1
|
Zhang Z, Liu Y, He L. Impacts of dams and reservoirs on riparian vegetation in China under climate change. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125403. [PMID: 40262503 DOI: 10.1016/j.jenvman.2025.125403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
China has built over 100,000 dams by 2020, with the total capacity of reservoirs reaching 989 billion cubic meters. The effects of reservoirs on the ecological environment of riparian zones need thorough study, yet current research covers only a small portion of China's completed dams. This study uses fixed effects vector decomposition and structural equation modeling to quantify the response of riparian vegetation to reservoirs near 921 completed dams in China, within a range of 1-10 km. The results reveal spatial variations in the response of vegetation to dam construction. Within a 1 km of the reservoir, riparian vegetation is negatively affected by habitat fragmentation and altered hydrological conditions (Coeff -0.14, P < 0.05). However, with increasing distance from the reservoirs, the effects diminish (P > 0.05, 2-5 km) or even become positive (Coeff > 0, P < 0.05, 5-10 km). Within the 1-10 km buffers, the negative effects of dams and reservoirs on riparian vegetation through climate and soil also show a distance decay (P < 0.05). This study provides new evidence of the long-term effects of hydraulic engineering development on riparian vegetation and explores the pathways and spatial scope of these impacts, which has important implications for hydropower planning and river ecosystem management.
Collapse
Affiliation(s)
- Zhucheng Zhang
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China; School of Civil Engineering, Tianjin University, Tianjin 300350, China.
| | - Yunlong Liu
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China; School of Civil Engineering, Tianjin University, Tianjin 300350, China.
| | - Li He
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China; School of Civil Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Jing S, Zhang X, Niu H, Lin F, Ayi Q, Wan B, Ren X, Su X, Shi S, Liu S, Zeng B. Differential Growth Responses of Alternanthera philoxeroides as Affected by Submergence Depths. FRONTIERS IN PLANT SCIENCE 2022; 13:883800. [PMID: 35720589 PMCID: PMC9201830 DOI: 10.3389/fpls.2022.883800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Global climate change has resulted in an increase in intensity and frequency of flooding, plants living in lowlands, and shore areas have to confront submergence caused by flooding, submergence-tolerant plants usually respond by adopting either escape or quiescence strategies. While certain plants exhibit a changeover from escape strategy upon partial submergence to quiescence strategy under complete shallow submergence, it remains unknown whether plants completely submerged at different water depths would adjust their strategies to cope with the change in submergence depth. Alternanthera philoxeroides is an ideal species to explore this adjustment as it is widely distributed in flood-disturbed habitats and exhibits an escape strategy when completely submerged in shallow waters. We investigated the responses of A. philoxeroides in terms of morphology, anatomy, and non-structural carbohydrate metabolism by conducting experiments using a series of submergence depths (0, 2, 5, and 9 m). During the submergence treatment, environmental factors such as light, dissolved oxygen, and temperature for submerged plants were kept constant. The results showed that A. philoxeroides plants submerged at depth of 2 m presented an escape strategy via fast stem elongation, extensive pith cavity development, and small biomass loss. However, the retarded stem elongation, reduced pith cavity transverse area, and increased biomass loss along the water depth gradient indicated that A. philoxeroides altered its growth response as water depth increased from 2 to 9 m. It is found that the changeover of response strategies occurred at higher submergence depths (5-9 m). Based on the results of our experiments, we demonstrated that water depth played an important role in driving the change in strategy. The water-depth-dependent growth performance of A. philoxeroides would benefit the species in habit exploration and exploitation. Further studies should focus on the performances of plants when submerged at varied water depths with different light climates and dissolved oxygen content, and how water depths drive the response behaviors of the submerged plants.
