1
|
Zheng Y, Yue Y, Liu C, Pang L, Wang Y, Yang Z. The role of riverbed substrates in N 2O and CH 4 emission: Insights from metagenomic analysis of epilithic biofilms. ENVIRONMENTAL RESEARCH 2025; 279:121772. [PMID: 40320026 DOI: 10.1016/j.envres.2025.121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Riverbed substrates are critical in N2O and CH4 emission with functional microbes adhering to them. However, the role of substrates remains to be fully understood. This study monitors N2O and CH4 emission and collects epilithic biofilms on riverbed substrates with various diameters and size heterogeneity from 10 sections along a mountain river. Compared with the global range, moderate water-air exchange rates of N2O (-2.34-29.2 μg/m2/h) and rapid CH4 emission (-2.58-35.2 mg/m2/h) are observed. Based on metagenomic analysis, the abundances of nirS and fmdA genes, which encode catalysts in the denitrification and the hydrogenotrophic methanogenesis process, are found to be significantly higher in the medium diameter group (2-100 mm), implying higher N2O and CH4 emission. Meanwhile, the abundance of nirS and nirK genes, which are key to N2O production, is significantly higher in the low size heterogeneity group, promoting N2O release. In contrast, the abundance of ftr, pta,ackA and ACS genes critical in the methanogenesis processes are significantly lower in the low size heterogeneity group, inhibiting CH4 emission. For N2O production, the nitrification process is found to be dominated by species of Nocardioides and Planctomycetales, denitrification process by species of Tabrizicola and Rhodobacteraceae, and dissimilatory nitrate reduction to ammonium process by Leptospiraceae species. In contrast, CH4 is mainly generated by species of Pirellula and Proteobacteria through hydrogenotrophic, acetoclastic and methylotrophic methanogenesis respectively. A structural equation model indicated that substrate physical properties are equally or even more important as/than the aquatic nutrients concentration for N2O or CH4 emission in mountain rivers.
Collapse
Affiliation(s)
- Youzuo Zheng
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
| | - Yao Yue
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China; Institute for Water-Carbon Cycles & Carbon Neutrality, Wuhan University, Wuhan, 430072, China.
| | - Caiqiong Liu
- Zhaoda Lianhe Engineering Technology Co., Ltd., Jiaxing, 314000, China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yichu Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Sichuan, 610065, China.
| | - Zhonghua Yang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Kim MK, Lim BS, Lee CS, Srinivasan S. Bacterial Diversity in the Different Ecological Niches Related to the Yonghwasil Pond (Republic of Korea). Microorganisms 2024; 12:2547. [PMID: 39770750 PMCID: PMC11677111 DOI: 10.3390/microorganisms12122547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
The bacteriome profile was studied in freshwater ecosystems within the Yonghwasil pond, situated at the National Institute of Ecology, Seocheon-gun, Chungcheongnam-do, central western Korea. Six samples from water, mud, and soil niches were assessed, specifically from lake water, bottom mud (sediment), and root-soil samples of Bulrush, wild rice, Reed, and Korean Willow. Notably, the phylum Actinobacteria exhibited an upward trend moving from water to mud to soil samples, whereas Chloroflexi showed a contrasting decrease. Across the board, Proteobacteria emerged as the reigning phylum, and subsequent dominance was attributed to Firmicutes and Actinobacteria. The water samples were characterized by an enriched presence of Cyanobacteria and Bacteroidetes, whereas the mud samples distinctly housed a higher concentration of Chloroflexi. Assessing biodiversity through OTU and ACE indices revealed a subdued species richness in the water samples. On the contrary, mud samples stood out with the highest OTU and ACE metrics, signifying a microbially diverse habitat. Bulrush, wild rice, Reed, and Willow samples showed intermediate microbial diversity. The Shannon index further corroborated the pronounced microbial diversity in mud and Bulrush habitats with others. This research elucidates the microbial intricacies across different habitats within Yonghwasil Pond, emphasizing the pivotal role of environmental matrices in shaping bacterial communities.
