1
|
Hou Z, Mo F, Zhou Q. Elucidating response mechanisms at the metabolic scale of Eisenia fetida in typical oil pollution sites: A native driver in influencing carbon flow. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122545. [PMID: 37716696 DOI: 10.1016/j.envpol.2023.122545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Previous investigations on the stress response patterns of earthworms (Eisenia fetida) in practical petroleum hydrocarbon (PH) contamination systems were less focused. Therefore, this study investigated the ecotoxicological effect of PH contamination on earthworms based on metabonomics and histological observation, followed by correlation analysis between the earthworm metabolism, PH types and concentrations, soil physicochemical characteristics, and the microbial community structures (i.e., diversity and abundance) and functions. The results showed that due to the abundant PH organics, the cell metabolism of earthworms shifts under PH contamination conditions, leading them to use organic acids as alternative energy sources (i.e., gluconeogenesis pathway). Simultaneously, biomarker metabolites related to cellular uptake, stress response, and membrane disturbance were identified. In addition, when compared to the controls, considerable epicuticle and cuticle layer disruption was observed, along with PH internalization. It was demonstrated that PH pollution preferentially influences the physiological homeostasis of earthworms through indirect (i.e., microbial metabolism regulation) than direct (i.e., direct interaction with earthworms) mechanisms. Moreover, the varied CO2 releasement was verified, which highlights the potential role of earthworms in influencing carbon transformation and corresponds with the considerably enriched energy metabolism-related pathway. This study indicated that PH contamination can induce a strong stress response in earthworms through both direct and indirect mechanisms, which in turn, substantially influences carbon transformation in PH contamination sites.
Collapse
Affiliation(s)
- Zelin Hou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fan Mo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
2
|
An M, Chang D, Wang X, Wang K. Protective effects of polymer amendment on specific metabolites in soil and cotton leaves under cadmium contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115463. [PMID: 37714036 DOI: 10.1016/j.ecoenv.2023.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Polymer materials have great potential for soil heavy metal contamination remediation, but the metabolic mechanism by which polymer amendments regulate the responses of soil-plant systems to cadmium (Cd) stress is still unclear. To clarify the metabolic mechanism by which a self-developed soluble polymer amendment (PA) remediates Cd contamination in cotton fields, the common and differential metabolites in soil and cotton leaves were analyzed during the critical period of cotton growth (flowering and bolling stage) in a field experiment. The results showed that Cd stress increased Cd concentration in the soil-cotton system, and reduced enzyme activity in soil and cotton leaves. Besides, Cd stress also reduced the abundance of α-linolenic acid in soil and the abundance of 2-Oxoarginine and S-Adenosylmethionine in cotton leaves. These ultimately led to reductions in weight, boll number, yield, and fiber elongation. However, the application of PA to the Cd-contaminated soil significantly reduced the soil exchangeable Cd (Ex-Cd) concentration by 41.43%, and increased the boll number, yield, and fiber strength by 14.17%, 21.04%, and 19.89%, respectively compared with the Cd treatment. The results of metabolomic analysis showed that PA application mainly affected the Nicotinate and nicotinamide metabolism pathway, Lysine degradation pathway, and Arginine and proline metabolism pathway in cotton leaves and soil. Besides, in these metabolic pathways, succinic acid semialdehyde of cotton leaves, saccharopine of soil, and S-Adenosylmethionine of soil and cotton had the most significant response to PA application. Therefore, the application of PA to Cd-contaminated soil can increase soil and cotton leaf enzyme activity and cotton yield (boll number and seed cotton yield) and quality (fiber strength), and maintain soil-plant material balance by regulating the distribution of Cd ions and key metabolites in the soil-cotton system. This study will deepen our understanding of the metabolic mechanism of PA remediating Cd-contaminated cotton fields, and provide a technical reference for the remediation of heavy metal contamination in drip-irrigated cotton fields in arid areas.