Collapse
Affiliation(s)
- Shufang Jing
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- School of Art and Design, Huanghuai University, Zhumadian, China
| | - Xiaoping Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Hangang Niu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Feng Lin
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Qiaoli Ayi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Binna Wan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Xinyi Ren
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaolei Su
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Shaohua Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Songping Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Bo Zeng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Zhang Q, Tang S, Li J, Fan C, Xing L, Luo K. Integrative transcriptomic and metabolomic analyses provide insight into the long-term submergence response mechanisms of young Salix variegata stems. PLANTA 2021; 253:88. [PMID: 33813651 DOI: 10.1007/s00425-021-03604-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The mechanisms underlying long-term complete submergence tolerance in S. variegata involve enhanced oxidative stress responses, strengthened ethylene and ABA signaling, synthesis of raffinose family oligosaccharides, unsaturated fatty acids, and specific stress-related amino acids. Salix variegata Franch. is a riparian shrub species that can tolerate long-term complete submergence; however, the molecular mechanisms underlying this trait remain to be elucidated. In this study, we subjected S. variegata plants to complete submergence for 60 d and collected stems to perform transcriptomic and metabolomic analyses, as well as quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays. Results revealed that photosynthesis and the response to light stimulus were inhibited during submergence and recovered after desubmergence. Ethylene and abscisic acid (ABA) signaling could be important for the long-term submergence tolerance of S. variegata. Jasmonic acid (JA) signaling also participated in the response to submergence. Raffinose family oligosaccharides, highly unsaturated fatty acids, and specific stress-related amino acids accumulated in response to submergence, indicating that they may protect plants from submergence damage, as they do in response to other abiotic stressors. Several organic acids were produced in S. variegata plants after submergence, which may facilitate coping with the toxicity induced by submergence. After long-term submergence, cell wall reorganization and phenylpropanoid metabolic processes (the synthesis of specific phenolics and flavonoids) were activated, which may contribute to long-term S. variegata submergence tolerance; however, the detailed mechanisms require further investigation. Several transcription factors (TFs), such as MYB, continuously responded to submergence, indicating that they may play important roles in the responses and adaption to submergence. Genes related to oxidative stress tolerance were specifically expressed after desubmergence, potentially contributing to recovery of S. variegata plants within a short period of time.
Collapse
Affiliation(s)
- Qingwei Zhang
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Shaohu Tang
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jianqiu Li
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunfen Fan
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Keming Luo
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, Southwest University, Tiansheng Road No. 2, Beibei, Chongqing, 400715, China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Responses of Swamp Cypress (Taxodium distichum) and Chinese Willow (Salix matsudana) Roots to Periodic Submergence in Mega-Reservoir: Changes in Organic Acid Concentration. FORESTS 2021. [DOI: 10.3390/f12020203] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Organic acids are critical as secondary metabolites for plant adaption in a stressful situation. Oxalic acid, tartaric acid, and malic acid can improve plant tolerance under waterlogged conditions. Two prominent woody species (Taxodium distichum-Swamp cypress and Salix matsudana-Chinese willow) have been experiencing long-term winter submergence and summer drought in the Three Gorges Reservoir. The objectives of the present study were to explore the responses of the roots of two woody species during flooding as reflected by root tissue concentrations of organic acids. Potted sample plants were randomly divided into three treatment groups: control, moderate submergence, and deep submergence. The concentrations of oxalic acid, tartaric acid, and malic acid in the main root and lateral roots of the two species were determined at four stages. The results showed that T. distichum and S. matsudana adapted well to the water regimes of the reservoir, with a survival rate of 100% during the experiment period. After experiencing a cycle of submergence and emergence, the height and base diameter of the two species showed increasing trends. Changes in base diameter showed insignificant differences between submergence treatments, and only height was significant under deep submergence. The concentrations of three organic acids in the roots of two species were influenced by winter submergence. After emergence in spring, two species could adjust their organic acid metabolisms to the normal level. Among three organic acids, tartaric acid showed the most sensitive response to water submergence, which deserved more studies in the future. The exotic species, T. distichum, had a more stable metabolism of organic acids to winter flooding. However, the native species, S. matsudana, responded more actively to long-term winter flooding. Both species can be considered in vegetation restoration, but it needs more observations for planting around 165 m above sea level, where winter submergence is more than 200 days.