Collapse
Affiliation(s)
| | | | - Chang Seok Lee
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Sathiyaraj Srinivasan
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul 01797, Republic of Korea
| |
Collapse
|
3
|
Kang HY, Lee BG, Shin JK, Kim C, Park HJ, Kang CK. Monsoonal impacts on the community trophic niches in two temperate headwater tributaries across a land use continuum. Sci Rep 2024; 14:25732. [PMID: 39468143 PMCID: PMC11519938 DOI: 10.1038/s41598-024-76012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Pulsed flows following heavy monsoon rain events alter riverine food webs, but their impact on headwater stream food webs across the continuum from forested canopy to open agricultural land use remains unclear. We investigated carbon and nitrogen stable isotopes in macroinvertebrates and fish in two tributaries of the Suyeung River, Korea, before and after heavy monsoon rains to assess changes in community trophic niches. Basal resources (leaf litter and biofilms) exhibited consistent δ13C and δ15N values across seasons, with biofilms showing higher δ13C values. δ15N values increased from forested to agricultural reaches, indicating varied nutrient inputs. Consumer isotope values remained stable over time but varied longitudinally, reflecting reliance on local resources. Trophic niches differed between watershed locations but overlapped seasonally. Despite a decrease in consumer δ13C ranges after heavy rainfalls, variations in their δ15N ranges and the ellipse centroid (SEAc) of isotopic niches between sites resulted in broadly consistent SEAc across locations and seasons. This indicates limited evidence for directional reshaping of food-web properties across channel reaches following monsoon rains. Downstream isotopic shifts suggest substantial agricultural influences on food webs. Overall, our findings highlight that monsoon rains may have minimal effects on the community trophic niches of stream food webs.
Collapse
Affiliation(s)
- Hee Yoon Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Department of Oceanography, College of Natural Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Byeong-Gweon Lee
- Department of Oceanography, College of Natural Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Ki Shin
- Limnoecological Science Research Institute Korea (THE HANGANG), Miryang, 50440, Republic of Korea
| | - Changseong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyun Je Park
- Department of Marine Ecology and Environment, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Chang-Keun Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
4
|
Smith K, Stone W, Botha A, Steffen H, Wolfaardt G. Riverine mycobiome dynamics: From South African tributaries to laboratory bioreactors. Mycology 2024; 15:631-650. [PMID: 39678638 PMCID: PMC11636148 DOI: 10.1080/21501203.2023.2278309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/28/2023] [Indexed: 12/17/2024] Open
Abstract
Riverine fungi have the capacity for both pathogenicity, pertinent for countries with elevated immunosuppressed individuals, and bioremediation potential. The purpose was (i) to screen for the presence of clinically relevant riverine fungi and associations with anthropogenic influence, and (ii) the acclimatisation of environmental communities toward potential bioremediation application. Communities were harvested from polluted rivers in Stellenbosch, South Africa, and mycobiomes characterised by high-throughput amplicon sequencing. The remainder of the biomass was inoculated into continuous bioreactors with filtered river water or sterile minimal medium. Seven weeks later, the mycobiomes were re-sequenced. At least nine clinically relevant species were detected, including agents of mycoses belonging to the genus Candida. The occurrence of genera that harbour opportunisticstrains was significantly higher (P = 0.04) at more polluted sites. Moreover, positive correlations occured between some genera and pollution indices, demonstrating the potential of fungi for addition to water quality indicators. Despite biomass increase, almost all pathogens were undetectable after seven weeks, demonstrating less resilience in conditions mimicking rivers. Thus, when screening riverine biomes for bioremediation potential, ambient reactors select against human pathogens. This indicates a transient introduction of allochthonous opportunistic species into rivers due to insufficient sanitation, and the potential of bioremediation strategies that selects for environmental rather than pathogenic traits.