Collapse
Affiliation(s)
- Mengjie An
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, Xinjiang 830046, PR China
| | - Doudou Chang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Xiaoli Wang
- Xinjiang Agricultural Vocational Technical College, Changji, Xinjiang 831100, PR China.
| | - Kaiyong Wang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
3
|
Bao X, Xu W, Cui J, Yan Z, Wang J, Chen X, Meng Z. NMR-based metabolomics approach to assess the ecotoxicity of prothioconazole on the earthworm (Eisenia fetida) in soil. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105320. [PMID: 36740340 DOI: 10.1016/j.pestbp.2022.105320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Prothioconazole (PTC) is a widely used agricultural fungicide. In recent years, studies have confirmed that it exerts adverse effects on various species, including aquatic organisms, mammals, and reptiles. However, the toxicological effects of PTC on soil organisms are poorly understood. Here, we investigated the toxic effects, via oxidative stress and metabolic responses, of PTC on earthworms (Eisenia fetida). PTC exposure can induce significant changes in oxidative stress indicators, including the activities of superoxide dismutase (SOD) and catalase (CAT) and the content of glutathione (GSH), which in turn affect the oxidative defense system of earthworms. In addition, metabolomics revealed that PTC exposure caused significant changes in the metabolic profiles of earthworms. The relative abundances of 16 and 21 metabolites involved in amino acids, intermediates of the tricarboxylic acid (TCA) cycle and energy metabolism were significantly altered after 7 and 14 days of PTC exposure, respectively. Particularly, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that multiple different metabolic pathways could be disturbed after 7 and 14 days of PTC exposure. Importantly, these alterations in oxidative stress and metabolic responses in earthworms reveal that the effects of PTC on earthworms were time dependent, and vary with exposure time. In conclusion, this study highlights that the effects of PTC on soil organisms are of serious concern.
Collapse
Affiliation(s)
- Xin Bao
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wangjin Xu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiajia Cui
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zixin Yan
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Guangling, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
4
|
Tőzsér D, Mizser S, Karaffa K, Málik-Roffa H, Magura T. A meta-analysis-based evaluation of metallic element accumulation in earthworms. ENVIRONMENT INTERNATIONAL 2022; 169:107546. [PMID: 36183488 DOI: 10.1016/j.envint.2022.107546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The responses of earthworms to excess soil element concentrations are well studied. However, published information on the metallic element accumulation in individuals is controversial. In this paper, the published data on earthworm As, Cd, Cr, Cu, Ni, Pb, and Zn whole body concentrations were evaluated in individuals collected from contaminated and uncontaminated (control) soils, using meta-analyses. The role of soil pH and exposure time as potential influencing factors on metal accumulation was also assessed. Based on the evaluations, the accumulation of each metallic element was significantly (p < 0.05) more intensive in individuals collected from contaminated soils than in ones from control soils, with minor differences in the order of accumulation intensity among the studied metallic elements. Further, major interspecific differences were indicated in the accumulation, with different species being the most intensive accumulators for individual metallic elements. Among the studied metals, Cu concentration in earthworm bodies increased significantly with increasing soil pH. As for the exposure time-dependent accumulation, Pb concentration was found to decrease significantly with time in whole body tissues of earthworms. These results suggested a high variability in metal- and species-specific accumulation-excretion patterns of earthworms, influenced also by other external factors. Based on the results highlighted in this meta-analysis, accumulation schemes raise the need for further analyses involving other additional variables (e.g., soil type, organic matter content, climatic condition) to get a better understanding of element cycle-earthworm relations.
Collapse
Affiliation(s)
- Dávid Tőzsér
- Department of Ecology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Szabolcs Mizser
- Department of Ecology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; MTA-DE Biodiversity and Ecosystem Services Research Group, Egyetem tér 1, H-4032 Debrecen, Hungary.
| | - Katalin Karaffa
- Department of Ecology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Hajnalka Málik-Roffa
- Department of Ecology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; MTA-DE Biodiversity and Ecosystem Services Research Group, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Tibor Magura
- Department of Ecology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; ELKH-DE Anthropocene Ecology Research Group, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
5
|
Tang R, Lan P, Ding C, Wang J, Zhang T, Wang X. A new perspective on the toxicity of arsenic-contaminated soil: Tandem mass tag proteomics and metabolomics in earthworms. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122825. [PMID: 32768809 DOI: 10.1016/j.jhazmat.2020.122825] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
The toxicity of low-level arsenic (As)-contaminated soil is not well understood. An integrated proteomic and metabolomic approach combined with morphological examination was used to investigate the potential biological toxicity of As-contaminated soil based on an exposure experiment with the earthworm Eisenia fetida. The results showed that the earthworm hindgut accumulated high As concentrations resulting in injury to the intestinal epithelia, chloragogenous tissues and coelom tissues. Furthermore, As-contaminated soil induced a significant increase in betaine levels and a decrease in dimethylglycine and myo-inositol levels in the earthworms, suggesting that the osmoregulatory metabolism of the earthworms may have been disturbed. The significantly altered levels of asparagine and dimethylglycine were proposed as potential biomarkers of As-contaminated soil. The upregulation of soluble calcium-binding proteins and profilin, the downregulation of sodium/potassium-transporting ATPase, and the proteins changes identified by gene ontology enrichment analysis confirmed that the earthworms suffered from osmotic stress. In addition, the significant changes in glycine-tRNA ligase activity and coelomic tissue injury revealed that As accumulation may disturb the earthworm immune system. This work provided new insight into the proteomic and metabolic toxicity of low-level As-contaminated soil ecosystems in earthworms, extended our knowledge of dual omics and highlighted the mechanisms underlying toxicity.