Collapse
|
5
|
Male and Female Plants of Salix viminalis Perform Similarly to Flooding in Morphology, Anatomy, and Physiology. FORESTS 2020. [DOI: 10.3390/f11030321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salix viminalis L., a dioecious species, is widely distributed in riparian zones, and flooding is one of the most common abiotic stresses that this species suffers. In this study, we investigated the morphological, anatomical, and physiological responses of male vs. female plants of S. viminalis to flooding. The results showed that the plant height and root collar diameter were stimulated by flooding treatment, which corresponded with higher dry weight of the stem and leaf. However, the dry weight of the underground part decreased, which might be due to the primary root having stopped growing. The little-influenced net photosynthesis rate (Pn) under flooding treatment could guarantee rapid growth of the aboveground part, while the unaffected leaf anatomical structure and photosynthetic pigment contents could ensure the normal operation of photosynthetic apparatus. Under a flooding environment, the production ratio of superoxide free radical (O2∙-) and malondialdehyde (MDA) contents increased, indicating that the cell membrane was damaged and oxidative stress was induced. At the same time, the antioxidant enzyme system, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and osmotic adjustment substances, involving proline (Pro) and solute protein (SP), began to play a positive role in resisting flooding stress. Different from our expectation, the male and female plants of S. viminalis performed similarly under flooding, and no significant differences were discovered. The results indicate that both male and female plants of S. viminalis are tolerant to flooding. Thus, both male and female plants of S. viminalis could be planted in frequent flooding zones.
Collapse
|
6
|
Duan X, Xu F, Qin D, Gao T, Shen W, Zuo S, Yu B, Xu J, Peng Y, Dong J. Diversity and bioactivities of fungal endophytes from Distylium chinense, a rare waterlogging tolerant plant endemic to the Three Gorges Reservoir. BMC Microbiol 2019; 19:278. [PMID: 31822262 PMCID: PMC6902458 DOI: 10.1186/s12866-019-1634-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The present study involves diversity and biological activities of the endophytic fungal community from Distylium chinense, a rare waterlogging tolerant plant endemic to the Three Gorges Reservoir. This study has been conducted hypothesizing that the microbial communities in the TGR area would contribute to the host plant tolerating a range of abiotic stress such as summer flooding, infertility, drought, salinity and soil erosion etc., and they may produce new metabolites, which may possess plentiful bioactive property, especially antioxidant activity. Therefore in the current study, the antioxidant, antimicrobial and anticancer activities of 154 endophytes recovered from D. chinense have been investigated. Furthermore, the active metabolites of the most broad-spectrum bioactive strain have also been studied. RESULTS A total of 154 fungal endophytes were isolated from roots and stems. They were categorized into 30 morphotypes based on cultural characteristics and were affiliated with 27 different taxa. Among these, the most abundant fungal orders included Diaporthales (34.4%) and Botryosphaeriales (30.5%), which were predominantly represented by the species Phomopsis sp. (24.7%) and Neofusicoccum parvum (23.4%). Fermentation extracts were evaluated, screening for antioxidant, antimicrobial and anticancer activities. Among the 154 isolates tested, 99 (64.3%) displayed significant antioxidant activity, 153 (99.4%) exhibited inclusive antimicrobial activity against at least one tested microorganism and 27 (17.5%) showed exclusive anticancer activity against one or more cancer cell lines. Specifically, the crude extract of Irpex lacteus DR10-1 exhibited note-worthy bioactivities. Further chemical investigation on DR10-1 strain resulted in the isolation and identification of two known bioactive metabolites, indole-3-carboxylic acid (1) and indole-3-carboxaldehyde (2), indicating their potential roles in plant growth promotion and human medicinal value. CONCLUSION These results indicated that diverse endophytic fungal population inhabits D. chinense. One of the fungal isolate DR10-1 (Irpex lacteus) exhibited significant antioxidant, antimicrobial and anticancer potential. Further, its active secondary metabolites 1 and 2 also showed antioxidant, antimicrobial and anticancer potential.