Collapse
Affiliation(s)
- Katrin Smith
- Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa
| | - Wendy Stone
- Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa
| | - Alfred Botha
- Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa
| | - Heidi Steffen
- Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa
| | - Gideon Wolfaardt
- Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| |
Collapse
|
5
|
Liang J, Ding J, Zhu Z, Gao X, Li S, Li X, Yan M, Zhou Q, Tang N, Lu L, Li X. Decoupling the heterogeneity of sediment microbial communities along the urbanization gradients: A Bayesian-based approach. ENVIRONMENTAL RESEARCH 2023; 238:117255. [PMID: 37775011 DOI: 10.1016/j.envres.2023.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Comprehending the response of microbial communities in rivers along urbanization gradients to hydrologic characteristics and pollution sources is critical for effective watershed management. However, the effects of complex factors on riverine microbial communities remain poorly understood. Thus, we established a bacteria-based index of biotic integrity (Ba-IBI) to evaluate the microbial community heterogeneity of rivers along an urbanization gradient. To examine the response of Ba-IBI to multiple stressors, we employed a Bayesian network based on structural equation modeling (SEM-BN) and revealed the key control factors influencing Ba-IBI at different levels of urbanization. Our findings highlight that waterborne nutrients have the most significant direct impact on Ba-IBI (r = -0.563), with a particular emphasis on ammonia nitrogen, which emerged as the primary driver of microbial community heterogeneity in the Liuyang River basin. In addition, our study confirmed the substantial adverse effects of urbanization on river ecology, as urban land use had the greatest indirect effect on Ba-IBI (r = -0.460). Specifically, the discharge load from wastewater treatment plants (WWTP) was found to significantly negatively affect the Ba-IBI of the entire watershed. In the low urbanized watersheds, rice cultivation (RC) and concentrated animal feeding operations (CAFO) are key control factors, and an increase in their emissions can lead to a sharp decrease in Ba-IBI. In moderately urbanized watersheds, the Ba-IBI tended to decrease as the level of RC emissions increased, while in those with moderate RC emissions, an increase in point source emissions mitigated the negative impact of RC on Ba-IBI. In highly urbanized watersheds, Ba-IBI was not sensitive to changes in stressors. Overall, our study presents a novel approach by integrating Ba-IBI with multi-scenario analysis tools to assess the effects of multiple stressors on microbial communities in river sediments, providing valuable insights for more refined environmental decision-making.
Collapse
Affiliation(s)
- Jie Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China.
| | - Junjie Ding
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Min Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Qinxue Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Lan Lu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| |
Collapse
|
6
|
Liu C, Yue Y, Zheng S, Liu X, Pang L, Yang Z. Impacts of substrate properties and aquatic nutrient concentrations on the relative abundance of nitrifying/denitrifying genes and the associated microbes in epilithic biofilms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120930-120944. [PMID: 37945964 DOI: 10.1007/s11356-023-30818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Substrates like sand or gravels and aquatic nutrient concentrations of rivers are highly heterogeneous, influencing the abundance of functional genes in epilithic biofilms where nitrification-denitrification processes take place. To analyze how the relative abundance of nitrifying/denitrifying genes and the associated microbes changes with the physical properties of substrates and aquatic concentrations of nutrients, this paper utilized metagenomics to comprehensively characterize these functional genes (i.e., amoA, hao, and nxrB involved in nitrification, and napA, narG, nirS, norB, and nosZ associated with denitrification) from epilithic biofilms collected along the Shitingjiang River in Southwest China and further obtained the relative abundance of major nitrifiers and denitrifiers. The results show that substrate size most significantly affects the relative abundance of hao and norB by altering the hydrodynamic conditions. In sampling sites with high heterogeneity in substrate size distribution, the relative abundance of most denitrifying genes is also higher. The carbon-nitrogen ratio negatively correlates with the relative abundance of all the nitrifying genes, while ammonium, total inorganic carbon, and total organic carbon concentrations positively affect the relative abundance of amoA and nxrB. As to the relative abundance of nitrifiers and denitrifiers, mainly belonging to phyla Proteobacteria and Actinobacteria, substrate heterogeneity and the aquatic concentrations of nutrients have greater influences than substrate size. Also, the substrate heterogeneity exerted positive influence on functional species of Pseudogemmobacter bohemicus and Paracoccus zhejiangensis. Considering the genes' functions and the dominant species linked to denitrification, nitrous oxide is more likely to occur in rivers with higher heterogeneity and larger substrates.
