1
|
Ehtiati S, Naeeni B, Qeysouri B, Heidarian E, Azmon M, Ahmadzade R, Movahedpour A, Kazemi F, Motamedzadeh A, Khatami SH. Electrochemical biosensors in early leukemia detection. Clin Chim Acta 2024; 562:119871. [PMID: 39009333 DOI: 10.1016/j.cca.2024.119871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Leukemia, a type of blood cancer marked by an abnormal increase in white blood cells, poses a significant challenge to healthcare. The key to successful treatment lies in early detection. However, traditional methods often fall short. This review investigates the potential of electrochemical biosensors for a more accurate and earlier diagnosis of leukemia. Electrochemical biosensors are compact devices that transform biological interactions into electrical signals. Their small size, ease of use, and minimal sample requirements make them perfectly suited for point-of-care applications. Their remarkable sensitivity and specificity enable the detection of subtle biomolecular changes associated with leukemia, which is crucial for early disease detection. This review delves into studies that have utilized these biosensors to identify various types of leukemia. It examines the roles of electrodes, biorecognition elements, and signal transduction mechanisms. The discussion includes the integration of nanomaterials such as gold nanoparticles and nitrogen-doped graphene into biosensor design. These materials boost sensitivity, enhance signal amplification, and facilitate multi-analyte detection, thereby providing a more holistic view of the disease. Beyond technical advancements, the review underscores the practical benefits of these biosensors. Their portability makes them a promising tool for resource-constrained settings, enabling swift diagnosis in remote areas or at a patient's bedside. The potential for monitoring treatment effectiveness and detecting minimal residual disease to prevent relapse is also explored. This review emphasizes the transformative potential of electrochemical biosensors in combating leukemia. By facilitating earlier and more accurate diagnosis, these biosensors stand to revolutionize patient care and enhance treatment outcomes.
Collapse
Affiliation(s)
- Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Naeeni
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Qeysouri
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Heidarian
- Department of Clinical Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzyeh Azmon
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhane Ahmadzade
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Kazemi
- Metabolic Diseases Research Center, Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Kashyap R, Boro PR, Yasmin R, Nath J, Sonowal D, Doley R, Mondal B. Multiple protein-patterned surface plasmon resonance biochip for the detection of human immunoglobulin-G. JOURNAL OF BIOPHOTONICS 2023; 16:e202200263. [PMID: 36683194 DOI: 10.1002/jbio.202200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/18/2022] [Accepted: 01/02/2023] [Indexed: 05/17/2023]
Abstract
A portable surface plasmon resonance (SPR) measurement prototype integrated with a multiple protein-patterned SPR biochip is introduced for label-free and selective detection of human immunoglobulin-G (H-IgG). The polyclonal anti-H-IgG antibodies derived from goat, rabbit, and mouse were immobilized through polydimethylsiloxane (PDMS) microchannels to fabricate the patterned SPR biochip. The PDMS surface was functionalized using 3-aminopropyltrimethoxysilane and bonded to carbodiimide-activated gold substrates to construct irreversibly bonded hydrophilic microfluidic chip at room temperature. For SPR measurement, a custom-made system is developed with a high angular scanning accuracy of 0.005° and a wide scanning range of 30°-80° that avoids the conventional requirement of expensive goniometric stages and detector arrays. The SPR biochip immobilized with 750 μg/mL goat anti-H-IgG demonstrated detection of H-IgG with a detection limits of 15 μg/mL, and linear response through a wide concentration range (15-225 μg/mL) of high coefficient of determination (R2 = 0.99661). The selectivity of the sensor was investigated by exposing them to two different non-specific targets (bovine serum albumin and polyvalent antivenom). The results indicate negligible sensor response towards nonspecific targets (0.25° for 30 μg/mL bovine serum albumin (BSA) and 0.25° for 30 μg/mL polyvalent antivenom) in comparison to H-IgG (1.5° for 30 μg/mL).
