1
|
Jiao M, Danthi P, Yu Y. Cholesterol-Dependent Membrane Deformation by Metastable Viral Capsids Facilitates Entry. ACS Infect Dis 2024; 10:2728-2740. [PMID: 38873897 PMCID: PMC11886593 DOI: 10.1021/acsinfecdis.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Nonenveloped viruses employ unique entry mechanisms to breach and infect host cells. Understanding these mechanisms is crucial for developing antiviral strategies. Prevailing perspective suggests that nonenveloped viruses release membrane pore-forming peptides to breach host membranes. However, the precise involvement of the viral capsid in this entry remains elusive. Our study presents direct observations elucidating the dynamically distinctive steps through which metastable reovirus capsids disrupt host lipid membranes as they uncoat into partially hydrophobic intermediate particles. Using both live cells and model membrane systems, our key finding is that reovirus capsids actively deform and permeabilize lipid membranes in a cholesterol-dependent process. Unlike membrane pore-forming peptides, these metastable viral capsids induce more extensive membrane perturbations, including budding, bridging between adjacent membranes, and complete rupture. Notably, cholesterol enhances subviral particle adsorption, resulting in the formation of pores equivalent to the capsid size. This cholesterol dependence is attributed to the lipid condensing effect, particularly prominent at an intermediate cholesterol level. Furthermore, our results reveal a positive correlation between membrane disruption extent and efficiency of viral variants in establishing infection. This study unveils the crucial role of capsid-lipid interaction in nonenveloped virus entry, providing new insights into how cholesterol homeostasis influences virus infection dynamics.
Collapse
Affiliation(s)
- Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
2
|
Schwenzer N, Teiwes NK, Kohl T, Pohl C, Giller MJ, Lehnart SE, Steinem C. Ca V1.3 channel clusters characterized by live-cell and isolated plasma membrane nanoscopy. Commun Biol 2024; 7:620. [PMID: 38783117 PMCID: PMC11116533 DOI: 10.1038/s42003-024-06313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
A key player of excitable cells in the heart and brain is the L-type calcium channel CaV1.3. In the heart, it is required for voltage-dependent Ca2+-signaling, i.e., for controlling and modulating atrial cardiomyocyte excitation-contraction coupling. The clustering of CaV1.3 in functionally relevant channel multimers has not been addressed due to a lack of stoichiometric labeling combined with high-resolution imaging. Here, we developed a HaloTag-labeling strategy to visualize and quantify CaV1.3 clusters using STED nanoscopy to address the questions of cluster size and intra-cluster channel density. Channel clusters were identified in the plasma membrane of transfected live HEK293 cells as well as in giant plasma membrane vesicles derived from these cells that were spread on modified glass support to obtain supported plasma membrane bilayers (SPMBs). A small fraction of the channel clusters was colocalized with early and recycling endosomes at the membranes. STED nanoscopy in conjunction with live-cell and SPMB imaging enabled us to quantify CaV1.3 cluster sizes and their molecular density revealing significantly lower channel densities than expected for dense channel packing. CaV1.3 channel cluster size and molecular density were increased in SPMBs after treatment of the cells with the sympathomimetic compound isoprenaline, suggesting a regulated channel cluster condensation mechanism.
Collapse
Affiliation(s)
- Niko Schwenzer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert‑Koch‑Str. 42a, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37073, Göttingen, Germany
| | - Nikolas K Teiwes
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37073, Göttingen, Germany
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany
| | - Tobias Kohl
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert‑Koch‑Str. 42a, 37075, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Celine Pohl
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany
| | - Michelle J Giller
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert‑Koch‑Str. 42a, 37075, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37073, Göttingen, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Collaborative Research Center SFB 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| | - Claudia Steinem
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37073, Göttingen, Germany.
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany.
- Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Jiao M, Danthi P, Yu Y. Cholesterol-Dependent Membrane Deformation by Metastable Viral Capsids Facilitates Entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575085. [PMID: 38260524 PMCID: PMC10802578 DOI: 10.1101/2024.01.10.575085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Non-enveloped viruses employ unique entry mechanisms to breach and infect host cells. Understanding these mechanisms is crucial for developing antiviral strategies. Prevailing perspective suggests that non-enveloped viruses release membrane lytic peptides to breach host membranes. However, the precise involvement of the viral capsid in this entry remains elusive. Our study presents direct observations elucidating the dynamically distinctive steps through which metastable reovirus capsids disrupt host lipid membranes as they uncoat into partially hydrophobic intermediate particles. Using both live cells and model membrane systems, our key finding is that reovirus capsids actively deform and permeabilize lipid membranes in a cholesterol-dependent process. Unlike membrane lytic peptides, these metastable viral capsids induce more extensive membrane perturbations, including budding, bridging between adjacent membranes, and complete rupture. Notably, cholesterol enhances subviral particle adsorption, resulting in the formation of pores equivalent to the capsid size. This cholesterol dependence is attributed to the lipid condensing effect, particularly prominent at intermediate cholesterol level. Furthermore, our results reveal a positive correlation between membrane disruption extent and efficiency of viral variants in establishing infection. This study unveils the crucial role of capsid-lipid interaction in non-enveloped virus entry, providing new insights into how cholesterol homeostasis influences virus infection dynamics.
Collapse
Affiliation(s)
- Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN 47405-7102
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
| |
Collapse
|
4
|
Chin CL, Huang LJ, Lu ZX, Weng WC, Chao L. Using the Water Absorption Ability of Dried Hydrogels to Form Hydrogel-Supported Lipid Bilayers. Gels 2023; 9:751. [PMID: 37754432 PMCID: PMC10530932 DOI: 10.3390/gels9090751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
The formation of supported lipid bilayers (SLBs) on hydrogels can act as a biocompatible anti-fouling interface. However, generating continuous and mobile SLBs on materials other than conventional glass or mica remains a significant challenge. The interaction between lipid membrane vesicles and a typical hydrogel is usually insufficient to induce membrane vesicle rupture and form a planar lipid membrane. In this study, we demonstrate that the water absorption ability of a dried polyacrylamide (PAAm) hydrogel could serve as a driving force to facilitate the formation of the hydrogel-SLBs. The absorption driving force vanishes after the hydrogels are fully hydrated, leaving no extra interaction hindering lipid lateral mobility in the formed SLBs. Our fluorescence recovery after photobleaching (FRAP) results show that SLBs only form on hydrogels with adequate absorption abilities. Moreover, we discovered that exposure to oxygen during drying could lead to the formation of an oxidized crust on the PAAm hydrogel surface, impeding SLB formation. Therefore, minimizing oxygen exposure during drying is crucial to achieving high-quality hydrogel surfaces for SLB formation. This water absorption method enables the straightforward fabrication of hydrogel-SLBs without the need for additional substrates or charges, thereby expanding their potential applications.
Collapse
Affiliation(s)
| | | | | | | | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Miller EJ, Phan MD, Shah J, Honerkamp-Smith AR. Passive and reversible area regulation of supported lipid bilayers in response to fluid flow. Biophys J 2023; 122:2242-2255. [PMID: 36639867 PMCID: PMC10257118 DOI: 10.1016/j.bpj.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Biological and model membranes are frequently subjected to fluid shear stress. However, membrane mechanical responses to flow remain incompletely described. This is particularly true of membranes supported on a solid substrate, and the influences of membrane composition and substrate roughness on membrane flow responses remain poorly understood. Here, we combine microfluidics, fluorescence microscopy, and neutron reflectivity to explore how supported lipid bilayer patches respond to controlled shear stress. We demonstrate that lipid membranes undergo a significant, passive, and partially reversible increase in membrane area due to flow. We show that these fluctuations in membrane area can be constrained, but not prevented, by increasing substrate roughness. Similar flow-induced changes to membrane structure may contribute to the ability of living cells to sense and respond to flow.
