Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Weiqing Xu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Xinying Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yiliang Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Dong Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| |
Collapse
|
3
|
Mu J, Chen Y, Song Z, Liu M, Zhu B, Tao H, Bao M, Chen Q. Effect of terminal electron acceptors on the anaerobic biodegradation of PAHs in marine sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129569. [PMID: 35999753 DOI: 10.1016/j.jhazmat.2022.129569] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The existing polycyclic aromatic hydrocarbons (PAHs) in marine sediment has become a critical threat to biological security. Terminal electron acceptor (TEA) amendment has been applied as a potential strategy to accelerate bioremediation in sediment. HCO3-, NO3-, and SO42- were separately added to anaerobic sediment system containing five kinds of PAH, namely, phenanthrene, anthracene, fluoranthene, pyrene and benzo(a)pyrene. PAH concentration, PAH metabolites, TEA concentration, and electron transport system (ETS) activity were investigated. The HCO3- amendment group achieved the max PAH degradation efficiency of 84.98 %. SO42- group led to the highest benzo(a)pyrene removal rate of 69.26 %. NO3- had the lowest PAH degradation rate of 76.16 %. ETS activity test showed that NO3- significantly inhibited electron transport activity in the sediment. The identified PAH metabolites were the same in each group, including 4,5-dimethylphenanthrene, 3-acetylphenanthrene, 9,10-anthracenedione, pyrene-7-hydroxy-8-carboxylic acid, anthrone, and dibenzothiophene. After 126 d's anaerobic degradation at 25 °C, the utilization of HCO3- and SO42- as selected TEAs promoted the PAH biodegradation performance better than the utilization of NO3-.
Collapse
Affiliation(s)
- Jun Mu
- School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China; College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572022, PR China
| | - Yu Chen
- School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhao Song
- School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mei Liu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Baikang Zhu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hengcong Tao
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR, China
| | - Qingguo Chen
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
4
|
Jimoh AA, Ikhimiukor OO, Adeleke R. Prospects in the bioremediation of petroleum hydrocarbon contaminants from hypersaline environments: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35615-35642. [PMID: 35247173 DOI: 10.1007/s11356-022-19299-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Hypersaline environments are underappreciated and are frequently exposed to pollution from petroleum hydrocarbons. Unlike other environs, the high salinity conditions present are a deterrent to various remediation techniques. There is also production of hypersaline waters from oil-polluted ecosystems which contain toxic hydrophobic pollutants that are threat to public health, environmental protection, and sustainability. Currently, innovative advances are being proposed for the remediation of oil-contaminated hypersaline regions. Such advancements include the exploration and stimulation of native microbial communities capable of utilizing and degrading petroleum hydrocarbons. However, prevailing salinity in these environments is unfavourable for the growth of non-halophylic microorganisms, thus limiting effective bioremediation options. An in-depth understanding of the potentials of various remediation technologies of hydrocarbon-polluted hypersaline environments is lacking. Thus, we present an overview of petroleum hydrocarbon pollution in hypersaline ecosystems and discuss the challenges and prospects associated with several technologies that may be employed in remediation of hydrocarbon pollution in the presence of delimiting high salinities. The application of biological remediation technologies including the utilization of halophilic and halotolerant microorganisms is also discussed.
Collapse
Affiliation(s)
- Abdullahi Adekilekun Jimoh
- Unit for Environmental Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, 2520, South Africa.
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Bellville, Cape Town, 7535, South Africa.