Collapse
Affiliation(s)
- Ritayan Kashyap
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Pearleshwari Rani Boro
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Rafika Yasmin
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Jugabrat Nath
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Durlav Sonowal
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Biplob Mondal
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
3
|
Yu T, Wang Y, Quan H, Meng Y, Wang Z, Zhao C, Guo Q, Ge J. A colorimetric biosensor for ultrasensitive detection of the SURF1 gene based on a dual DNA-induced cascade hybridization reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4778-4784. [PMID: 34569567 DOI: 10.1039/d1ay01102b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, a simple and ultrasensitive colorimetric biosensor for detection of SURF1 gene fragments (Leigh syndrome) has been developed based on a dual DNA-induced cascade hybridization reaction. Firstly, a biotin labeled capture probe was immobilized on a streptavidin labeled 96-well transparent plate surface. Then the target SURF1 fragment and auxiliary probe S1 were added into the reaction system to form a "Y" structure with the capture probe. Furthermore, to achieve a highly efficient signal amplification strategy, digoxin labeled P1, P2, P3 and P4 probes were used to cause a dual DNA-induced cascade hybridization reaction on the "Y" structure of the 96-well plate surface. As a detection probe, the HRP anti-digoxin antibody was combined on the surface to produce a colorimetric response to the SURF1 fragment in the presence of TMB. Under the optimal conditions, the established method exhibited a wide linear range from 1.0 × 10-13 M to 1.0 × 10-8 M and a detection limit to SURF1 as low as 1.73 × 10-14 M. In addition, the strategy has been successfully applied to the detection of SURF1 in spiked human serum samples. Therefore, the established biosensor has potential application prospects in gene fragment analysis and early diagnosis of clinical diseases.
Collapse
Affiliation(s)
- Tianxiao Yu
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang (The Affiliated Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, 050000, China.
| | - Yafang Wang
- Department of Clinical Laboratory, The Fourth Hospital of Shijiazhuang (The Affiliated Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, 050000, China
| | - Huili Quan
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang (The Affiliated Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, 050000, China.
| | - Yucui Meng
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang (The Affiliated Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, 050000, China.
| | - Zhaohua Wang
- Department of Clinical Laboratory, The Fourth Hospital of Shijiazhuang (The Affiliated Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, 050000, China
| | - Chunchao Zhao
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang (The Affiliated Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, 050000, China.
| | - Qing Guo
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang (The Affiliated Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, 050000, China.
| | - Jun Ge
- Research Center for Clinical Medical Sciences, The Fourth Hospital of Shijiazhuang (The Affiliated Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, 050000, China.
| |
Collapse
|
4
|
Lee S, Song H, Ahn H, Kim S, Choi JR, Kim K. Fiber-Optic Localized Surface Plasmon Resonance Sensors Based on Nanomaterials. SENSORS 2021; 21:s21030819. [PMID: 33530416 PMCID: PMC7865415 DOI: 10.3390/s21030819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/31/2022]
Abstract
Applying fiber-optics on surface plasmon resonance (SPR) sensors is aimed at practical usability over conventional SPR sensors. Recently, field localization techniques using nanostructures or nanoparticles have been investigated on optical fibers for further sensitivity enhancement and significant target selectivity. In this review article, we explored varied recent research approaches of fiber-optics based localized surface plasmon resonance (LSPR) sensors. The article contains interesting experimental results using fiber-optic LSPR sensors for three different application categories: (1) chemical reactions measurements, (2) physical properties measurements, and (3) biological events monitoring. In addition, novel techniques which can create synergy combined with fiber-optic LSPR sensors were introduced. The review article suggests fiber-optic LSPR sensors have lots of potential for measurements of varied targets with high sensitivity. Moreover, the previous results show that the sensitivity enhancements which can be applied with creative varied plasmonic nanomaterials make it possible to detect minute changes including quick chemical reactions and tiny molecular activities.
