1
|
Engler S, Buchner J. The evolution and diversification of the Hsp90 co-chaperone system. Biol Chem 2025:hsz-2025-0112. [PMID: 40261701 DOI: 10.1515/hsz-2025-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
The molecular chaperone Hsp90 is the central element of a chaperone machinery in the cytosol of eukaryotic cells that is characterized by a large number of structurally and functionally different co-chaperones that influence the core chaperone component in different ways and increase its influence on the proteome. From yeast to humans, the number of Hsp90 co-chaperones has increased from 14 to over 40, and new co-chaperones are still being discovered. While Hsp90 itself has only undergone limited changes in structure and mechanism from yeast to humans, its increased importance and contribution to different processes in humans is based on the evolution and expansion of the cohort of co-chaperones. In this review, we provide an overview of Hsp90 co-chaperones, focusing on their roles in regulating Hsp90 function and their evolution from yeast to humans.
Collapse
Affiliation(s)
- Sonja Engler
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| |
Collapse
|
2
|
Kinger S, Jagtap YA, Kumar P, Choudhary A, Prasad A, Prajapati VK, Kumar A, Mehta G, Mishra A. Proteostasis in neurodegenerative diseases. Adv Clin Chem 2024; 121:270-333. [PMID: 38797543 DOI: 10.1016/bs.acc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India.
| |
Collapse
|
3
|
Farkas A, Zsindely N, Nagy G, Kovács L, Deák P, Bodai L. The ubiquitin thioesterase YOD1 ameliorates mutant Huntingtin induced pathology in Drosophila. Sci Rep 2023; 13:21951. [PMID: 38081944 PMCID: PMC10713573 DOI: 10.1038/s41598-023-49241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a dominant gain-of-function mutation in the huntingtin gene, resulting in an elongated polyglutamine repeat in the mutant Huntingtin (mHtt) that mediates aberrant protein interactions. Previous studies implicated the ubiquitin-proteasome system in HD, suggesting that restoring cellular proteostasis might be a key element in suppressing pathology. We applied genetic interaction tests in a Drosophila model to ask whether modulating the levels of deubiquitinase enzymes affect HD pathology. By testing 32 deubiquitinase genes we found that overexpression of Yod1 ameliorated all analyzed phenotypes, including neurodegeneration, motor activity, viability, and longevity. Yod1 did not have a similar effect in amyloid beta overexpressing flies, suggesting that the observed effects might be specific to mHtt. Yod1 overexpression did not alter the number of mHtt aggregates but moderately increased the ratio of larger aggregates. Transcriptome analysis showed that Yod1 suppressed the transcriptional effects of mHtt and restored the expression of genes involved in neuronal plasticity, vesicular transport, antimicrobial defense, and protein synthesis, modifications, and clearance. Furthermore, Yod1 overexpression in HD flies leads to the upregulation of genes involved in transcriptional regulation and synaptic transmission, which might be part of a response mechanism to mHtt-induced stress.
Collapse
Affiliation(s)
- Anita Farkas
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Levente Kovács
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
- Divison of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, 91125, USA
| | - Péter Deák
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary.
| |
Collapse
|
4
|
Almeida LM, Oliveira Â, Oliveira JMA, Pinho BR. Stress response mechanisms in protein misfolding diseases: Profiling a cellular model of Huntington's disease. Arch Biochem Biophys 2023; 745:109711. [PMID: 37541563 DOI: 10.1016/j.abb.2023.109711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Stress response pathways like the integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt) and the heat shock response (HSR) have emerged as part of the pathophysiology of neurodegenerative diseases, including Huntington's disease (HD) - a currently incurable disease caused by the production of mutant huntingtin (mut-Htt). Previous data from HD patients suggest that ISR is activated while UPRmt and HSR are impaired in HD. The study of these stress response pathways as potential therapeutic targets in HD requires cellular models that mimic the activation status found in HD patients of such pathways. PC12 cells with inducible expression of the N-terminal fragment of mut-Htt are among the most used cell lines to model HD, however the activation of stress responses remains unclear in this model. The goal of this study is to characterize the activation of ISR, UPRmt and HSR in this HD cell model and evaluate if it mimics the activation status found in HD patients. We show that PC12 HD cell model presents reduced levels of Hsp90 and mitochondrial chaperones, suggesting an impaired activation or function of HSR and UPRmt. This HD model also presents increased levels of phosphorylated eIF2α, the master regulator of the ISR, but overall similar levels of ATF4 and decreased levels of CHOP - transcription factors downstream to eIF2α - in comparison to control, suggesting an initial activation of ISR. These results show that this model mimics the ISR activation and the impaired UPRmt and HSR found in HD patients. This work suggests that the PC12 N-terminal HD model is suitable for studying the role of stress response pathways in the pathophysiology of HD and for exploratory studies investigating the therapeutic potential of drugs targeting stress responses.
Collapse
Affiliation(s)
- Liliana M Almeida
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Ângela Oliveira
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Jorge M A Oliveira
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal.
| | - Brígida R Pinho
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
5
|
Dernovšek J, Tomašič T. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities. Pharmacol Ther 2023; 245:108396. [PMID: 37001734 DOI: 10.1016/j.pharmthera.2023.108396] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
The heat shock protein 90 (Hsp90) family consists of four highly conserved isoforms: the mitochondrial TRAP-1, the endoplasmic reticulum-localised Grp94, and the cytoplasmic Hsp90α and Hsp90β. Since the late 1990s, this family has been extensively studied as a potential target for the treatment of cancer, neurological disorders, and infectious diseases. The initial approach was to develop non-selective, so-called pan-Hsp90 ATP-competitive inhibitors of the N-terminal domain. Many of these agents were tested in clinical trials, mainly for the treatment of cancer, but none of them succeeded in the clinic. This was mainly due to the lack of efficacy and various toxicities associated with the induction of heat shock response (HSR). This lack of success has prompted a turn to new approaches of Hsp90 inhibition. Thus, inhibitors selective for a particular isoform of Hsp90 have been developed. These isoform-selective inhibitors do not induce HSR and have a more targeted effect because not all client proteins are equally dependent on all four paralogues of Hsp90. However, it is extremely difficult to develop such selective compounds because the family is highly conserved. Hsp90α and Hsp90β have an amazing 95% identity of the N-terminal ATP binding site, differing only in two amino acid residues. Therefore, the focus of this review is to fully elucidate the key structural features of the selective inhibitor classes in terms of binding site dissimilarities. In addition to a methodological characterisation of the structure-activity relationships, the main advantages of selective inhibition of the TRAP-1, Grp94, Hsp90α and Hsp90β isoforms are discussed.