| | - Odion Osebhahiemen Ikhimiukor
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University (Potchefstroom Campus), Potchefstroom, 2520, South Africa
| |
Collapse
|
5
|
Chen Z, Hu H, Xu P, Tang H. Soil bioremediation by Pseudomonas brassicacearum MPDS and its enzyme involved in degrading PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152522. [PMID: 34953839 DOI: 10.1016/j.scitotenv.2021.152522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) commonly coexist in contaminated sites, posing a significant threat to ecosystem. Strains that degrade a wide range of substrates play important roles in bioremediation of contaminated environment. In this study, we reveal that Pseudomonas brassicacearum MPDS was able to remove 31.1% naphthalene of 500 mg/kg from soil within 2 d, while its relative abundance decreased significantly on Day 20, indicating its applicable potential in soil remediation. In addition to naphthalene, dibenzofuran, dibenzothiophene, and fluorene as reported previously, strain MPDS is able to degrade carbazole, phenanthrene, pyrene, and 2-bromonaphthalene. Moreover, NahA from strain MPDS has multi-substrate catalytic capacities on naphthalene, dibenzofuran, dibenzothiophene, phenanthrene, and 2-bromonaphthalene into dihydrodiols, while converts fluorene and carbazole into monohydroxy compounds according to GC-MS analysis. This study provides further insights into the exploration of soil remediation by strain MPDS and the mining of enzymes involved in the degradation of PAHs.
Collapse
Affiliation(s)
- Zhengshi Chen
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
6
|
Fan R, Tian H, Wu Q, Yi Y, Yan X, Liu B. Mechanism of bio-electrokinetic remediation of pyrene contaminated soil: Effects of an electric field on the degradation pathway and microbial metabolic processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126959. [PMID: 34449353 DOI: 10.1016/j.jhazmat.2021.126959] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, the mechanism of bio-electrokinetic (BIO-EK) remediation to improve the degradation of pyrene was evaluated based on an analysis of the intermediate products and the microbial community. The results show that BIO-EK remediation has a higher pyrene degradation efficiency on pyrene and its intermediate products than the bioremediation and electrokinetic (EK) remediation processes. A series of intermediate products were detected. According to the type of the intermediate products, two degradation pathways, biological metabolism and electrochemical oxidation, are proposed in the BIO-EK remediation of pyrene. Furthermore, the primary microbial taxa involved in the pollutant degradation changed, which led to variations in the functional gene components. The abundant and functional genes related to metabolism were specifically analyzed. The results indicate that the electric field promotes the expression of metabolisms associated with 14 carbohydrates, 13 lipids, 13 amino acids, five energies, and in particular, 11 xenobiotics. These results suggest that in addition to the promotion effect on the microbial metabolism caused by the electric field, BIO-EK remediation can promote the degradation of pollutants due to the coexistence of a microbial metabolic pathway and an electrochemical oxidation pathway.
Collapse
Affiliation(s)
- Ruijuan Fan
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China.
| | - Haihua Tian
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Qiong Wu
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Yuanyuan Yi
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Xingfu Yan
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China
| | - Bingru Liu
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China
| |
Collapse
|
7
|
Cao H, Zhang X, Wang S, Liu J, Han D, Zhao B, Wang H. Insights Into Mechanism of the Naphthalene-Enhanced Biodegradation of Phenanthrene by Pseudomonas sp. SL-6 Based on Omics Analysis. Front Microbiol 2021; 12:761216. [PMID: 34867892 PMCID: PMC8635735 DOI: 10.3389/fmicb.2021.761216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/18/2021] [Indexed: 12/04/2022] Open
Abstract
The existence of polycyclic aromatic hydrocarbons (PAHs) in contaminated environment is multifarious. At present, studies of metabolic regulation focus on the degradation process of single PAH. The global metabolic regulatory mechanisms of microorganisms facing coexisting PAHs are poorly understood, which is the major bottleneck for efficient bioremediation of PAHs pollution. Naphthalene (NAP) significantly enhanced the biodegradation of phenanthrene (PHE) by Pseudomonas sp. SL-6. To explore the underlying mechanism, isobaric tags for relative and absolute quantification (iTRAQ) labeled quantitative proteomics was used to characterize the differentially expressed proteins of SL-6 cultured with PHE or NAP + PHE as carbon source. Through joint analysis of proteome and genome, unique proteins were identified and quantified. The up-regulated proteins mainly concentrated in PAH catabolism, Transporters and Electron transfer carriers. In the process, the regulator NahR, activated by salicylate (intermediate of NAP-biodegradation), up-regulates degradation enzymes (NahABCDE and SalABCDEFGH), which enhances the biodegradation of PHE and accumulation of toxic intermediate–1-hydroxy-2-naphthoic acid (1H2Na); 1H2Na stimulates the expression of ABC transporter, which maintains intracellular physiological activity by excreting 1H2Na; the up-regulation of cytochrome C promotes the above process running smoothly. Salicylate works as a trigger that stimulates cell to respond globally. The conjecture was verified at transcriptional and metabolic levels. These new insights contribute to improving the overall understanding of PAHs-biodegradation processes under complex natural conditions, and promoting the application of microbial remediation technology for PAHs pollution.