Collapse
Affiliation(s)
- Seunghun Lee
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.L.); (H.S.); (H.A.); (S.K.)
| | - Hyerin Song
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.L.); (H.S.); (H.A.); (S.K.)
| | - Heesang Ahn
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.L.); (H.S.); (H.A.); (S.K.)
| | - Seungchul Kim
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.L.); (H.S.); (H.A.); (S.K.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Jong-ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea
- Correspondence: (J.-r.C.); (K.K.)
| | - Kyujung Kim
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.L.); (H.S.); (H.A.); (S.K.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
- Correspondence: (J.-r.C.); (K.K.)
| |
Collapse
|
5
|
Zeng Z, Zhou R, Sun R, Zhang X, Cheng Z, Chen C, Zhu Q. Nonlinear hybridization chain reaction-based functional DNA nanostructure assembly for biosensing, bioimaging applications. Biosens Bioelectron 2020; 173:112814. [PMID: 33197767 DOI: 10.1016/j.bios.2020.112814] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Hybridization chain reaction (HCR) can be divided into two categories: linear HCR and nonlinear HCR. In traditional linear HCR, the relatively slow kinetics and less sufficient sensitivity largely limit its scope of application. In the nonlinear HCR system, under the trigger of the initiator, the judicious designed substrate sequences (hairpin or hairpin-free) will self-assembly to dendritic or branched DNA nanostructures with exponential growth kinetics. Given the advantages of its enzyme-free, high-order growth kinetic, high sensitivity, and simple operation, nonlinear HCR is regarded as a powerful signal amplifier for the detection of biomarkers by integrating with versatile sensing platforms in the past few decades. In this review, we describe the basic features of nonlinear HCR mechanism and classify the nonlinear HCR into several categories based on their self-assembly mechanisms: the branched HCR, dendritic HCR, hydrogel-based clamped HCR, and other types of HCR. Then, we summarize the recent development of nonlinear HCR in biosensing, such as nucleic acid, protein, enzyme activities, and cancer cell detection, etc., and we also review the current applications of nonlinear HCR in bioimaging (mRNA in situ imaging). We choose several representative works to further illustrate the analysis mechanisms via various detection platforms, such as fluorescence, electrochemical, colorimetric, etc. At last, we also review the challenges and further perspectives of nonlinear HCR in the use of bioanalysis.
Collapse
Affiliation(s)
- Zhuoer Zeng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Rong Zhou
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, Hunan, China.
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, Hunan, China.
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
6
|
Guo B, Yan Y, Fan L, Wu H, Zhao M, Duan X, Cheng W, Ding S. Molybdenum disulfide@5-carboxyfluorescein-probe biosensor for unamplified specific fragment detection in long nucleic acids based on magnetic composite probe-actuated deblocking of secondary structure. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4813-4822. [PMID: 32966358 DOI: 10.1039/d0ay01398f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Secondary structures in long circulating tumor nucleic acids have potential obstacles for specific location point hybridized detection of gene fragments. The exploration of biosensing strategies requires selectively changing the nucleic acids conformation and inducing signal switching. Herein, a self-assembled magnetic composite probe (MCP) was fabricated by the hybridization reaction of Linker DNA and a "Y"-junction-DNA nanostructure on the surface of magnetic beads, contributing to the capture, secondary structure unlocking, and enrichment of the PML/RARα DNA "L" subtype. Then, by integrating the MCP-actuated reactor, a one-step "off-on" signal switching MoS2@FAM-probe biosensing method was developed for the efficient detection of the PML/RARα DNA "L" subtype. The proposed biosensor was capable of detecting 100 bases PML/RARα DNA "L" subtype with a wide linear range of 1 pM to 200 nM and a limit of detection down to 0.223 pM without signal amplification. In addition, the biosensing method was successfully applied for the detection of target in serum samples. It is worth pointing out that this simple biosensing strategy could enable long nucleic acids fragments with secondary structures from ctDNA and ctRNA to be quantitatively assayed based on direct hybridization.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China. and Department of Clinical Laboratory, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Lu Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xiaolei Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Lenyk B, Schöps V, Boneberg J, Kabdulov M, Huhn T, Scheer E, Offenhäusser A, Mayer D. Surface Plasmon-Enhanced Switching Kinetics of Molecular Photochromic Films on Gold Nanohole Arrays. NANO LETTERS 2020; 20:5243-5250. [PMID: 32520573 DOI: 10.1021/acs.nanolett.0c01569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diarylethene molecules are discussed as possible optical switches, which can reversibly transition between completely conjugated (closed) and nonconjugated (open) forms with different electrical conductance and optical absorbance, by exposure to UV and visible light. However, in general the opening reaction exhibits much lower quantum yield than the closing process, hindering their usage in optoelectronic devices. To enhance the opening process, which is supported by visible light, we employ the plasmonic field enhancement of gold films perforated with nanoholes. We show that gold nanohole arrays reveal strong optical transmission in the visible range (∼60%) and pronounced enhancement of field intensities, resulting in around 50% faster switching kinetics of the molecular species in comparison with quartz substrates. The experimental UV-vis measurements are verified with finite-difference time-domain simulation that confirm the obtained results. Thus, we propose gold nanohole arrays as transparent and conductive plasmonic material that accelerates visible-light-triggered chemical reactions including molecular switching.