Collapse
Affiliation(s)
- Xiaoxiang Duan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
- Laboratory Animal Research Institute of Chongqing Academy of Chinese Materia Medica, Chongqing, 400065 People’s Republic of China
| | - Fangfang Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Dan Qin
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Tiancong Gao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Weiyun Shen
- First Affiliated Hospital, Huzhou Teachers College, The First People’s Hospital of Huzhou, 158 Guangchanghou Road, Huzhou, 313000 People’s Republic of China
| | - Shihao Zuo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Baohong Yu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Jieru Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Yajun Peng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Jinyan Dong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| |
Collapse
|
7
|
Xiong G, Zhang A, Fan D, Ge J, Yang D, Xie Z, Zhang W. Functional coordination between leaf traits and biomass allocation and growth of four herbaceous species in a newly established reservoir riparian ecosystem in China. Ecol Evol 2018; 8:11372-11384. [PMID: 30598742 PMCID: PMC6303726 DOI: 10.1002/ece3.4494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/25/2018] [Accepted: 07/14/2018] [Indexed: 01/21/2023] Open
Abstract
The flood-dry-flood cycle in the reservoir riparian zone (RRZ) of the Three Gorges Dam has dramatically altered the riparian ecosystem structure and composition. Previous field studies have shown that leaf traits varied greatly and were restricted to the lower-investment and faster-return end of the global leaf spectrum, which are typical characteristics of fast-growing species. However, it is unclear as to the mechanism underpinning the growth potential of these species and how it will respond to soil nutrient availability and temperature. Here, we linked the plant functional traits of four representative dominant C4 herbaceous species (Setaria viridis, Echinochloa crusgalli, Cynodon dactylon and Hemarthria altissima) to their relative growth rates (RGR) under ambient and elevated temperatures, with different nitrogen and phosphorus levels, to explore the potential mechanism of species growth in the newly established reservoir riparian ecosystem in the Three Gorges Reservoir Area, China. We grew seedlings of these species in four open-top chambers, with three levels of nutrient supplies under two temperature gradients (ambient temperature and an elevated temperature of 4°C). We found that the responses of the RGR and plant traits to soil N and P supply levels and temperature varied considerably among studied species. E. crusgalli displayed the lowest RGR associated with relatively low specific leaf area (SLA), leaf nitrogen content (LN), stem mass ratio (SMR), and high leaf mass ratio (LMR) and was less affected by soil N and P supply levels and temperature. C. dactylon and H. altissima showed the highest RGR compared to the other two species grown at the substrate of N = 0.4 mg/g, P = 0.2 mg/g at ambient air temperature, associated with a relatively high SMR, low LMR and low plant carbon content (PCC). However, the RGR advantage of the two species was diminished at elevated temperatures, while S. viridis showed the highest RGR compared to the other species. Across all datasets, the RGR had no association with the leaf area ratio (LAR) and SLA. The RGR also showed no significant relationships with the LN and leaf phosphorus content (LP). On the other hand, the RGR was captured adequately by the SMR, which can therefore be considered as a powerful functional marker of species' functioning in this newly established reservoir riparian ecosystem. Our study provides some insight into the underlying mechanisms of species growth in reservoir riparian ecosystems.
Collapse
Affiliation(s)
- Gaoming Xiong
- The Key Laboratory of Oasis Eco‐agricultureXinjiang Production and Construction CorpsShihezi UniversityShiheziChina
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesXiangshan, BeijingChina
| | - Aiying Zhang
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesXiangshan, BeijingChina
| | - Dayong Fan
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesXiangshan, BeijingChina
| | - Jielin Ge
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesXiangshan, BeijingChina
| | - Dan Yang
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesXiangshan, BeijingChina
| | - Zongqiang Xie
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesXiangshan, BeijingChina
| | - Wangfeng Zhang
- The Key Laboratory of Oasis Eco‐agricultureXinjiang Production and Construction CorpsShihezi UniversityShiheziChina
| |
Collapse
|