Collapse
Affiliation(s)
- Hao Cao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinyu Zhang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuangyan Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiading Liu
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongfei Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baisuo Zhao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haisheng Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Li J, Luo C, Zhang D, Zhao X, Dai Y, Cai X, Zhang G. The catabolic pathways of in situ rhizosphere PAH degraders and the main factors driving PAH rhizoremediation in oil-contaminated soil. Environ Microbiol 2021; 23:7042-7055. [PMID: 34587314 DOI: 10.1111/1462-2920.15790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/15/2021] [Accepted: 09/24/2021] [Indexed: 01/21/2023]
Abstract
Rhizoremediation is a potential technique for polycyclic aromatic hydrocarbon (PAH) remediation; however, the catabolic pathways of in situ rhizosphere PAH degraders and the main factors driving PAH rhizoremediation remain unclear. To address these issues, stable-isotope-probing coupled with metagenomics and molecular ecological network analyses were first used to investigate the phenanthrene rhizoremediation by three different prairie grasses in this study. All rhizospheres exhibited a significant increase in phenanthrene removal and markedly modified the diversity of phenanthrene degraders by increasing their populations and interactions with other microbes. Of all the active phenanthrene degraders, Marinobacter and Enterobacteriaceae dominated in the bare and switchgrass rhizosphere respectively; Achromobacter was markedly enriched in ryegrass and tall fescue rhizospheres. Metagenomes of 13 C-DNA illustrated several complete pathways of phenanthrene degradation for each rhizosphere, which clearly explained their unique rhizoremediation mechanisms. Additionally, propanoate and inositol phosphate of carbohydrates were identified as the dominant factors that drove PAH rhizoremediation by strengthening the ecological networks of soil microbial communities. This was verified by the results of rhizospheric and non-rhizospheric treatments supplemented with these two substances, further confirming their key roles in PAH removal and in situ PAH rhizoremediation. Our study offers novel insights into the mechanisms of in situ rhizoremediation at PAH-contaminated sites.
Collapse
Affiliation(s)
- Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.,Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xixi Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
9
|
Al-Mur BA, Pugazhendi A, Jamal MT. Application of integrated extremophilic (halo-alkalo-thermophilic) bacterial consortium in the degradation of petroleum hydrocarbons and treatment of petroleum refinery wastewater under extreme condition. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125351. [PMID: 33930944 DOI: 10.1016/j.jhazmat.2021.125351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Degradation of petroleum hydrocarbon under extreme conditions such as high salinity, temperature and pH was difficult due to unavailability of potential bacterial strains. The present study details the efficiency of extremophilic bacterial consortium in biodegradation of different petroleum hydrocarbons and treatment of petroleum refinery wastewater under extreme condition. Extreme condition for the degradation of petroleum hydrocarbons was optimized at 8% salinity, pH-10 and temperature-60 °C. The consortium recorded complete degradation of low molecular weight (LMW) petroleum hydrocarbons (200 ppm) such as anthracene, phenanthrene, fluorene and naphthalene in 8 days under optimized extreme condition. High molecular weight (HMW) hydrocarbons such as pyrene (100 ppm), benzo(e)pyrene (20 ppm), benzo(k)fluoranthene (20 ppm) and benzo(a)pyrene (20 ppm), revealed 93%, 60%, 55% and 51% degradation by the extremophilic consortium under optimized extreme condition. The extremophilic consortium mineralized fluorene (61%) at high saline condition up to 24%. Addition of yeast extract potently accelerated the biodegradation under extreme condition. Treatment of petroleum refinery wastewater in continuous stirred tank reactor recorded 92% COD removal with complete removal of LMW hydrocarbons in 16 days and 91% of HMW hydrocarbons in 32 days under extreme condition. The hydrocarbons degrading extremophilic consortium possessed Ochrobactrum, Bacillus, Marinobacter, Pseudomonas, Martelella, Stenotrophomonas and Rhodococcus.