Collapse
Affiliation(s)
- Jaka Dernovšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 PMCID: PMC12001818 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Sap KA, Geijtenbeek KW, Schipper-Krom S, Guler AT, Reits EA. Ubiquitin-modifying enzymes in Huntington's disease. Front Mol Biosci 2023; 10:1107323. [PMID: 36926679 PMCID: PMC10013475 DOI: 10.3389/fmolb.2023.1107323] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the N-terminus of the HTT gene. The CAG repeat expansion translates into a polyglutamine expansion in the mutant HTT (mHTT) protein, resulting in intracellular aggregation and neurotoxicity. Lowering the mHTT protein by reducing synthesis or improving degradation would delay or prevent the onset of HD, and the ubiquitin-proteasome system (UPS) could be an important pathway to clear the mHTT proteins prior to aggregation. The UPS is not impaired in HD, and proteasomes can degrade mHTT entirely when HTT is targeted for degradation. However, the mHTT protein is differently ubiquitinated when compared to wild-type HTT (wtHTT), suggesting that the polyQ expansion affects interaction with (de) ubiquitinating enzymes and subsequent targeting for degradation. The soluble mHTT protein is associated with several ubiquitin-modifying enzymes, and various ubiquitin-modifying enzymes have been identified that are linked to Huntington's disease, either by improving mHTT turnover or affecting overall homeostasis. Here we describe their potential mechanism of action toward improved mHTT targeting towards the proteostasis machinery.
Collapse
Affiliation(s)
- Karen A Sap
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne W Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Arzu Tugce Guler
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric A Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Brás IC, Khani MH, Vasili E, Möbius W, Riedel D, Parfentev I, Gerhardt E, Fahlbusch C, Urlaub H, Zweckstetter M, Gollisch T, Outeiro TF. Molecular Mechanisms Mediating the Transfer of Disease-Associated Proteins and Effects on Neuronal Activity. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2397-2422. [PMID: 36278361 DOI: 10.3233/jpd-223516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Various cellular pathways have been implicated in the transfer of disease-related proteins between cells, contributing to disease progression and neurodegeneration. However, the overall effects of protein transfer are still unclear. OBJECTIVE Here, we performed a systematic comparison of basic molecular mechanisms involved in the release of alpha-synuclein, Tau, and huntingtin, and evaluated functional effects upon internalization by receiving cells. METHODS Evaluation of protein release to the extracellular space in a free form and in extracellular vesicles using an optimized ultracentrifugation protocol. The extracellular effects of the proteins and extracellular vesicles in primary neuronal cultures were assessed using multi-channel electrophysiological recordings combined with a customized spike sorting framework. RESULTS We demonstrate cells differentially release free-forms of each protein to the extracellular space. Importantly, neuronal activity is distinctly modulated upon protein internalization in primary cortical cultures. In addition, these disease-related proteins also occur in extracellular vesicles, and are enriched in ectosomes. Internalization of ectosomes and exosomes by primary microglial or astrocytic cells elicits the production of pro-inflammatory cytokines, and modifies spontaneous electrical activity in neurons. OBJECTIVE Overall, our study demonstrates that released proteins can have detrimental effects for surrounding cells, and suggests protein release pathways may be exploited as therapeutic targets in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Inês C Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Mohammad H Khani
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Iwan Parfentev
- Research Group Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Christiane Fahlbusch
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Research Group Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom.,Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
9
|
Törner R, Kupreichyk T, Hoyer W, Boisbouvier J. The role of heat shock proteins in preventing amyloid toxicity. Front Mol Biosci 2022; 9:1045616. [PMID: 36589244 PMCID: PMC9798239 DOI: 10.3389/fmolb.2022.1045616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The oligomerization of monomeric proteins into large, elongated, β-sheet-rich fibril structures (amyloid), which results in toxicity to impacted cells, is highly correlated to increased age. The concomitant decrease of the quality control system, composed of chaperones, ubiquitin-proteasome system and autophagy-lysosomal pathway, has been shown to play an important role in disease development. In the last years an increasing number of studies has been published which focus on chaperones, modulators of protein conformational states, and their effects on preventing amyloid toxicity. Here, we give a comprehensive overview of the current understanding of chaperones and amyloidogenic proteins and summarize the advances made in elucidating the impact of these two classes of proteins on each other, whilst also highlighting challenges and remaining open questions. The focus of this review is on structural and mechanistic studies and its aim is to bring novices of this field "up to speed" by providing insight into all the relevant processes and presenting seminal structural and functional investigations.
Collapse
Affiliation(s)
- Ricarda Törner
- University Grenoble Alpes, CNRS CEA Institut de Biologie Structurale (IBS), Grenoble, France,*Correspondence: Ricarda Törner, ; Jerome Boisbouvier,
| | - Tatsiana Kupreichyk
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jerome Boisbouvier
- University Grenoble Alpes, CNRS CEA Institut de Biologie Structurale (IBS), Grenoble, France,*Correspondence: Ricarda Törner, ; Jerome Boisbouvier,
| |
Collapse
|
10
|
Latoszek E, Wiweger M, Ludwiczak J, Dunin-Horkawicz S, Kuznicki J, Czeredys M. Siah-1-interacting protein regulates mutated huntingtin protein aggregation in Huntington’s disease models. Cell Biosci 2022; 12:34. [PMID: 35305696 PMCID: PMC8934500 DOI: 10.1186/s13578-022-00755-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Huntington’s disease (HD) is a neurodegenerative disorder whereby mutated huntingtin protein (mHTT) aggregates when polyglutamine repeats in the N-terminal of mHTT exceeds 36 glutamines (Q). However, the mechanism of this pathology is unknown. Siah1-interacting protein (SIP) acts as an adaptor protein in the ubiquitination complex and mediates degradation of other proteins. We hypothesized that mHTT aggregation depends on the dysregulation of SIP activity in this pathway in HD. Results A higher SIP dimer/monomer ratio was observed in the striatum in young YAC128 mice, which overexpress mHTT. We found that SIP interacted with HTT. In a cellular HD model, we found that wildtype SIP increased mHTT ubiquitination, attenuated mHTT protein levels, and decreased HTT aggregation. We predicted mutations that should stabilize SIP dimerization and found that SIP mutant-overexpressing cells formed more stable dimers and had lower activity in facilitating mHTT ubiquitination and preventing exon 1 mHTT aggregation compared with wildtype SIP. Conclusions Our data suggest that an increase in SIP dimerization in HD medium spiny neurons leads to a decrease in SIP function in the degradation of mHTT through a ubiquitin–proteasome pathway and consequently an increase in mHTT aggregation. Therefore, SIP could be considered a potential target for anti-HD therapy during the early stage of HD pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00755-0.