Collapse
Affiliation(s)
- Ronggui Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210014, China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Zeb A, Li S, Wu J, Lian J, Liu W, Sun Y. Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: A critical review of research progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140145. [PMID: 32927577 DOI: 10.1016/j.scitotenv.2020.140145] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
In recent years, soil pollution is a major global concern drawing worldwide attention. Earthworms can resist high concentrations of soil pollutants and play a vital role in removing them effectively. Vermiremediation, using earthworms to remove contaminants from soil or help to degrade non-recyclable chemicals, is proved to be an alternative, low-cost technology for treating contaminated soil. However, knowledge about the mechanisms and framework of the vermiremediation various organic and inorganic contaminants is still limited. Therefore, we reviewed the research progress of effects of soil contaminants on earthworms and potential of earthworm used for remediation soil contaminated with heavy metals, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), pesticides, as well as crude oil. Especially, the possible processes, mechanisms, advantages and limitations, and how to boost the efficiency of vermiremediation are well addressed in this review. Finally, future prospects of vermiremediation soil contamination are listed to promote further studies and application of vermiremediation in contaminated soils.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Song Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiani Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiapan Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
7
|
Immobilization of Cr(VI) in Soil Using a Montmorillonite-Supported Carboxymethyl Cellulose-Stabilized Iron Sulfide Composite: Effectiveness and Biotoxicity Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176087. [PMID: 32825647 PMCID: PMC7503541 DOI: 10.3390/ijerph17176087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022]
Abstract
A novel composite of montmorillonite-supported carboxymethyl cellulose-stabilized nanoscale iron sulfide (CMC@MMT-FeS), prepared using the co-precipitation method, was applied to remediate hexavalent chromium (Cr(VI))-contaminated soil. Cr(VI)-removal capacity increased with increasing FeS-particle loading. We tested the efficacy of CMC@MMT-FeS at three concentrations of FeS: 0.2, 0.5, and 1 mmol/g, hereafter referred to as 0.2 CMC@MMT-FeS, 0.5 CMC@MMT-FeS, and 1.0 CMC@MMT-FeS, respectively. The soil Cr(VI) concentration decreased by 90.7% (from an initial concentration of 424.6 mg/kg to 39.4 mg/kg) after 30 days, following addition of 5% (composite-soil mass proportion) 1.0 CMC@MMT-FeS. When 2% 0.5 CMC@MMT-FeS was added to Cr(VI)-contaminated soil, the Cr(VI) removal efficiency, as measured in the leaching solution using the toxicity characteristic leaching procedure, was 90.3%, meeting the environmental protection standard for hazardous waste (5 mg/kg). The European Community Bureau of Reference (BCR) test confirmed that the main Cr fractions in the soil samples changed from acid-exchangeable fractions to oxidable fractions and residual fractions after 30 days of soil remediation by the composite. Moreover, the main complex formed during remediation was Fe(III)-Cr(III), based on BCR and X-ray photoelectron spectroscopy analyses. Biotoxicity of the remediated soils, using Vicia faba and Eisenia foetida, was analyzed and evaluated. Our results indicate that CMC@MMT-FeS effectively immobilizes Cr(VI), with widespread potential application in Cr(VI)-contaminated soil remediation.