Collapse
Affiliation(s)
- Caiqiong Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
| | - Yao Yue
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
- Institute for Water-Carbon Cycles and Carbon Neutrality, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Shan Zheng
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
| | - Xuna Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zhonghua Yang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Weigel B, Graco-Roza C, Hultman J, Pajunen V, Teittinen A, Kuzmina M, Zakharov EV, Soininen J, Ovaskainen O. Local eukaryotic and bacterial stream community assembly is shaped by regional land use effects. ISME COMMUNICATIONS 2023; 3:65. [PMID: 37365224 PMCID: PMC10293236 DOI: 10.1038/s43705-023-00272-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
With anticipated expansion of agricultural areas for food production and increasing intensity of pressures stemming from land-use, it is critical to better understand how species respond to land-use change. This is particularly true for microbial communities which provide key ecosystem functions and display fastest responses to environmental change. However, regional land-use effects on local environmental conditions are often neglected, and, hence, underestimated when investigating community responses. Here we show that the effects stemming from agricultural and forested land use are strongest reflected in water conductivity, pH and phosphorus concentration, shaping microbial communities and their assembly processes. Using a joint species distribution modelling framework with community data based on metabarcoding, we quantify the contribution of land-use types in determining local environmental variables and uncover the impact of both, land-use, and local environment, on microbial stream communities. We found that community assembly is closely linked to land-use type but that the local environment strongly mediates the effects of land-use, resulting in systematic variation of taxon responses to environmental conditions, depending on their domain (bacteria vs. eukaryote) and trophic mode (autotrophy vs. heterotrophy). Given that regional land-use type strongly shapes local environments, it is paramount to consider its key role in shaping local stream communities.
Collapse
Affiliation(s)
- Benjamin Weigel
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. 65, FI-00014, Helsinki, Finland.
- INRAE, EABX, 50 avenue de Verdun, 33612, Cestas, France.
| | - Caio Graco-Roza
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, State University of Rio de Janeiro, Rua São Francisco Xavier 524, PHLC, Sala 511a, Rio de Janeiro, 20550-900, Brazil
- Department of Geosciences and Geography, University of Helsinki, PO, Box 64, FI-00014, Helsinki, Finland
| | - Jenni Hultman
- Soil Ecosystems, Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Virpi Pajunen
- Department of Geosciences and Geography, University of Helsinki, PO, Box 64, FI-00014, Helsinki, Finland
- Department of Built Environment, Aalto University, PO Box 11000, 00076 AALTO, Espoo, Finland
| | - Anette Teittinen
- Department of Geosciences and Geography, University of Helsinki, PO, Box 64, FI-00014, Helsinki, Finland
| | - Maria Kuzmina
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Evgeny V Zakharov
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, PO, Box 64, FI-00014, Helsinki, Finland
| | - Otso Ovaskainen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. 65, FI-00014, Helsinki, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| |
Collapse
|
8
|
Gill SP, Hunter WR, Coulson LE, Banat IM, Schelker J. Synthetic and biological surfactant effects on freshwater biofilm community composition and metabolic activity. Appl Microbiol Biotechnol 2022; 106:6847-6859. [PMID: 36121483 PMCID: PMC9529700 DOI: 10.1007/s00253-022-12179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Abstract
Surfactants are used to control microbial biofilms in industrial and medical settings. Their known toxicity on aquatic biota, and their longevity in the environment, has encouraged research on biodegradable alternatives such as rhamnolipids. While previous research has investigated the effects of biological surfactants on single species biofilms, there remains a lack of information regarding the effects of synthetic and biological surfactants in freshwater ecosystems. We conducted a mesocosm experiment to test how the surfactant sodium dodecyl sulfate (SDS) and the biological surfactant rhamnolipid altered community composition and metabolic activity of freshwater biofilms. Biofilms were cultured in the flumes using lake water from Lake Lunz in Austria, under high (300 ppm) and low (150 ppm) concentrations of either surfactant over a four-week period. Our results show that both surfactants significantly affected microbial diversity. Up to 36% of microbial operational taxonomic units were lost after surfactant exposure. Rhamnolipid exposure also increased the production of the extracellular enzymes, leucine aminopeptidase, and glucosidase, while SDS exposure reduced leucine aminopeptidase and glucosidase. This study demonstrates that exposure of freshwater biofilms to chemical and biological surfactants caused a reduction of microbial diversity and changes in biofilm metabolism, exemplified by shifts in extracellular enzyme activities. KEY POINTS: • Microbial biofilm diversity decreased significantly after surfactant exposure. • Exposure to either surfactant altered extracellular enzyme activity. • Overall metabolic activity was not altered, suggesting functional redundancy.