Collapse
|
11
|
Proteinopathies: Deciphering Physiology and Mechanisms to Develop Effective Therapies for Neurodegenerative Diseases. Mol Neurobiol 2022; 59:7513-7540. [PMID: 36205914 DOI: 10.1007/s12035-022-03042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/13/2022] [Indexed: 10/10/2022]
Abstract
Neurodegenerative diseases (NDs) are a cluster of diseases marked by progressive neuronal loss, axonal transport blockage, mitochondrial dysfunction, oxidative stress, neuroinflammation, and aggregation of misfolded proteins. NDs are more prevalent beyond the age of 50, and their symptoms often include motor and cognitive impairment. Even though various proteins are involved in different NDs, the mechanisms of protein misfolding and aggregation are very similar. Recently, several studies have discovered that, like prions, these misfolded proteins have the inherent capability of translocation from one neuron to another, thus having far-reaching implications for understanding the processes involved in the onset and progression of NDs, as well as the development of innovative therapy and diagnostic options. These misfolded proteins can also influence the transcription of other proteins and form aggregates, tangles, plaques, and inclusion bodies, which then accumulate in the CNS, leading to neuronal dysfunction and neurodegeneration. This review demonstrates protein misfolding and aggregation in NDs, and similarities and differences between different protein aggregates have been discussed. Furthermore, we have also reviewed the disposal of protein aggregates, the various molecular machinery involved in the process, their regulation, and how these molecular mechanisms are targeted to build innovative therapeutic and diagnostic procedures. In addition, the landscape of various therapeutic interventions for targeting protein aggregation for the effective prevention or treatment of NDs has also been discussed.
Collapse
|
12
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|
13
|
Calabrese G, Molzahn C, Mayor T. Protein interaction networks in neurodegenerative diseases: from physiological function to aggregation. J Biol Chem 2022; 298:102062. [PMID: 35623389 PMCID: PMC9234719 DOI: 10.1016/j.jbc.2022.102062] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The accumulation of protein inclusions is linked to many neurodegenerative diseases that typically develop in older individuals, due to a combination of genetic and environmental factors. In rare familial neurodegenerative disorders, genes encoding for aggregation-prone proteins are often mutated. While the underlying mechanism leading to these diseases still remains to be fully elucidated, efforts in the past 20 years revealed a vast network of protein–protein interactions that play a major role in regulating the aggregation of key proteins associated with neurodegeneration. Misfolded proteins that can oligomerize and form insoluble aggregates associate with molecular chaperones and other elements of the proteolytic machineries that are the frontline workers attempting to protect the cells by promoting clearance and preventing aggregation. Proteins that are normally bound to aggregation-prone proteins can become sequestered and mislocalized in protein inclusions, leading to their loss of function. In contrast, mutations, posttranslational modifications, or misfolding of aggregation-prone proteins can lead to gain of function by inducing novel or altered protein interactions, which in turn can impact numerous essential cellular processes and organelles, such as vesicle trafficking and the mitochondria. This review examines our current knowledge of protein–protein interactions involving several key aggregation-prone proteins that are associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, or amyotrophic lateral sclerosis. We aim to provide an overview of the protein interaction networks that play a central role in driving or mitigating inclusion formation, while highlighting some of the key proteomic studies that helped to uncover the extent of these networks.
Collapse
Affiliation(s)
- Gaetano Calabrese
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| | - Cristen Molzahn
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada
| | - Thibault Mayor
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| |
Collapse
|
14
|
Rossi FA, Rossi M. Emerging Role of Ubiquitin-Specific Protease 19 in Oncogenesis and Cancer Development. Front Cell Dev Biol 2022; 10:889166. [PMID: 35646888 PMCID: PMC9133600 DOI: 10.3389/fcell.2022.889166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Ubiquitination and ubiquitin-like post-translational modifications control the activity and stability of different tumor suppressors and oncoproteins. Hence, regulation of this enzymatic cascade offers an appealing scenario for novel antineoplastic targets discovery. Among the different families of enzymes that participate in the conjugation of Ubiquitin, deubiquitinating enzymes (DUBs), responsible for removing ubiquitin or ubiquitin-like peptides from substrate proteins, have attracted increasing attention. In this regard, increasing evidence is accumulating suggesting that the modulation of the catalytic activity of DUBs represents an attractive point of therapeutic intervention in cancer treatment. In particular, different lines of research indicate that USP19, a member of the DUBs, plays a role in the control of tumorigenesis and cancer dissemination. This review aims at summarizing the current knowledge of USP19 wide association with the control of several cellular processes in different neoplasms, which highlights the emerging role of USP19 as a previously unrecognized prognosis factor that possesses both positive and negative regulation activities in tumor biology. These observations indicate that USP19 might represent a novel putative pharmacologic target in oncology and underscores the potential of identifying specific modulators to test in clinical settings.
