1
|
Franco EJ, Drusano GL, Hanrahan KC, Warfield KL, Brown AN. Combination Therapy with UV-4B and Molnupiravir Enhances SARS-CoV-2 Suppression. Viruses 2023; 15:1175. [PMID: 37243261 PMCID: PMC10224493 DOI: 10.3390/v15051175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The host targeting antiviral, UV-4B, and the RNA polymerase inhibitor, molnupiravir, are two orally available, broad-spectrum antivirals that have demonstrated potent activity against SARS-CoV-2 as monotherapy. In this work, we evaluated the effectiveness of UV-4B and EIDD-1931 (molnupiravir's main circulating metabolite) combination regimens against the SARS-CoV-2 beta, delta, and omicron BA.2 variants in a human lung cell line. Infected ACE2 transfected A549 (ACE2-A549) cells were treated with UV-4B and EIDD-1931 both as monotherapy and in combination. Viral supernatant was sampled on day three when viral titers peaked in the no-treatment control arm, and levels of infectious virus were measured by plaque assay. The drug-drug effect interaction between UV-4B and EIDD-1931 was also defined using the Greco Universal Response Surface Approach (URSA) model. Antiviral evaluations demonstrated that treatment with UV-4B plus EIDD-1931 enhanced antiviral activity against all three variants relative to monotherapy. These results were in accordance with those obtained from the Greco model, as these identified the interaction between UV-4B and EIDD-1931 as additive against the beta and omicron variants and synergistic against the delta variant. Our findings highlight the anti-SARS-CoV-2 potential of UV-4B and EIDD-1931 combination regimens, and present combination therapy as a promising therapeutic strategy against SARS-CoV-2.
Collapse
Affiliation(s)
- Evelyn J. Franco
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL 32827, USA; (E.J.F.); (G.L.D.); (K.C.H.)
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - George L. Drusano
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL 32827, USA; (E.J.F.); (G.L.D.); (K.C.H.)
| | - Kaley C. Hanrahan
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL 32827, USA; (E.J.F.); (G.L.D.); (K.C.H.)
| | | | - Ashley N. Brown
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL 32827, USA; (E.J.F.); (G.L.D.); (K.C.H.)
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| |
Collapse
|
2
|
Alexander P, Dobrovolny HM. Treatment of Respiratory Viral Coinfections. EPIDEMIOLOGIA 2022; 3:81-96. [PMID: 36417269 PMCID: PMC9620919 DOI: 10.3390/epidemiologia3010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
With the advent of rapid multiplex PCR, physicians have been able to test for multiple viral pathogens when a patient presents with influenza-like illness. This has led to the discovery that many respiratory infections are caused by more than one virus. Antiviral treatment of viral coinfections can be complex because treatment of one virus will affect the time course of the other virus. Since effective antivirals are only available for some respiratory viruses, careful consideration needs to be given on the effect treating one virus will have on the dynamics of the other virus, which might not have available antiviral treatment. In this study, we use mathematical models of viral coinfections to assess the effect of antiviral treatment on coinfections. We examine the effect of the mechanism of action, relative growth rates of the viruses, and the assumptions underlying the interaction of the viruses. We find that high antiviral efficacy is needed to suppress both infections. If high doses of both antivirals are not achieved, then we run the risk of lengthening the duration of coinfection or even of allowing a suppressed virus to replicate to higher viral titers.
Collapse
Affiliation(s)
| | - Hana M. Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX 76129, USA;
| |
Collapse
|
3
|
Wang GP, Schnell GL, Kort JJ, Sidhu GS, Schuster L, Tripathi RL, Larsen L, Michael LC, Bergquist K, Magee A, Patel CB, Whitlock JA, Tamashiro R, Peter JA, Fried MW, Nelson DR. Linkage of resistance-associated substitutions in GT1 sofosbuvir + NS5A inhibitor failures treated with glecaprevir/pibrentasvir. J Hepatol 2021; 75:820-828. [PMID: 34023351 DOI: 10.1016/j.jhep.2021.04.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Retreatment with glecaprevir/pibrentasvir (G/P) resulted in a rate of sustained virologic response 12 weeks after treatment completion (SVR12) of >90% in HCV genotype 1 (GT1) patients who previously failed a regimen of sofosbuvir plus an NS5A inhibitor (NS5Ai). This study investigated the prevalence and impact of baseline NS3 and NS5A resistance-associated substitutions (RASs) on the efficacy of G/P in prior GT1 sofosbuvir+NS5Ai failures and the persistence of treatment-emergent RASs. METHODS Longitudinal samples from 177 patients enrolled in a phase IIIb, randomized pragmatic clinical trial were analyzed. Patients without cirrhosis were randomized to 12 or 16 weeks of G/P, and patients with compensated cirrhosis were randomized to G/P and ribavirin for 12 weeks or G/P for 16 weeks. Linkage of RAS was identified using Primer-ID next-generation sequencing at a 15% cut-off. RESULTS Of 177 patients, 169 (95.5%) were PI-naïve. All 33 GT1b-infected patients achieved SVR12. In GT1a-infected patients, baseline NS5A RASs were prevalent (74.5%, 105/141) but NS3 RASs were uncommon. Baseline NS3 RASs had no impact on G/P efficacy and patients with baseline NS5A RASs showed a numerically but not statistically significantly lower SVR12 rate compared to those without NS5A RASs (89% vs. 97%). SVR12 was achieved in 34 of 35 (97%) patients without NS5A baseline substitution, and 53 of 57 (93%), 35 of 40 (88%), 5 of 8 (63%) with single, double-linked, and triple-linked NS5A substitutions, respectively. Among 13 patients with virologic failure, 4 acquired treatment-emergent NS3 RASs and 10 acquired NS5A RASs. CONCLUSION Baseline NS5A RASs were highly prevalent. The presence of an increasing number of linked NS5A RASs in GT1a showed a trend in decreasing SVR12 rates, although no specific NS5A RASs or their linkage pattern were associated with lower SVR12 rates. LAY SUMMARY Direct-acting antivirals have revolutionized the treatment of chronic hepatitis C infection, but treatment failure occurs in some patients. Retreatment of patients who previously failed a regimen consisting of sofosbuvir and an NS5A inhibitor with a regimen of glecaprevir and pibrentasvir (G/P) is >90% effective. Herein, we analyzed samples from these patients and showed that retreatment efficacy with G/P is lower in patients with double- or triple-linked NS5A resistance mutations than in patients with single or no NS5A resistance mutations. CLINICAL TRIAL NUMBER NCT03092375.