Collapse
Affiliation(s)
- Bohdan Lenyk
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Volker Schöps
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Johannes Boneberg
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Mikhail Kabdulov
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Thomas Huhn
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Elke Scheer
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
8
|
Opto-Electronic Refractometric Sensor Based on Surface Plasmon Resonances and the Bolometric Effect. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The bolometric effect allows us to electrically monitor spectral characteristics of plasmonic sensors; it provides a lower cost and simpler sample characterization compared with angular and spectral signal retrieval techniques. In our device, a monochromatic light source illuminates a spectrally selective plasmonic nanostructure. This arrangement is formed by a dielectric low-order diffraction grating that combines two materials with a high-contrast in the index of refraction. Light interacts with this structure and reaches a thin metallic layer, that is also exposed to the analyte. The narrow absorption generated by surface plasmon resonances hybridized with low-order grating modes, heats the metal layer where plasmons are excited. The temperature change caused by this absorption modifies the resistance of a metallic layer through the bolometric effect. Therefore, a refractometric change in the analyte varies the electric resistivity under resonant excitation. We monitor the change in resistance by an external electric circuit. This optoelectronic feature must be included in the definition of the sensitivity and figure of merit (FOM) parameters. Besides the competitive value of the FOM (around 400 RIU − 1 , where RIU means refractive index unit), the proposed system is fully based on opto-electronic measurements. The device is modeled, simulated and analyzed considering fabrication and experimental constrains. The proposed refractometer behaves linearly within a range centered around the index of refraction of aqueous media, n ≃ 1.33 , and can be applied to the sensing for research in bio-physics, biology, and environmental sciences.
Collapse
|
9
|
Early treatment of acute promyelocytic leukaemia is accurately guided by the PML protein localisation pattern: real-life experience from a tertiary New Zealand centre. Pathology 2019; 51:412-420. [PMID: 30876657 DOI: 10.1016/j.pathol.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/19/2018] [Accepted: 01/05/2019] [Indexed: 01/31/2023]
Abstract
Current guidelines recommend that a rapid test be used to assist diagnosis of acute promyelocytic leukaemia (APL), but the choice of an assay is discretionary. PML immunofluorescence (PML IF) identifies the microparticulate pattern of the PML protein localisation, highly specific for APL. The aim of this study was to evaluate clinical utility of PML IF in a real-life setting based on a retrospective records review for all patients who had PML IF performed in our centre between 2000 and 2017. Final analysis included 151 patients, 70 of whom had APL. PML IF was reported on average 3 days faster than cytogenetics. Compared with genetic results, PML IF showed sensitivity of 96% and specificity of 100%. PML IF accurately predicted APL in four APL cases with cryptic karyotype/FISH and excluded APL in 98% cases tested based on the suspicious immunophenotype alone, 21/28 of whom had mutated NPM1. Results of PML IF influenced decision to start ATRA in 25 (36%) APL patients and led to its termination in six non-APL patients. In conclusion, PML IF is a fast and reliable test that facilitates accurate treatment decisions when APL is suspected. This performance of PML IF remains hard to match in a real-life setting.