Collapse
|
15
|
Deubiquitinating enzymes (DUBs): decipher underlying basis of neurodegenerative diseases. Mol Psychiatry 2022; 27:259-268. [PMID: 34285347 DOI: 10.1038/s41380-021-01233-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by the aggregation of neurotoxic proteins in the central nervous system. Aberrant protein accumulation in NDs is largely caused by the dysfunction of the two principal protein catabolism pathways, the ubiquitin-proteasome system (UPS), and the autophagy-lysosomal pathway (ALP). The two protein quality control pathways are bridged by ubiquitination, a post-translational modification that can induce protein degradation via both the UPS and the ALP. Perturbed ubiquitination leads to the formation of toxic aggregates and inclusion bodies that are deleterious to neurons. Ubiquitination is promoted by a cascade of ubiquitinating enzymes and counter-regulated by deubiquitinating enzymes (DUBs). As fine-tuning regulators of ubiquitination and protein degradation, DUBs modulate the stability of ND-associated pathogenic proteins including amyloid β protein, Tau, and α-synuclein. Besides, DUBs also influence ND-associated mitophagy, protein secretion, and neuroinflammation. Given the various and critical functions of DUBs in NDs, DUBs may become potential therapeutic targets for NDs.
Collapse
|
16
|
Huntingtin Ubiquitination Mechanisms and Novel Possible Therapies to Decrease the Toxic Effects of Mutated Huntingtin. J Pers Med 2021; 11:jpm11121309. [PMID: 34945781 PMCID: PMC8709430 DOI: 10.3390/jpm11121309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022] Open
Abstract
Huntington Disease (HD) is a dominant, lethal neurodegenerative disorder caused by the abnormal expansion (>35 copies) of a CAG triplet located in exon 1 of the HTT gene encoding the huntingtin protein (Htt). Mutated Htt (mHtt) easily aggregates, thereby inducing ER stress that in turn leads to neuronal injury and apoptosis. Therefore, both the inhibition of mHtt aggregate formation and the acceleration of mHtt degradation represent attractive strategies to delay HD progression, and even for HD treatment. Here, we describe the mechanism underlying mHtt degradation by the ubiquitin–proteasome system (UPS), which has been shown to play a more important role than the autophagy–lysosomal pathway. In particular, we focus on E3 ligase proteins involved in the UPS and detail their structure–function relationships. In this framework, we discuss the possible exploitation of PROteolysis TArgeting Chimeras (PROTACs) for HD therapy. PROTACs are heterobifunctional small molecules that comprise two different ligands joined by an appropriate linker; one of the ligands is specific for a selected E3 ubiquitin ligase, the other ligand is able to recruit a target protein of interest, in this case mHtt. As a consequence of PROTAC binding, mHtt and the E3 ubiquitin ligase can be brought to a relative position that allows mHtt to be ubiquitinated and, ultimately, allows a reduction in the amount of mHtt in the cell.
Collapse
|
17
|
Do HA, Baek KH. Cellular functions regulated by deubiquitinating enzymes in neurodegenerative diseases. Ageing Res Rev 2021; 69:101367. [PMID: 34023421 DOI: 10.1016/j.arr.2021.101367] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022]
Abstract
Neurodegenerative diseases are one of the most common diseases in mankind. Although there are reports of several candidates that cause neurodegenerative diseases, the exact mechanism of pathogenesis is poorly understood. The ubiquitin-proteasome system (UPS) is an important posttranslational modification for protein degradation and control of homeostasis. Enzymes such as E1, E2, E3 ligases, and deubiquitinating enzymes (DUBs) participating in UPS, regulate disease-inducing proteins by controlling the degree of ubiquitination. Therefore, the development of treatments targeting enzymes for degenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), is emerging as an attractive perspective. In particular, as DUBs are able to regulate one or more degenerative disease-related proteins, the potential as a therapeutic target is even more evident. DUBs influence the regulation of toxic proteins that cause neurodegenerative diseases by not only their removal, but also by regulating signals associated with mitophagy, autophagy, and endoplasmic reticulum-associated degradation (ERAD). In this review, we analyze not only the cellular processes of DUBs, which control neurodegenerative disease-inducing proteins, but also their potentials as a therapeutic agent for neurodegenerative diseases.
Collapse
|
18
|
Pinkerton M, Ruetenik A, Bazylianska V, Nyvltova E, Barrientos A. Salvage NAD+ biosynthetic pathway enzymes moonlight as molecular chaperones to protect against proteotoxicity. Hum Mol Genet 2021; 30:672-686. [PMID: 33749726 DOI: 10.1093/hmg/ddab080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Human neurodegenerative proteinopathies are disorders associated with abnormal protein depositions in brain neurons. They include polyglutamine (polyQ) conditions such as Huntington's disease (HD) and α-synucleinopathies such as Parkinson's disease (PD). Overexpression of NMNAT/Nma1, an enzyme in the NAD+ biosynthetic salvage pathway, acts as an efficient suppressor of proteotoxicities in yeast, fly and mouse models. Screens in yeast models of HD and PD allowed us to identify three additional enzymes of the same pathway that achieve similar protection against proteotoxic stress: Npt1, Pnc1 and Qns1. The mechanism by which these proteins maintain proteostasis has not been identified. Here, we report that their ability to maintain proteostasis in yeast models of HD and PD is independent of their catalytic activity and does not require cellular protein quality control systems such as the proteasome or autophagy. Furthermore, we show that, under proteotoxic stress, the four proteins are recruited as molecular chaperones with holdase and foldase activities. The NAD+ salvage proteins act by preventing misfolding and, together with the Hsp90 chaperone, promoting the refolding of extended polyQ domains and α-synuclein (α-Syn). Our results illustrate the existence of an evolutionarily conserved strategy of repurposing or moonlighting housekeeping enzymes under stress conditions to maintain proteostasis. We conclude that the entire salvage NAD+ biosynthetic pathway links NAD+ metabolism and proteostasis and emerges as a target for therapeutics to combat age-associated neurodegenerative proteotoxicities.