Collapse
Affiliation(s)
| | - Minh D Phan
- Large-Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Center for Neutron Science, Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware
| | | | | |
Collapse
|
6
|
Montalbo RCK, Tu HL. Micropatterning of functional lipid bilayer assays for quantitative bioanalysis. BIOMICROFLUIDICS 2023; 17:031302. [PMID: 37179590 PMCID: PMC10171888 DOI: 10.1063/5.0145997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Interactions of the cell with its environment are mediated by the cell membrane and membrane-localized molecules. Supported lipid bilayers have enabled the recapitulation of the basic properties of cell membranes and have been broadly used to further our understanding of cellular behavior. Coupled with micropatterning techniques, lipid bilayer platforms have allowed for high throughput assays capable of performing quantitative analysis at a high spatiotemporal resolution. Here, an overview of the current methods of the lipid membrane patterning is presented. The fabrication and pattern characteristics are briefly described to present an idea of the quality and notable features of the methods, their utilizations for quantitative bioanalysis, as well as to highlight possible directions for the advanced micropatterning lipid membrane assays.
Collapse
|
7
|
Chien CY, Lin JC, Huang CY, Hsu CY, Yang KC, Chattopadhyay S, Nikoloutsos N, Hsieh PCH, Hu CMJ. In Situ Hydrogelation of Cellular Monolayers Enables Conformal Biomembrane Functionalization for Xeno-Free Feeder Substrate Engineering. Adv Healthc Mater 2023; 12:e2201708. [PMID: 36455286 DOI: 10.1002/adhm.202201708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/14/2022] [Indexed: 12/03/2022]
Abstract
The intricate functionalities of cellular membranes have inspired strategies for deriving and anchoring cell-surface components onto solid substrates for biological studies, biosensor applications, and tissue engineering. However, introducing conformal and right-side-out cell membrane coverage onto planar substrates requires cumbersome protocols susceptible to significant device-to-device variability. Here, a facile approach for biomembrane functionalization of planar substrates is demonstrated by subjecting confluent cellular monolayer to intracellular hydrogel polymerization. The resulting cell-gel hybrid, herein termed GELL (gelated cell), exhibits extraordinary stability and retains the structural integrity, membrane fluidity, membrane protein mobility, and topology of living cells. In assessing the utility of GELL layers as a tissue engineering feeder substrate for stem cell maintenance, GELL feeder prepared from primary mouse embryonic fibroblasts not only preserves the stemness of murine stem cells but also exhibits advantages over live feeder cells owing to the GELL's inanimate, non-metabolizing nature. The preparation of a xeno-free feeder substrate devoid of non-human components is further shown with HeLa cells, and the resulting HeLa GELL feeder effectively sustains the growth and stemness of both murine and human induced pluripotent stem cells. The study highlights a novel bio-functionalization strategy that introduces new opportunities for tissue engineering and other biomedical applications.
Collapse
Affiliation(s)
- Chen-Ying Chien
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ching-Ying Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Yao Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
| | - Kai-Chieh Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
| | - Saborni Chattopadhyay
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
| | | | | | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
8
|
Kalyana Sundaram RV, Bera M, Coleman J, Weerakkody JS, Krishnakumar SS, Ramakrishnan S. Native Planar Asymmetric Suspended Membrane for Single-Molecule Investigations: Plasma Membrane on a Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205567. [PMID: 36328714 DOI: 10.1002/smll.202205567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Cellular plasma membranes, in their role as gatekeepers to the external environment, host numerous protein assemblies and lipid domains that manage the movement of molecules into and out of cells, regulate electric potential, and direct cell signaling. The ability to investigate these roles on the bilayer at a single-molecule level in a controlled, in vitro environment while preserving lipid and protein architectures will provide deeper insights into how the plasma membrane works. A tunable silicon microarray platform that supports stable, planar, and asymmetric suspended lipid membranes (SLIM) using synthetic and native plasma membrane vesicles for single-molecule fluorescence investigations is developed. Essentially, a "plasma membrane-on-a-chip" system that preserves lipid asymmetry and protein orientation is created. By harnessing the combined potential of this platform with total internal reflection fluorescence (TIRF) microscopy, the authors are able to visualize protein complexes with single-molecule precision. This technology has widespread applications in biological processes that happen at the cellular membranes and will further the knowledge of lipid and protein assemblies.