Collapse
|
10
|
Citartan M, Tang TH. Recent developments of aptasensors expedient for point-of-care (POC) diagnostics. Talanta 2019; 199:556-566. [PMID: 30952298 DOI: 10.1016/j.talanta.2019.02.066] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
Abstract
Aptamers are nucleic acid-based molecular recognition elements that are specific and have high binding affinity against their respective targets. On account of their target recognition capacity, aptamers are widely utilized in a number of applications including diagnostics. This review aims to highlight the recent developments of aptasensors expedient for point-of-care (POC) diagnostics. Significant focus is given on the primary assay formats of aptamers such as fluorescence, electrochemical, surface plasmon resonance (SPR) and colorimetric assays. A potpourri of platforms such as paper-based device, lateral flow assay, portable electrodes, portable SPR and smart phones expedient for point-of-care (POC) diagnostics are discussed. Emphasis is also given on the technicalities and assay configurations associated with the sensors.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang 13200, Malaysia.
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang 13200, Malaysia
| |
Collapse
|
11
|
Bian X, Guo B, Zhao M, Han D, Cheng W, Song F, Ding S. An Enzyme-Free "ON-OFF" Electrochemiluminescence Biosensor for Ultrasensitive Detection of PML/RARα based on Target-Switched DNA Nanotweezer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3715-3721. [PMID: 30608120 DOI: 10.1021/acsami.8b18497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, an enzyme-free "ON-OFF" electrochemiluminescence (ECL) biosensor for ultrasensitive detection of fusion gene PML/RARα is constructed based on a simple target-switched DNA nanotweezer as hemin concentration controller. In this biosensor, the hemin concentration is primarily controlled by the conversion of "opened-closed" DNA nanotweezers and low concentration hemin is first used as electrochemically regenerable enhancer. In the absence of the target, the nanotweezers are in an opened state which lead to a low concentration of hemin in the solution, resulting in an enhanced Ru(bpy)32+ ECL signal. In the presence of the target, the closed nanotweezers absorbed onto the surface of electrode can capture the hemin, which achieves a high concentration of hemin and then quenches the ECL signal. The developed method achieves ultrasensitive detection of PML/RARα with a wide linear range from 1 fM to 1 nM and limit of detection as low as 0.125 fM. In addition, the ECL biosensor shows excellent specificity to the other subtypes of PML/RARα (subtype "S", "V"), "PML", and "RARα". Moreover, due to the high designable character of DNA nanotweezer, this method might provide a pragmatic Ru(bpy)32+ ECL platform for ultrasensitive detection of nucleic acid in the future.
Collapse
Affiliation(s)
- Xintong Bian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine , Chongqing Medical University , Chongqing 400016 , China
| | - Bin Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine , Chongqing Medical University , Chongqing 400016 , China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine , Chongqing Medical University , Chongqing 400016 , China
| | - Daobin Han
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine , Chongqing Medical University , Chongqing 400016 , China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection , The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016 , PR China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center , Chongqing Medical University , Chongqing 400016 , China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine , Chongqing Medical University , Chongqing 400016 , China
| |
Collapse
|
12
|
Park CR, Park SJ, Lee WG, Hwang BH. Biosensors Using Hybridization Chain Reaction - Design and Signal Amplification Strategies of Hybridization Chain Reaction. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0182-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Yu T, Wei Q. Plasmonic molecular assays: Recent advances and applications for mobile health. NANO RESEARCH 2018; 11:5439-5473. [PMID: 32218913 PMCID: PMC7091255 DOI: 10.1007/s12274-018-2094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 05/15/2023]
Abstract
Plasmonics-based biosensing assays have been extensively employed for biomedical applications. Significant advancements in use of plasmonic assays for the construction of point-of-care (POC) diagnostic methods have been made to provide effective and urgent health care of patients, especially in resourcelimited settings. This rapidly progressive research area, centered on the unique surface plasmon resonance (SPR) properties of metallic nanostructures with exceptional absorption and scattering abilities, has greatly facilitated the development of cost-effective, sensitive, and rapid strategies for disease diagnostics and improving patient healthcare in both developed and developing worlds. This review highlights the recent advances and applications of plasmonic technologies for highly sensitive protein and nucleic acid biomarker detection. In particular, we focus on the implementation and penetration of various plasmonic technologies in conventional molecular diagnostic assays, and discuss how such modification has resulted in simpler, faster, and more sensitive alternatives that are suited for point-of-use. Finally, integration of plasmonic molecular assays with various portable POC platforms for mobile health applications are highlighted.
Collapse
Affiliation(s)
- Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| |
Collapse
|