Collapse
Affiliation(s)
- Gary P Wang
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA; Infectious Disease Section, Medical Service, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.
| | | | | | - Gurjit S Sidhu
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Layla Schuster
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - Larry C Michael
- HCV-Target Data Coordinating Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ken Bergquist
- HCV-Target Data Coordinating Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ashley Magee
- HCV-Target Data Coordinating Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chandni B Patel
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Joan A Whitlock
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Ryan Tamashiro
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Joy A Peter
- Hepatology Research, University of Florida, Gainesville, FL, USA
| | - Michael W Fried
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Nelson
- Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Ohsaki E, Suwanmanee Y, Ueda K. Chronic Hepatitis B Treatment Strategies Using Polymerase Inhibitor-Based Combination Therapy. Viruses 2021; 13:v13091691. [PMID: 34578273 PMCID: PMC8473100 DOI: 10.3390/v13091691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Viral polymerase is an essential enzyme for the amplification of the viral genome and is one of the major targets of antiviral therapies. However, a serious concern to be solved in hepatitis B virus (HBV) infection is the difficulty of eliminating covalently closed circular (ccc) DNA. More recently, therapeutic strategies targeting various stages of the HBV lifecycle have been attempted. Although cccDNA-targeted therapies are attractive, there are still many problems to be overcome, and the development of novel polymerase inhibitors remains an important issue. Interferons and nucleos(t)ide reverse transcriptase inhibitors (NRTIs) are the only therapeutic options currently available for HBV infection. Many studies have reported that the combination of interferons and NRTI causes the loss of hepatitis B surface antigen (HBsAg), which is suggestive of seroconversion. Although NRTIs do not directly target cccDNA, they can strongly reduce the serum viral DNA load and could suppress the recycling step of cccDNA formation, improve liver fibrosis/cirrhosis, and reduce the risk of hepatocellular carcinoma. Here, we review recent studies on combination therapies using polymerase inhibitors and discuss the future directions of therapeutic strategies for HBV infection.
Collapse
|
5
|
Drusano GL, Neely MN, Kim S, Yamada WM, Schmidt S, Duncanson B, Nole J, Mtchedlidze N, Peloquin CA, Louie A. Building Optimal Three-Drug Combination Chemotherapy Regimens. Antimicrob Agents Chemother 2020; 64:e01610-20. [PMID: 32900682 PMCID: PMC7577121 DOI: 10.1128/aac.01610-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022] Open
Abstract
Multidrug therapy is often required. Examples include antiviral therapy, nosocomial infections, and, most commonly, anti-Mycobacterium tuberculosis therapy. Our laboratory previously identified a mathematical approach to identify 2-drug regimens with a synergistic or additive interaction using a full factorial study design. Our objective here was to generate a method to identify an optimal 3-drug therapy. We studied M. tuberculosis isolate H37Rv in log-phase growth in flasks. Pretomanid and moxifloxacin were chosen as the base 2-drug regimen. Bedaquiline (plus M2 metabolite) was chosen as the third drug for evaluation. Total bacterial burden and bacterial burden less-susceptible to study drugs were enumerated. A large mathematical model was fit to all the data. This allowed extension to evaluation of the 3-drug regimen by employing a Monte Carlo simulation. Pretomanid plus moxifloxacin demonstrated excellent bacterial kill and suppressed amplification of less-susceptible pathogens. Total bacterial burden was driven to extinction in 3 weeks in 6 of 9 combination therapy evaluations. Only the lowest pretomanid/moxifloxacin exposures in combination did not extinguish the bacterial burden. No combination regimen allowed resistance amplification. Generation of 95% credible intervals about estimates of the interaction parameters α (αs, αr-p, and αr-m) by bootstrapping showed the interaction was near synergistic. The addition of bedaquiline/M2 metabolite was evaluated by forming a 95% confidence interval regarding the decline in bacterial burden. The addition of bedaquiline/M2 metabolite shortened the time to eradication by 1 week and was significantly different. A model-based system approach to evaluating combinations of 3 agents shows promise to rapidly identify the most promising combinations that can then be trialed.
Collapse
Affiliation(s)
- G L Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Michael N Neely
- Division of Pediatric Infectious Diseases, Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Sarah Kim
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Walter M Yamada
- Division of Pediatric Infectious Diseases, Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Brandon Duncanson
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Jocelyn Nole
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Nino Mtchedlidze
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Charles A Peloquin
- Division Head for the Translational Research Division, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| |
Collapse
|