Collapse
Affiliation(s)
- Ramalingam Venkat Kalyana Sundaram
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan S Weerakkody
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Shyam S Krishnakumar
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
9
|
Cheppali SK, Dharan R, Katzenelson R, Sorkin R. Supported Natural Membranes on Microspheres for Protein-Protein Interaction Studies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49532-49541. [PMID: 36306148 DOI: 10.1021/acsami.2c13095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiple biological and pathological processes, such as signaling, cell-cell communication, and infection by various viruses, occur at the plasma membrane. The eukaryotic plasma membrane is made up of thousands of different lipids, membrane proteins, and glycolipids, and its composition is dynamic and constantly changing. Due to the central importance of membranes on the one hand and their complexity on the other, membrane model systems are instrumental for interrogating membrane-related biological processes. Here, we develop a new tool for protein-membrane interaction studies. Our method is based on natural membranes obtained from extracellular vesicles. We form membrane bilayers supported on polystyrene microspheres that can be trapped and manipulated using optical tweezers. This method allows working with membrane proteins of interest within a background of native membrane components where their correct orientation is preserved. We demonstrate our method's applicability by successfully measuring the interaction forces between the Spike protein of SARS-CoV-2 and its human receptor, ACE2. We further show that these interactions are blocked by the addition of an antibody against the receptor binding domain of the Spike protein. Our approach is versatile and broadly applicable for various membrane biology and biophysics questions.
Collapse
Affiliation(s)
- Sudheer K Cheppali
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel6997801
| | - Raviv Dharan
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel6997801
| | - Roni Katzenelson
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel6997801
| | - Raya Sorkin
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel6997801
| |
Collapse
|
10
|
Basualdo FNP, Gardi G, Wang W, Demir SO, Bolopion A, Gauthier M, Lambert P, Sitti M. Control and Transport of Passive Particles Using Self-Organized Spinning Micro-Disks. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3143306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Nagai R, Sugimachi A, Tanimoto Y, Suzuki KGN, Hayashi F, Weikert D, Gmeiner P, Kasai RS, Morigaki K. Functional Reconstitution of Dopamine D2 Receptor into a Supported Model Membrane in a Nanometric Confinement. Adv Biol (Weinh) 2021; 5:e2100636. [PMID: 34761565 DOI: 10.1002/adbi.202100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/22/2021] [Indexed: 11/07/2022]
Abstract
Dopamine D2 receptor (D2R), a G-protein-coupled receptor (GPCR), plays critical roles in neural functions and represents the target for a wide variety of drugs used to treat neurological diseases. However, its fundamental physicochemical properties, such as dimerization and affinity to different lipid environments, remain unknown. Here, reconstitution and characterization of D2R in a supported model membrane in nanometric confinement are reported. D2R is expressed in Chinese hamster ovary (CHO) cells and transferred into the supported model membrane as cell membrane blebs. D2R molecules are reconstituted with an elevated density in the cleft between the substrate and poly(dimethylsiloxane) (PDMS) elastomer. Reconstituted D2R retains the physiological functions, as evaluated from its binding to an antagonist and dimerization lifetime. The transient dimer formation of D2R, similar to the live cell, suggests that it is an innate property that does not depend on the cellular structures such as actin filaments. Although the mechanism of this unique reconstitution process is currently not fully understood, the finding points to a new possibility of using a nanometric space (<100 nm thick) as a platform for reconstituting and studying membrane proteins under the quasi-physiological conditions, which are difficult to be created by other methods.