Collapse
Affiliation(s)
- Meredith Pinkerton
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrea Ruetenik
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Viktoriia Bazylianska
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,MS in Biochemistry and Molecular Biology, Wayne State University, School of Medicine. Detroit, MI 48201, USA
| | - Eva Nyvltova
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine. Miami, FL 33136, USA
| |
Collapse
|
19
|
Rossi FA, Enriqué Steinberg JH, Calvo Roitberg EH, Joshi MU, Pandey A, Abba MC, Dufrusine B, Buglioni S, De Laurenzi V, Sala G, Lattanzio R, Espinosa JM, Rossi M. USP19 modulates cancer cell migration and invasion and acts as a novel prognostic marker in patients with early breast cancer. Oncogenesis 2021; 10:28. [PMID: 33714979 PMCID: PMC7956144 DOI: 10.1038/s41389-021-00318-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
Tumor cell dissemination in cancer patients is associated with a significant reduction in their survival and quality of life. The ubiquitination pathway plays a fundamental role in the maintenance of protein homeostasis both in normal and stressed conditions and its dysregulation has been associated with malignant transformation and invasive potential of tumor cells, thus highlighting its value as a potential therapeutic target. In order to identify novel molecular targets of tumor cell migration and invasion we performed a genetic screen with an shRNA library against ubiquitination pathway-related genes. To this end, we set up a protocol to specifically enrich positive migration regulator candidates. We identified the deubiquitinase USP19 and demonstrated that its silencing reduces the migratory and invasive potential of highly invasive breast cancer cell lines. We extended our investigation in vivo and confirmed that mice injected with USP19 depleted cells display increased tumor-free survival, as well as a delay in the onset of the tumor formation and a significant reduction in the appearance of metastatic foci, indicating that tumor cell invasion and dissemination is impaired. In contrast, overexpression of USP19 increased cell invasiveness both in vitro and in vivo, further validating our findings. More importantly, we demonstrated that USP19 catalytic activity is important for the control of tumor cell migration and invasion, and that its molecular mechanism of action involves LRP6, a Wnt co-receptor. Finally, we showed that USP19 overexpression is a surrogate prognostic marker of distant relapse in patients with early breast cancer. Altogether, these findings demonstrate that USP19 might represent a novel therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Fabiana Alejandra Rossi
- grid.412850.a0000 0004 0489 7281Instituto de Investigaciones en Medicina Traslacional (IIMT) - CONICET, Universidad Austral, Pilar, Buenos Aires Argentina ,grid.423606.50000 0001 1945 2152Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Buenos Aires, Argentina
| | - Juliana Haydeé Enriqué Steinberg
- grid.412850.a0000 0004 0489 7281Instituto de Investigaciones en Medicina Traslacional (IIMT) - CONICET, Universidad Austral, Pilar, Buenos Aires Argentina ,grid.423606.50000 0001 1945 2152Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Buenos Aires, Argentina
| | - Ezequiel Hernán Calvo Roitberg
- grid.412850.a0000 0004 0489 7281Instituto de Investigaciones en Medicina Traslacional (IIMT) - CONICET, Universidad Austral, Pilar, Buenos Aires Argentina ,grid.423606.50000 0001 1945 2152Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Buenos Aires, Argentina
| | - Molishree Umesh Joshi
- grid.430503.10000 0001 0703 675XFunctional Genomics Facility, University of Colorado School of Medicine, Aurora, CO USA
| | - Ahwan Pandey
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Martin Carlos Abba
- grid.9499.d0000 0001 2097 3940Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas – Universidad Nacional de La Plata, La Plata, Buenos Aires Argentina
| | - Beatrice Dufrusine
- grid.412451.70000 0001 2181 4941Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Simonetta Buglioni
- grid.417520.50000 0004 1760 5276Advanced Diagnostics and Technological Innovation Department, Regina Elena Cancer Institute, Rome, Italy
| | - Vincenzo De Laurenzi
- grid.412451.70000 0001 2181 4941Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Gianluca Sala
- grid.412451.70000 0001 2181 4941Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Rossano Lattanzio
- grid.412451.70000 0001 2181 4941Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Joaquín Maximiliano Espinosa
- grid.430503.10000 0001 0703 675XFunctional Genomics Facility, University of Colorado School of Medicine, Aurora, CO USA ,grid.430503.10000 0001 0703 675XLinda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO USA ,grid.430503.10000 0001 0703 675XDepartment of Pharmacology, University of Colorado School of Medicine, Aurora, CO USA
| | - Mario Rossi
- grid.412850.a0000 0004 0489 7281Instituto de Investigaciones en Medicina Traslacional (IIMT) - CONICET, Universidad Austral, Pilar, Buenos Aires Argentina
| |
Collapse
|
20
|
Kohli H, Kumar P, Ambasta RK. In silico designing of putative peptides for targeting pathological protein Htt in Huntington's disease. Heliyon 2021; 7:e06088. [PMID: 33659724 PMCID: PMC7890153 DOI: 10.1016/j.heliyon.2021.e06088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/26/2020] [Accepted: 01/21/2021] [Indexed: 12/30/2022] Open
Abstract
Huntington's disease is a neurodegenerative disease caused by CAG repeat in the first exon of HTT (Huntingtin) gene, leading to abnormal form of Htt protein containing enlarged polyglutamine strands of variable length that stick together to form aggregates and is toxic to brain causing brain damage. Complete reversal of brain damage is not possible till date but recovery may be possible by peptide therapy. The peptide-based therapy for Huntington's disease includes both poly Q peptide as well as non poly Q peptides like (QBP1)2, p42, Exendin 4, ED11, CaM, BiP, Leuprorelin peptide. The novel approach that is currently being tested in this article is the peptide-based therapy to target the mutated protein. This approach is based on the principle of preventing the aggregation of mutant Htt by blocking the potential sites responsible for protein aggregation and thereby ameliorating the disease symptoms. Herein, we have screened a variety of potential peptides that were known to prevent the protein aggregation, comparatively analyzed their binding affinity with homology modeled Htt protein, designed novel peptides based upon conservation analysis among screened potential peptides as a therapeutic agent, comparatively analyzed the therapeutic potential of novel peptides against modeled Htt protein for investigating the therapeutic prospects of Huntington's disease. We have designed a peptide for the therapy of Huntington's disease by comparing several peptides, which are already in use for Huntington's disease.