Collapse
Affiliation(s)
- Bandar A Al-Mur
- Department of Environmental Science, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arulazhagan Pugazhendi
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mamdoh T Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Jamal MT. Enrichment of Potential Halophilic Marinobacter Consortium for Mineralization of Petroleum Hydrocarbons and Also as Oil Reservoir Indicator in Red Sea, Saudi Arabia. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1735456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mamdoh T. Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Gao X, Yin Y, Yan J, Zhang J, Ma H, Zhou C. Separation, biochemical characterization and salt-tolerant mechanisms of alkaline protease from Aspergillus oryzae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3359-3366. [PMID: 30584796 DOI: 10.1002/jsfa.9553] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The salt tolerance of proteases secreted by Aspergillus oryzae 3.042 closely relates to the utilization of raw materials and the quality of soy sauce. However, little is known about the salt-tolerant proteases and their salt-tolerant mechanisms. RESULTS In this study, we isolated and identified a salt-tolerant alkaline protease (AP, approximately 29 kDa) produced by A. oryzae 3.042. It was considered as a metal-ion-independent serine protease. The optimum and stable pH values were both pH 9.0 and the optimum temperature was 40 °C. Over 20% relative activity of AP remained in the presence of 3.0 mol L-1 NaCl after 7 days, but its Km and Vmax were only mildly influenced by the presence of 3.0 mol L-1 NaCl, indicating its outstanding salt tolerance. Furthermore, AP was more stable than non-salt-tolerant protease at high salinity. The salt-tolerant mechanisms of AP could be due to more salt bridges, higher proportion of ordered secondary structures and stronger hydrophobic amino acid residues in the interior. CONCLUSIONS The above results are vital for maintaining, activating and/or modulating the activity of AP in high-salt environments. They would also provide theoretical guidance for the modification of AP and the engineering of A. oryzae 3.042 so as to secrete more AP. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yiyun Yin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jingkun Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junke Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Isolation, cloning and characterization of an azoreductase and the effect of salinity on its expression in a halophilic bacterium. Int J Biol Macromol 2019; 123:1062-1069. [DOI: 10.1016/j.ijbiomac.2018.11.175] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 11/17/2022]
|
13
|
Wang C, Huang Y, Zhang Z, Wang H. Salinity effect on the metabolic pathway and microbial function in phenanthrene degradation by a halophilic consortium. AMB Express 2018; 8:67. [PMID: 29696463 PMCID: PMC5918149 DOI: 10.1186/s13568-018-0594-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/13/2018] [Indexed: 11/15/2022] Open
Abstract
With the close relationship between saline environments and industry, polycyclic aromatic hydrocarbons (PAHs) accumulate in saline/hypersaline environments. Therefore, PAHs degradation by halotolerant/halophilic bacteria has received increasing attention. In this study, the metabolic pathway of phenanthrene degradation by halophilic consortium CY-1 was first studied which showed a single upstream pathway initiated by dioxygenation at the C1 and C2 positions, and at several downstream pathways, including the catechol pathway, gentisic acid pathway and protocatechuic acid pathway. The effects of salinity on the community structure and expression of catabolic genes were further studied by a combination of high-throughput sequencing, catabolic gene clone library and real-time PCR. Pure cultures were also isolated from consortium CY-1 to investigate the contribution made by different microbes in the PAH-degrading process. Marinobacter is the dominant genus that contributed to the upstream degradation of phenanthrene especially in high salt content. Genus Halomonas made a great contribution in transforming intermediates in the subsequent degradation of catechol by using catechol 1,2-dioxygenase (C12O). Other microbes were predicted to be mediating bacteria that were able to utilize intermediates via different downstream pathways. Salinity was investigated to have negative effects on both microbial diversity and activity of consortium CY-1 and consortium CY-1 was found with a high degree of functional redundancy in saline environments.
Collapse
|