Collapse
Affiliation(s)
- Rurika Nagai
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Ayane Sugimachi
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Yasushi Tanimoto
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Kenichi G N Suzuki
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Fumio Hayashi
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058, Erlangen, Germany
| | - Rinshi S Kasai
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenichi Morigaki
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
12
|
Teiwes NK, Mey I, Baumann PC, Strieker L, Unkelbach U, Steinem C. Pore-Spanning Plasma Membranes Derived from Giant Plasma Membrane Vesicles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25805-25812. [PMID: 34043315 DOI: 10.1021/acsami.1c06404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Giant plasma membrane vesicles (GPMVs) are a highly promising model system for the eukaryotic plasma membrane. The unresolved challenge, however, is a path to surface-based structures that allows accessibility to both sides of the plasma membrane through high-resolution techniques. Such an approach would pave the way to advanced chip-based technologies for the analysis of complex cell surfaces to study the roles of membrane proteins, host-pathogen interactions, and many other bioanalytical and sensing applications. This study reports the generation of planar supported plasma membranes and for the first-time pore-spanning plasma membranes (PSPMs) derived from pure GPMVs that are spread on activated solid and highly ordered porous silicon substrates. GPMVs were produced by two different vesiculation agents and were first investigated with respect to their growth behavior and phase separation. Second, these GPMVs were spread onto silicon substrates to form planar supported plasma membrane patches. PSPMs were obtained by spreading of pure GPMVs on oxygen-plasma activated porous substrates with pore diameters of 3.5 μm. Fluorescence micrographs unambiguously showed that the PSPMs partially phase separate in a mobile ordered phase surrounded by a disordered phase, which was supported by cholesterol extraction using methyl-β-cyclodextrin.
Collapse
Affiliation(s)
- Nikolas K Teiwes
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstaße 2, 37077 Göttingen, Germany
| | - Ingo Mey
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstaße 2, 37077 Göttingen, Germany
| | - Phila C Baumann
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstaße 2, 37077 Göttingen, Germany
| | - Lena Strieker
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstaße 2, 37077 Göttingen, Germany
| | - Ulla Unkelbach
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstaße 2, 37077 Göttingen, Germany
| | - Claudia Steinem
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstaße 2, 37077 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Kataoka-Hamai C, Kawakami K. Domain Sorting in Giant Unilamellar Vesicles Adsorbed on Glass. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1082-1088. [PMID: 33440115 DOI: 10.1021/acs.langmuir.0c02843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Giant unilamellar vesicles (GUVs) adsorb to a solid surface and rupture to form a planar bilayer patch. These bilayer patches are used to investigate the properties and functions of biological membranes. Therefore, it is crucial to understand the mechanisms of GUV adsorption. In this study, we investigate the adsorption of phase-separated GUVs on glass using fluorescence microscopy. GUVs containing liquid-ordered (Lo) and liquid-disordered (Ld) phases underwent domain sorting after adsorption. The Ld domain in the unbound region migrated to the highly curved region near the edge of the adsorbed region. Additionally, the Lo phase grew linearly along the edge of the adsorbed region, creating a thin ring-like domain. After the domain sorting event, the GUV ruptured to form a planar bilayer patch with circular-patterned domains in the initially adsorbed area. We found that domain sorting was promoted by increasing the extent of GUV deformation. These results suggest that both the Ld and Lo domains are reorganized for stabilizing the curved bilayer region in adsorbed GUVs.
Collapse
Affiliation(s)
- Chiho Kataoka-Hamai
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
14
|
James HP, Jadhav S. Mechanical and transport properties of chitosan-zwitterionic phospholipid vesicles. Colloids Surf B Biointerfaces 2020; 188:110782. [DOI: 10.1016/j.colsurfb.2020.110782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
|
15
|
Sezgin E, Carugo D, Levental I, Stride E, Eggeling C. Creating Supported Plasma Membrane Bilayers Using Acoustic Pressure. MEMBRANES 2020; 10:E30. [PMID: 32085393 PMCID: PMC7074417 DOI: 10.3390/membranes10020030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 01/12/2023]
Abstract
Model membrane systems are essential tools for the study of biological processes in a simplified setting to reveal the underlying physicochemical principles. As cell-derived membrane systems, giant plasma membrane vesicles (GPMVs) constitute an intermediate model between live cells and fully artificial structures. Certain applications, however, require planar membrane surfaces. Here, we report a new approach for creating supported plasma membrane bilayers (SPMBs) by bursting cell-derived GPMVs using ultrasound within a microfluidic device. We show that the mobility of outer leaflet molecules is preserved in SPMBs, suggesting that they are accessible on the surface of the bilayers. Such model membrane systems are potentially useful in many applications requiring detailed characterization of plasma membrane dynamics.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Dario Carugo