Collapse
Affiliation(s)
- Harleen Kohli
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi 110042, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi 110042, India
| |
Collapse
|
21
|
Hervás R, Oroz J. Mechanistic Insights into the Role of Molecular Chaperones in Protein Misfolding Diseases: From Molecular Recognition to Amyloid Disassembly. Int J Mol Sci 2020; 21:ijms21239186. [PMID: 33276458 PMCID: PMC7730194 DOI: 10.3390/ijms21239186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Age-dependent alterations in the proteostasis network are crucial in the progress of prevalent neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, or amyotrophic lateral sclerosis, which are characterized by the presence of insoluble protein deposits in degenerating neurons. Because molecular chaperones deter misfolded protein aggregation, regulate functional phase separation, and even dissolve noxious aggregates, they are considered major sentinels impeding the molecular processes that lead to cell damage in the course of these diseases. Indeed, members of the chaperome, such as molecular chaperones and co-chaperones, are increasingly recognized as therapeutic targets for the development of treatments against degenerative proteinopathies. Chaperones must recognize diverse toxic clients of different orders (soluble proteins, biomolecular condensates, organized protein aggregates). It is therefore critical to understand the basis of the selective chaperone recognition to discern the mechanisms of action of chaperones in protein conformational diseases. This review aimed to define the selective interplay between chaperones and toxic client proteins and the basis for the protective role of these interactions. The presence and availability of chaperone recognition motifs in soluble proteins and in insoluble aggregates, both functional and pathogenic, are discussed. Finally, the formation of aberrant (pro-toxic) chaperone complexes will also be disclosed.
Collapse
Affiliation(s)
- Rubén Hervás
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA;
| | - Javier Oroz
- Rocasolano Institute for Physical Chemistry, Spanish National Research Council (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
- Correspondence: ; Tel.: +34-915619400
| |
Collapse
|
22
|
Domain interactions reveal auto-inhibition of the deubiquitinating enzyme USP19 and its activation by HSP90 in the modulation of huntingtin aggregation. Biochem J 2020; 477:4295-4312. [PMID: 33094816 DOI: 10.1042/bcj20200536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 01/25/2023]
Abstract
Ubiquitin-specific protease 19 (USP19) is a member of the deubiquitinating (DUB) enzymes that catalyze removing the ubiquitin signals from target proteins. Our previous research has demonstrated that USP19 up-regulates the protein level and aggregation of polyQ-expanded huntingtin through the involvement of heat shock protein 90 (HSP90). Here, we present solution structures of the CS1, CS2 and UbL domains of USP19 and structural insights into their domain interactions. We found that the tandem CS domains fold back to interact with the C-terminal USP domain (USPD) intra-molecularly that leads to inhibition of the catalytic core of USP19, especially CS1 interacts with the embedded UbL domain and CS2 does with the CH2 catalytic core. Moreover, CS2 specifically interacts with the NBD domain of HSP90, which can activate the DUB enzyme. A mechanism of auto-inhibition of USP19 and activation by HSP90 is proposed, on which USP19 modulates the protein level of polyQ-expanded huntingtin in cells. This study provides structural and mechanistic insights into the modulation of protein level and aggregation by USP19 with the assistance of HSP90.
Collapse
|
23
|
Bohush A, Bieganowski P, Filipek A. Hsp90 and Its Co-Chaperones in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20204976. [PMID: 31600883 PMCID: PMC6834326 DOI: 10.3390/ijms20204976] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Proper folding is crucial for proteins to achieve functional activity in the cell. However, it often occurs that proteins are improperly folded (misfolded) and form aggregates, which are the main hallmark of many diseases including cancers, neurodegenerative diseases and many others. Proteins that assist other proteins in proper folding into three-dimensional structures are chaperones and co-chaperones. The key role of chaperones/co-chaperones is to prevent protein aggregation, especially under stress. An imbalance between chaperone/co-chaperone levels has been documented in neurons, and suggested to contribute to protein misfolding. An essential protein and a major regulator of protein folding in all eukaryotic cells is the heat shock protein 90 (Hsp90). The function of Hsp90 is tightly regulated by many factors, including co-chaperones. In this review we summarize results regarding the role of Hsp90 and its co-chaperones in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and prionopathies.
Collapse
Affiliation(s)
- Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Paweł Bieganowski
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland.
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
24
|
Gedunin Degrades Aggregates of Mutant Huntingtin Protein and Intranuclear Inclusions via the Proteasomal Pathway in Neurons and Fibroblasts from Patients with Huntington's Disease. Neurosci Bull 2019; 35:1024-1034. [PMID: 31432317 DOI: 10.1007/s12264-019-00421-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
Huntington's disease (HD) is a deadly neurodegenerative disease with abnormal expansion of CAG repeats in the huntingtin gene. Mutant Huntingtin protein (mHTT) forms abnormal aggregates and intranuclear inclusions in specific neurons, resulting in cell death. Here, we tested the ability of a natural heat-shock protein 90 inhibitor, Gedunin, to degrade transfected mHTT in Neuro-2a cells and endogenous mHTT aggregates and intranuclear inclusions in both fibroblasts from HD patients and neurons derived from induced pluripotent stem cells from patients. Our data showed that Gedunin treatment degraded transfected mHTT in Neuro-2a cells, endogenous mHTT aggregates and intranuclear inclusions in fibroblasts from HD patients, and in neurons derived from induced pluripotent stem cells from patients in a dose- and time-dependent manner, and its activity depended on the proteasomal pathway rather than the autophagy route. These findings also showed that although Gedunin degraded abnormal mHTT aggregates and intranuclear inclusions in cells from HD patient, it did not affect normal cells, thus providing a new perspective for using Gedunin to treat HD.