Collapse
Affiliation(s)
- Stephanie P Gill
- Department of Geography and Environmental Studies, Ulster University, Coleraine, BT52 1SA, N. Ireland, UK.
| | - William R Hunter
- Fisheries and Aquatic Ecosystems Branch, Agri-Food and Biosciences Institute, Belfast, N. Ireland, UK
| | - Laura E Coulson
- WasserCluster Lunz, Lunz am See, Austria
- Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Jakob Schelker
- WasserCluster Lunz, Lunz am See, Austria
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Gautam A, Lear G, Lewis GD. Time after time: Detecting annual patterns in stream bacterial biofilm communities. Environ Microbiol 2022; 24:2502-2515. [PMID: 35466520 PMCID: PMC9324112 DOI: 10.1111/1462-2920.16017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Abstract
To quantify the major environmental drivers of stream bacterial population dynamics, we modelled temporal differences in stream bacterial communities to quantify community shifts, including those relating to cyclical seasonal variation and more sporadic bloom events. We applied Illumina MiSeq 16S rRNA bacterial gene sequencing of 892 stream biofilm samples, collected monthly for 36‐months from six streams. The streams were located a maximum of 118 km apart and drained three different catchment types (forest, urban and rural land uses). We identified repeatable seasonal patterns among bacterial taxa, allowing their separation into three ecological groupings, those following linear, bloom/trough and repeated, seasonal trends. Various physicochemical parameters (light, water and air temperature, pH, dissolved oxygen, nutrients) were linked to temporal community changes. Our models indicate that bloom events and seasonal episodes modify biofilm bacterial populations, suggesting that distinct microbial taxa thrive during these events including non‐cyanobacterial community members. These models could aid in determining how temporal environmental changes affect community assembly and guide the selection of appropriate statistical models to capture future community responses to environmental change.
Collapse
Affiliation(s)
- Anju Gautam
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Gavin Lear
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Gillian D Lewis
- School of Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
10
|
Fernández FJ, Muñoz M, Ponce Oliva RD, Vásquez-Lavín F, Gelcich S. Gaps, biases, and future directions in research on the impacts of anthropogenic land-use change on aquatic ecosystems: a topic-based bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43173-43189. [PMID: 34165733 DOI: 10.1007/s11356-021-15010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic land use change (ALUC) satisfies human needs but also impacts aquatic ecosystems. Aquatic ecosystems are intrinsically linked with terrestrial landscapes, an association that is already recognized as a key factor to address future research and effective governance. However, the complexity and range of the impact of ALUC in aquatic ecosystems have been fundamental challenges and have implicitly routed the analysis to particular segments, drivers, management, or effects of the theme. In this study, we present an attempt to frame the subject in a broader context through a topic-based bibliometric analysis. Our aim is to identify possible biases and gaps in the current scientific literature and detect the main topics that have characterized the theme. Our results show an unequal distribution of articles by country when we analyzed the authors' affiliation and also a slight increase in contributions from social and economic disciplines, although they are still underrepresented. Moreover, we distinguish topics whose prevalence seems to change, especially those topics where the use of scenario analysis and multi-stressors are considered. We discuss the main biases and gaps revealed by our results, concluding that future studies on the impact of ALUC on aquatic ecosystems should better integrate social and economic disciplines and expand geographic frontiers.