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, Institute for Life Sciences (IfLS), University of Southampton, SO17 1BJ Southampton, UK;
| | - Ilya Levental
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK;
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
16
|
Lin JC, Chien CY, Lin CL, Yao BY, Chen YI, Liu YH, Fang ZS, Chen JY, Chen WY, Lee NN, Chen HW, Hu CMJ. Intracellular hydrogelation preserves fluid and functional cell membrane interfaces for biological interactions. Nat Commun 2019; 10:1057. [PMID: 30837473 PMCID: PMC6401164 DOI: 10.1038/s41467-019-09049-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cell membranes are an intricate yet fragile interface that requires substrate support for stabilization. Upon cell death, disassembly of the cytoskeletal network deprives plasma membranes of mechanical support and leads to membrane rupture and disintegration. By assembling a network of synthetic hydrogel polymers inside the intracellular compartment using photo-activated crosslinking chemistry, we show that the fluid cell membrane can be preserved, resulting in intracellularly gelated cells with robust stability. Upon assessing several types of adherent and suspension cells over a range of hydrogel crosslinking densities, we validate retention of surface properties, membrane lipid fluidity, lipid order, and protein mobility on the gelated cells. Preservation of cell surface functions is further demonstrated with gelated antigen presenting cells, which engage with antigen-specific T lymphocytes and effectively promote cell expansion ex vivo and in vivo. The intracellular hydrogelation technique presents a versatile cell fixation approach adaptable for biomembrane studies and biomedical device construction.
Collapse
Affiliation(s)
- Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - Chen-Ying Chien
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - Chi-Long Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - Bing-Yu Yao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - Yuan-I Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - Yu-Han Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - Zih-Syun Fang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Jui-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - Wei-Ya Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
| | - No-No Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11574, Taiwan.
| |
Collapse
|
17
|
Lyu SW, Wang JF, Chao L. Constructing Supported Cell Membranes with Controllable Orientation. Sci Rep 2019; 9:2747. [PMID: 30808885 PMCID: PMC6391389 DOI: 10.1038/s41598-019-39075-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
Membrane proteins play important roles in various cellular processes. Methods that can retain their structure and membrane topology information during their characterization are desirable for understanding their structure-function behavior. Here, we use giant plasma membrane vesicles (GPMVs) to form the supported cell membrane and develop a blotting method to control the orientation of the deposited cell membrane in order to study membrane proteins from either the extracellular or the cytoplasmic sides. We show that the membrane orientation can be retained in the directly-deposited membrane and the deposited membrane on mica can be blotted onto glass to reverse the membrane orientation. We used Aquaporin 3 (AQP3), an abundant native transmembrane protein in Hela cells, as a target to examine the cell membrane orientation in the directly-deposited and reversed membrane platforms. The immunostaining of antibodies targeting either the cyto-domain or ecto-domain of AQP3 shows that the intracellular side of the cell membrane faced the bulk aqueous environment when the GPMVs spontaneously ruptured on the support and that the membrane orientation was reversed after blotting. With this blotting method, we can thus control the orientation of the supported cell membrane to study membrane protein functions and structures from either side of the cell plasma membrane.
Collapse
Affiliation(s)
- Shao-Wei Lyu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jou-Fang Wang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
18
|
Wash-free instant detection of giant plasma membrane vesicles. Anal Biochem 2018; 557:59-61. [PMID: 30030992 DOI: 10.1016/j.ab.2018.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 12/20/2022]
Abstract
Giant plasma membrane vesicles (GPMVs) are large extracellular vesicles produced by the exposure of cells to paraformaldehyde or other stresses, providing an experimental system to elucidate cell surface dynamics. Here we show that addition of the membrane permeable fluorescent RNA-indicators, acridine orange and thioflavin T, to GPMV-containing solutions prepared from cultured HeLa cells was sufficient for the fluorescent visualization of seemingly all GPMVs. Our findings provide a wash-free instant method using non-lipid-type fluorescent dyes for GPMV detection, which should be useful for researchers interested in studying cell membrane dynamics and biochemistry using GPMVs.
Collapse
|