Collapse
|
25
|
Rai SN, Singh BK, Rathore AS, Zahra W, Keswani C, Birla H, Singh SS, Dilnashin H, Singh SP. Quality Control in Huntington's Disease: a Therapeutic Target. Neurotox Res 2019; 36:612-626. [PMID: 31297710 DOI: 10.1007/s12640-019-00087-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Huntington's disease (HD) is a fatal autosomal dominantly inherited brain disease caused by excessively expanded CAG repeats in gene which encodes huntingtin protein. These abnormally encoded huntingtin proteins and their truncated fragments result in disruption of cellular quality mechanism ultimately triggering neuronal death. Despite great efforts, a potential causative agent leading to genetic mutation in HTT, manifesting the neurons more prone to oxidative stress, cellular inflammation, energy depletion and apoptotic death, has not been established yet. Current scenario concentrates on symptomatic pathologies to improvise the disease progression and to better the survival. Most of the therapeutic developments have been converged to rescue the protein homeostasis. In HD, abnormal expansion of glutamine repeats in the protein huntingtin leads to toxic aggregation of huntingtin which in turn impairs the quality control mechanism of cells through damaging the machineries involved in removal of aggregated abnormal protein. Therapeutic approaches to improve the efficiency of aggregate clearance through quality control mechanisms involve protein folding machineries such as chaperones and protein degradation machineries such as proteasome and autophagy. Also, to reduce protein aggregation by enhancing proper folding, to degrade and eliminate the aggregates are suggested to negatively regulate the HD progression associated with the disruption of protein homeostasis. This review focuses on the collection of therapeutic strategies targeting enhancement of protein quality control activity to delay the HD pathogenesis.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Brijesh Kumar Singh
- Department of Pathology and Cell Biology, Columbia University Medical Centre, Columbia University, New York, NY, 10032, USA
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
26
|
Hong JY, Wang DD, Xue W, Yue HW, Yang H, Jiang LL, Wang WN, Hu HY. Structural and dynamic studies reveal that the Ala-rich region of ataxin-7 initiates α-helix formation of the polyQ tract but suppresses its aggregation. Sci Rep 2019; 9:7481. [PMID: 31097749 PMCID: PMC6522498 DOI: 10.1038/s41598-019-43926-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/04/2019] [Indexed: 11/26/2022] Open
Abstract
Ataxin-7 (Atx7) is a disease-related protein associated with the pathogenesis of spinocerebellar ataxia 7, while its polyglutamine (polyQ) tract in N-terminus is the causative source of aggregation and proteinopathy. We investigated the structure, dynamics and aggregation properties of the N-terminal 62-residue fragment of Atx7 (Atx7-N) by biochemical and biophysical approaches. The results showed that the normal Atx7-N with a tract of 10 glutamines (10Q) overall adopts a flexible and disordered structure, but it may contain a short or small population of helical structure in solution. PolyQ expansion increases the α-helical propensity of the polyQ tract and consequently enhances its transformation into β-sheet structures during amyloid aggregation. An alanine-rich region (ARR) just ahead of the polyQ tract forms a local and relatively stable α-helix. The ARR α-helix can initiate and stabilize helical formation of the following polyQ tract, but it may suppress aggregation of the polyQ-expanded Atx7-N both in vitro and in cell. Thus, the preceding ARR segment in Atx7-N may influence the dynamic structure and aggregation property of the polyQ tract and even determine the threshold of the pathogenic polyQ lengths. This study may gain structural and dynamic insights into amyloid aggregation of Atx7 and help us further understand the Atx7 proteinopathy based on polyQ expansion.
Collapse
Affiliation(s)
- Jun-Ye Hong
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Dong-Dong Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Wei Xue
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Hong-Wei Yue
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Hui Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P.R. China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P.R. China
| | - Wen-Ning Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, P.R. China.
| |
Collapse
|
27
|
Gierisch ME, Pedot G, Walser F, Lopez-Garcia LA, Jaaks P, Niggli FK, Schäfer BW. USP19 deubiquitinates EWS-FLI1 to regulate Ewing sarcoma growth. Sci Rep 2019; 9:951. [PMID: 30700749 PMCID: PMC6353870 DOI: 10.1038/s41598-018-37264-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/30/2018] [Indexed: 01/24/2023] Open
Abstract
Ewing sarcoma is the second most common pediatric bone and soft tissue tumor presenting with an aggressive behavior and prevalence to metastasize. The diagnostic translocation t(22;11)(q24;12) leads to expression of the chimeric oncoprotein EWS-FLI1 which is uniquely expressed in all tumor cells and maintains their survival. Constant EWS-FLI1 protein turnover is regulated by the ubiquitin proteasome system. Here, we now identified ubiquitin specific protease 19 (USP19) as a regulator of EWS-FLI1 stability using an siRNA based screening approach. Depletion of USP19 resulted in diminished EWS-FLI1 protein levels and, vice versa, upregulation of active USP19 stabilized the fusion protein. Importantly, stabilization appears to be specific for the fusion protein as it could not be observed neither for EWSR1 nor for FLI1 wild type proteins even though USP19 binds to the N-terminal EWS region to regulate deubiquitination of both EWS-FLI1 and EWSR1. Further, stable shUSP19 depletion resulted in decreased cell growth and diminished colony forming capacity in vitro, and significantly delayed tumor growth in vivo. Our findings not only provide novel insights into the importance of the N-terminal EWSR1 domain for regulation of fusion protein stability, but also indicate that inhibition of deubiquitinating enzyme(s) might constitute a novel therapeutic strategy in treatment of Ewing sarcoma.
Collapse
Affiliation(s)
- Maria E Gierisch
- Department of Oncology and Children's Research Center, University Children´s Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Gloria Pedot
- Department of Oncology and Children's Research Center, University Children´s Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Franziska Walser
- Department of Oncology and Children's Research Center, University Children´s Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Laura A Lopez-Garcia
- Department of Oncology and Children's Research Center, University Children´s Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Patricia Jaaks
- Department of Oncology and Children's Research Center, University Children´s Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Felix K Niggli
- Department of Oncology and Children's Research Center, University Children´s Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children´s Hospital, Steinwiesstrasse 32, 8032, Zurich, Switzerland.