Collapse
Affiliation(s)
- Francisco J Fernández
- School of Agronomy, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biologicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Manuel Muñoz
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biologicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto D Ponce Oliva
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biologicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto Milenio en Socio-Ecologia Costera (SECOS), Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Business and Economics , Universidad del Desarrollo , Concepción, Chile
- Water Research Center for Agriculture and Mining (CRHIAM) , Concepción, Chile
| | - Felipe Vásquez-Lavín
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biologicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto Milenio en Socio-Ecologia Costera (SECOS), Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Business and Economics , Universidad del Desarrollo , Concepción, Chile
| | - Stefan Gelcich
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biologicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto Milenio en Socio-Ecologia Costera (SECOS), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Dang C, Kellner E, Martin G, Freedman ZB, Hubbart J, Stephan K, Kelly CN, Morrissey EM. Land use intensification destabilizes stream microbial biodiversity and decreases metabolic efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145440. [PMID: 33636758 DOI: 10.1016/j.scitotenv.2021.145440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Urbanization and agricultural intensification can transform landscapes. Changes in land-use can lead to increases in storm runoff and nutrient loadings which can impair the health and function of stream ecosystems. Microorganisms are an integral component of stream ecosystems. Due to the sensitivity of microorganisms to perturbations, changes in hydrology and water chemistry may alter microbial activity and structure. These shifts in microbial community dynamics may alter stream metabolism and water quality, potentially impacting higher trophic levels. Here we examine the effects of land-use and associated changes in water chemistry on sediment microbial communities by studying the West Run Watershed (WRW) a mixed-land-use system in West Virginia, USA. Streams were sampled throughout the growing season at six sites within the WRW spanning different levels of land use intensification. The proportion of land impacted by agricultural and urban development was positively correlated with temporal variation in stream sediment microbial community composition (adj R2 = 0.65), suggesting development can destabilize microbial communities. Moreover, streams in developed watersheds had an increased metabolic quotient (20-50% higher), this indicates that microorganisms have greater respiration per unit biomass and signifies reduced metabolic efficiency. Further, our results suggest that land use associated changes in water chemistry alter microbial function both directly and indirectly via changes in microbial community composition and biomass. Taken together our results suggest that highly developed watersheds with elevated conductivity, metal ion concentration, and pH impose stress on microbial communities resulting in reduced microbial efficiency and elevated respiration.
Collapse
Affiliation(s)
- Chansotheary Dang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26505, USA
| | - Elliott Kellner
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26505, USA; Institute of Water Security and Science, West Virginia University, Morgantown, WV 26505, USA
| | - Gregory Martin
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26505, USA
| | - Zachary B Freedman
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26505, USA; Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jason Hubbart
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26505, USA; Institute of Water Security and Science, West Virginia University, Morgantown, WV 26505, USA
| | - Kirsten Stephan
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV 26505, USA
| | - Charlene N Kelly
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV 26505, USA
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26505, USA.
| |
Collapse
|
12
|
Kalinowska A, Jankowska K, Fudala-Ksiazek S, Pierpaoli M, Luczkiewicz A. The microbial community, its biochemical potential, and the antimicrobial resistance of Enterococcus spp. in Arctic lakes under natural and anthropogenic impact (West Spitsbergen). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142998. [PMID: 33213908 DOI: 10.1016/j.scitotenv.2020.142998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The sustainable management of small human communities in the Arctic is challenging. In this study, both a water supply system (Lake 1) under the natural impact of a bird-nesting area, and a wastewater receiver (Lake 2) were analysed in the vicinity of the Polish Polar Station on West Spitsbergen. Microbial community composition, abundance and activity were assessed in samples of the treated wastewater, lake water and sediments using next-generation sequencing and direct microscope counts. Special attention was given to the faecal indicator, Enterococcus spp., whose occurrence and antimicrobial resistance were tested in water and wastewater samples. The results indicate that Lake 1, at a tundra stream discharge (L-TS) and a water supply point (L-WS) were dominated by three phyla: Proteobacteria (57-58%) Bacteroidetes (27-29%) and Actinobacteria (9-10%), showing similar microbial composition up to the genus level. This suggests that nutrient-rich runoff from the bird colony was retained by surrounding tundra vegetation and reached Lake 1 at L-TS to a limited extent. Lake 2, being the wastewater recipient (WW-R), mirrors to some extent the core phyla of treated wastewater (WW-E), but in different shares. This suggests the possible washout of wastewater-related bacteria with activated sludge flocs, which was also supported by the microscopic observations. Compared to Lake 1, in WW-R an increase in all tested parameters was noted: total prokaryotic cell number, average cell volume, prokaryotic biomass and live cell percentage. The presence of Enterococcus spp. antibiotic resistance patterns highlight the importance of human associated microbiome and resistome dissemination via wastewater discharge. Moreover, it can be expected that temperature-related biochemical processes (e.g. nutrient cycling) may be accelerated by the ongoing climate change. Thus, proper wastewater treatment requires locally adapted solutions in increasingly visited and inhabited polar regions. Additionally, microbial community discharged to the environment with the treated wastewater, requires critical attention.