Collapse
|
8
|
Guo F, Ding C, Zhou Z, Han F, Tang R, Huang G, Wang X. Assessment of the immobilization effectiveness of several amendments on a cadmium-contaminated soil using Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109948. [PMID: 31759738 DOI: 10.1016/j.ecoenv.2019.109948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Proper protocols for assessing the remediation effectiveness of contaminated soils are an important part of remediation projects. In the present study, the residual immobilization effectiveness of hydrated lime (L), hydroxyapatite (H), biochar (B) and organic fertilizer (F) alone and in combination was assessed by Eisenia fetida. The results showed that the application of amendments had no significant effect on the death rate and average fresh weight loss of earthworms. The earthworm Cd concentration increased with prolonged exposure time, however, the significant immobilization efficacy of amendments observed on the 7th day nearly disappeared after 28 days of exposure. The immobilization efficiencies, estimated by the earthworms internal Cd concentration, of L, H and B on the 7th day were 38.6%, 37.8% and 20.7%, respectively. These values decreased to 4.9%, 19.8% and 15.1%, respectively, on the 28th day. The detoxification effect of amendments was confirmed by the Cd subcellular fractionation in earthworms with lower proportions of Cd distributed in the metal-sensitive fractions in L, H and B treatments. The level of oxidative stress response of earthworms increased with exposure duration and amendments alleviated the oxidative damage induced by Cd to the earthworms. In addition, the pH and CaCl2-Cd in soils were both increased due to earthworm life activities and gut-related ingestion. In summary, the assessment of immobilization effectiveness of heavy metal-contaminated soils using Eisenia fetida was time-dependent. The immobilization efficacy of L and H performed better than B and F on the 7th day, while H and B performed better than L and F on the 28th day. Accordingly, the short-term earthworm exposure experiment (7 days) was recommended to be an alternative approach to time-consuming plant bioassays in assessment of reduced phytoavailability in chemical immobilization remediation. But the impact of earthworms on the immobilization effect of amendments needs to be considered in practical remediation.
Collapse
Affiliation(s)
- Fuyu Guo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, 39217, USA
| | - Changfeng Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhigao Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Fengxiang Han
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, 39217, USA
| | - Ronggui Tang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Gaoxiang Huang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, 335211, China.
| |
Collapse
|
9
|
Tang R, Li X, Mo Y, Ma Y, Ding C, Wang J, Zhang T, Wang X. Toxic responses of metabolites, organelles and gut microorganisms of Eisenia fetida in a soil with chromium contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:910-920. [PMID: 31234257 DOI: 10.1016/j.envpol.2019.05.069] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 05/28/2023]
Abstract
The toxic sensitivity in different physiological levels of chromium (Cr) contaminated soils with environmentally equivalent concentrations (EEC) was fully unknown. The earthworm Eisenia fetida was exposed to a Cr-contaminated soil at the EEC level (referred to as Cr-CS) to characterize the induced toxicity at the whole body, organ, tissue, subcellular structure and metabolic levels. The results showed that the survival rate, weight and biodiversity of the gut microorganisms (organ) had no significant difference (p > 0.05) between control and Cr-CS groups. Qualitative histopathological and subcellular evaluations from morphology showed earthworms obvious injuries. The organelle injuries combined with the metabolic changes provided additional evidence that the Cr-CS damaged the nucleus and probably disturbed the nucleic acid metabolism of earthworms. 2-hexyl-5-ethyl-3-furansulfonate, dimethylglycine, betaine and scyllo-inositol were sensitive and relatively quantitative metabolites that were recommended as potential biomarkers for Cr-CS based on their significant weights in the multivariate analysis model. In addition, the relative abundance of Burkholderiaceae, Enterobacteriaceae and Microscillaceae of the earthworm guts in the Cr-CS group significantly increased, particularly for Burkholderiaceae (increased by 13.1%), while that of Aeromonadaceae significantly decreased by 5.6% in contrast with the control group. These results provided new insights into our understanding of the toxic effects of the EEC level of Cr contaminated soil from different physiological levels of earthworms and extend our knowledge on the composition and sensitivity of the earthworm gut microbiota in Cr contaminated soil ecosystems. Furthermore, these toxic responses from gut microorganisms to metabolites of earthworms provided important data to improve the adverse outcome pathway and toxic mechanism of the Cr-CS if the earthworm genomics and proteomics would be also gained in the future.