| |
Collapse
|
28
|
Soares TR, Reis SD, Pinho BR, Duchen MR, Oliveira JMA. Targeting the proteostasis network in Huntington's disease. Ageing Res Rev 2019; 49:92-103. [PMID: 30502498 PMCID: PMC6320389 DOI: 10.1016/j.arr.2018.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion mutation in the huntingtin protein. Expansions above 40 polyglutamine repeats are invariably fatal, following a symptomatic period characterised by choreiform movements, behavioural abnormalities, and cognitive decline. While mutant huntingtin (mHtt) is widely expressed from early life, most patients with HD present in mid-adulthood, highlighting the role of ageing in disease pathogenesis. mHtt undergoes proteolytic cleavage, misfolding, accumulation, and aggregation into inclusion bodies. The emerging model of HD pathogenesis proposes that the chronic production of misfolded mHtt overwhelms the chaperone machinery, diverting other misfolded clients to the proteasome and the autophagy pathways, ultimately leading to a global collapse of the proteostasis network. Multiple converging hypotheses also implicate ageing and its impact in the dysfunction of organelles as additional contributing factors to the collapse of proteostasis in HD. In particular, mitochondrial function is required to sustain the activity of ATP-dependent chaperones and proteolytic machinery. Recent studies elucidating mitochondria-endoplasmic reticulum interactions and uncovering a dedicated proteostasis machinery in mitochondria, suggest that mitochondria play a more active role in the maintenance of cellular proteostasis than previously thought. The enhancement of cytosolic proteostasis pathways shows promise for HD treatment, protecting cells from the detrimental effects of mHtt accumulation. In this review, we consider how mHtt and its post translational modifications interfere with protein quality control pathways, and how the pharmacological and genetic modulation of components of the proteostasis network impact disease phenotypes in cellular and in vivo HD models.
Collapse
Affiliation(s)
- Tânia R Soares
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Sara D Reis
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Brígida R Pinho
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, UK
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, UK.
| |
Collapse
|
29
|
Kitamura A, Iwasaki N, Kinjo M. Molecular chaperone HSP70 prevents formation of inclusion bodies of the 25-kDa C-terminal fragment of TDP-43 by preventing aggregate accumulation. Cell Stress Chaperones 2018; 23:1177-1183. [PMID: 30099725 PMCID: PMC6237682 DOI: 10.1007/s12192-018-0930-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/08/2018] [Accepted: 05/25/2018] [Indexed: 01/12/2023] Open
Abstract
Transactive response DNA/RNA-binding protein 43-kDa (TDP-43) C-terminal fragments, such as a 25-kDa fragment (TDP-25), have been identified as a ubiquitinated and phosphorylated components of inclusion bodies (IBs) in motor neurons from amyotrophic lateral sclerosis patients. Cells contain proteins that function as molecular chaperones and prevent aggregate formation of misfolded and aggregation-prone proteins. Recently, we reported that heat shock protein (HSP)70, an abundant molecular chaperone, binds to TDP-25 in an ATP-dependent manner; however, whether HSP70 can prevent the formation of TDP-25-related IBs remains unknown. Here, we showed that HSP70 prevented TDP-25 aggregation according to green fluorescent protein-tagged TDP-25 (G-TDP-25) colocalization in the cytoplasm with mCherry-tagged HSP70 (HSP70-R). The mobile fraction of HSP70-R in the cytoplasmic IBs associated with G-TDP-25 increased relative to that of G-TDP-25, suggesting that HSP70 strongly bound to G-TDP-25 in the IBs, whereas a portion remained dissociated from the IBs. Importantly, the proportion of G-TDP-25 IBs was significantly decreased by HSP70-R overexpression; however, G-TDP-25 levels in the insoluble fraction remained unchanged by HSP70-R overexpression, suggesting that G-TDP-25 formed aggregated species that cannot be dissolved, even in the presence of strong detergents. These results indicated that HSP70 prevented the accumulation of G-TDP-25 aggregates in cytoplasmic IBs, but was insufficient for G-TDP-25 disassembly and solubilization.
Collapse
Affiliation(s)
- Akira Kitamura
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Nodoka Iwasaki
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
30
|
Harding RJ, Tong YF. Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol Sin 2018; 39:754-769. [PMID: 29620053 DOI: 10.1038/aps.2018.11] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/18/2018] [Indexed: 02/08/2023]
Abstract
Many neurodegenerative diseases are characterized by impairment of protein quality control mechanisms in neuronal cells. Ineffective clearance of misfolded proteins by the proteasome, autophagy pathways and exocytosis leads to accumulation of toxic protein oligomers and aggregates in neurons. Toxic protein species affect various cellular functions resulting in the development of a spectrum of different neurodegenerative proteinopathies, including Huntington's disease (HD). Playing an integral role in proteostasis, dysfunction of the ubiquitylation system in HD is progressive and multi-faceted with numerous biochemical pathways affected, in particular, the ubiquitin-proteasome system and autophagy routes for protein aggregate degradation. Unravelling the molecular mechanisms involved in HD pathogenesis of proteostasis provides new insight in disease progression in HD as well as possible therapeutic avenues. Recent developments of potential therapeutics are discussed in this review.
Collapse
|
31
|
Reisz JA, Barrett AS, Nemkov T, Hansen KC, D'Alessandro A. When nature's robots go rogue: exploring protein homeostasis dysfunction and the implications for understanding human aging disease pathologies. Expert Rev Proteomics 2018; 15:293-309. [PMID: 29540077 PMCID: PMC6174679 DOI: 10.1080/14789450.2018.1453362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Proteins have been historically regarded as 'nature's robots': Molecular machines that are essential to cellular/extracellular physical mechanical properties and catalyze key reactions for cell/system viability. However, these robots are kept in check by other protein-based machinery to preserve proteome integrity and stability. During aging, protein homeostasis is challenged by oxidation, decreased synthesis, and increasingly inefficient mechanisms responsible for repairing or degrading damaged proteins. In addition, disruptions to protein homeostasis are hallmarks of many neurodegenerative diseases and diseases disproportionately affecting the elderly. Areas covered: Here we summarize age- and disease-related changes to the protein machinery responsible for preserving proteostasis and describe how both aging and disease can each exacerbate damage initiated by the other. We focus on alteration of proteostasis as an etiological or phenomenological factor in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, along with Down syndrome, ophthalmic pathologies, and cancer. Expert commentary: Understanding the mechanisms of proteostasis and their dysregulation in health and disease will represent an essential breakthrough in the treatment of many (senescence-associated) pathologies. Strides in this field are currently underway and largely attributable to the introduction of high-throughput omics technologies and their combination with novel approaches to explore structural and cross-link biochemistry.
Collapse
Affiliation(s)
- Julie A Reisz
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Alexander S Barrett
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Travis Nemkov
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Kirk C Hansen
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|