Collapse
Affiliation(s)
- Ronggui Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaogang Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongliang Mo
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yibing Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
10
|
Abd Aziz A, Lee BT, Han HJ, Kim KW. Assessment of the stabilization of heavy metal contaminants in soils using chemical leaching and an earthworm bioassay. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:447-460. [PMID: 30132092 DOI: 10.1007/s10653-018-0173-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Soil stabilization is a remedial technique that reduces the exposure of the soil environment to soil contaminants. Its efficacy can be assessed by determining whether the environmental availability of a contaminant decreases following treatment. We evaluated several chemical leaching treatments by assessing both contaminant leachability and bioaccumulation in the earthworm Eisenia fetida, and determined the most effective treatment for achieving soil stabilization. Soil samples contaminated with As, Cd, Cu, Pb, and/or Zn were collected from abandoned mine areas and stabilized by adding limestone and steel slag (5% and 2% w/w, respectively). All leaching and earthworm tests were conducted using both contaminated and stabilized soils. In addition to bioaccumulation in earthworms, several toxicity parameters (number of cocoons, growth changes, and survival rates) were also assessed to determine the effects of the treatments on the earthworms. The study showed that treatment of soil with EDTA-NH4OAc resulted in a significant decrease in contaminant leachability following soil stabilization. There was an increase in survival and growth of earthworms exposed to the stabilized soil compared with those exposed to the non-stabilized soil. Bioaccumulation in earthworms was found to be statistically correlated with the leachability of As by EDTA-NH4OAc. We conclude that limestone and steel slag effectively decreased the availability of heavy metals in the soil and reduced the toxicity to earthworms. Leaching with EDTA-NH4OAc has the potential to be predictive in estimating the bioavailability of As in soils, but further studies are needed if it is to be proposed as a standard method.
Collapse
Affiliation(s)
- Azilah Abd Aziz
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Byung-Tae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Hyeop-Jo Han
- Department of Energy and Resources Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyoung-Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
11
|
Tang R, Ding C, Ma Y, Wan M, Zhang T, Wang X. Main controlling factors and forecasting models of lead accumulation in earthworms based on low-level lead-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23117-23124. [PMID: 29860691 DOI: 10.1007/s11356-018-2436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
To explore the main controlling factors in soil and build a predictive model between the lead concentrations in earthworms (Pbearthworm) and the soil physicochemical parameters, 13 soils with low level of lead contamination were used to conduct toxicity experiments using earthworms. The results indicated that a relatively high bioaccumulation factor appeared in the soils with low pH values. The lead concentrations between earthworms and soils after log transformation had a significantly positive correlation (R2 = 0.46, P < 0.0001, n = 39). Stepwise multiple linear regression analysis derived a fitting empirical model between Pbearthworm and the soil physicochemical properties: log(Pbearthworm) = 0.96log(Pbsoil) - 0.74log(OC) - 0.22pH + 0.95, (R2 = 0.66, n = 39). Furthermore, path analysis confirmed that the Pb concentrations in the soil (Pbsoil), soil pH, and soil organic carbon (OC) were the primary controlling factors of Pbearthworm with high pathway parameters (0.71, - 0.51, and - 0.49, respectively). The predictive model based on Pbearthworm in a nationwide range of soils with low-level lead contamination could provide a reference for the establishment of safety thresholds in Pb-contaminated soils from the perspective of soil-animal systems.
Collapse
Affiliation(s)
- Ronggui Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Yibing Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Mengxue Wan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
12
|
Tang R, Ding C, Dang F, Ma Y, Wang J, Zhang T, Wang X. NMR-based metabolic toxicity of low-level Hg exposure to earthworms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:428-437. [PMID: 29679940 DOI: 10.1016/j.envpol.2018.04.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Mercury is a globally distributed toxicant to aquatic animals and mammals. However, the potential risks of environmental relevant mercury in terrestrial systems remain largely unclear. The metabolic profiles of the earthworm Eisenia fetida after exposure to soil contaminated with mercury at 0.77 ± 0.09 mg/kg for 2 weeks were investigated using a two-dimensional nuclear magnetic resonance-based (1H-13C NMR) metabolomics approach. The results revealed that traditional endpoints (e.g., mortality and weight loss) did not differ significantly after exposure. Although histological examination showed sub-lethal toxicity in the intestine as a result of soil ingestion, the underlying mechanisms were unclear. Metabolite profiles revealed significant decreases in glutamine and 2-hexyl-5-ethyl-3-furansulfonate in the exposed group and remarkable increases in glycine, alanine, glutamate, scyllo-inositol, t-methylhistidine and myo-inositol. More importantly, metabolic network analysis revealed that low mercury in the soil disrupted osmoregulation, amino acid and energy metabolisms in earthworms. A metabolic net link and schematic diagram of mercury-induced responses were proposed to predict earthworm responses after exposure to mercury at environmental relevant concentrations. These results improved the current understanding of the potential toxicity of low mercury in terrestrial systems.
Collapse
Affiliation(s)
- Ronggui Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Yibing Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210014, People's Republic of China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| |
Collapse
|