Collapse
Affiliation(s)
- Agnieszka Kalinowska
- Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Katarzyna Jankowska
- Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Sylwia Fudala-Ksiazek
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Mattia Pierpaoli
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Aneta Luczkiewicz
- Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
13
|
Shu W, Wang P, Zhang H, Ding M, Wu B. Seasonal and spatial distribution and assembly processes of bacterioplankton communities in a subtropical urban river. FEMS Microbiol Ecol 2021; 96:5891425. [PMID: 32785599 DOI: 10.1093/femsec/fiaa154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/10/2020] [Indexed: 11/15/2022] Open
Abstract
The ecological functions of core and non-core bacteria are gradually being identified, yet little is known about their responses to environmental changes and assembly processes, especially in urban river ecosystems. Here, we investigated bacterioplankton communities over 1 year in an urban section of the Ganjiang River, China. The results revealed that the alpha- and beta-diversity of bacterioplankton communities had no significant spatial differences along the urbanization gradient, but they presented distinct seasonal variations. The bacterioplankton communities were comprised of a few core taxa (11.8%) and a large number of non-core taxa (88.2%), of which the non-core taxa were the most active component responsible for community dynamics. Most non-core taxa (76.84%) belonged to non-typical freshwater bacteria, implying that they are more likely to derive from allochthonous inputs than the core taxa. Variance partitioning analyses showed that air temperature, flow rate and water chemistry together explained 58.2 and 38.9% of the variations of the core taxa and non-core taxa, respectively. In addition, the relative importance of temperature and water chemistry on the bacterioplankton communities prevailed over that of flow rate alone. This means that deterministic processes and stochastic processes simultaneously control the bacterioplankton community assembly, with deterministic processes contributing more than stochastic processes.
Collapse
Affiliation(s)
- Wang Shu
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022 Jiangxi, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022 Jiangxi, China
| | - Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022 Jiangxi, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022 Jiangxi, China
| | - Hua Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022 Jiangxi, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022 Jiangxi, China
| | - Mingjun Ding
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022 Jiangxi, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022 Jiangxi, China
| | - Bobo Wu
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022 Jiangxi, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022 Jiangxi, China
| |
Collapse
|
14
|
McClean P, Hunter WR. 17α-ethynylestradiol (EE2) limits the impact of ibuprofen upon respiration by streambed biofilms in a sub-urban stream. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37149-37154. [PMID: 32681335 PMCID: PMC7456402 DOI: 10.1007/s11356-020-10096-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical compounds such as the non-steroidal anti-inflammatory drug ibuprofen and the artificial estrogen 17α-ethynylestradiol (EE2) are contaminants of emerging concern in freshwater systems. Globally, human pharmaceutical use is growing by around ~ 3% per year; yet, we know little about how interactions between different pharmaceuticals may affect aquatic ecosystems. Here, we test how interactions between ibuprofen and EE2 affect the growth and respiration of streambed biofilms. We used contaminant exposure experiments to quantify how these compounds affected biofilm growth (biomass), respiration, net primary production (NPP) and gross primary production (GPP), both individually and in combination. We found no effects of either ibuprofen or EE2 on biofilm biomass (using ash-free dry mass as a proxy) or gross primary production. Ibuprofen significantly reduced biofilm respiration and altered NPP. Concomitant exposure to EE2, however, counteracted the inhibitory effects of ibuprofen upon biofilm respiration. Our study, thus, demonstrates that interactions between pharmaceuticals in the environment may have complex effects upon microbial contributions to aquatic ecosystem functioning.
Collapse
Affiliation(s)
- Peter McClean
- School of Geography and Environmental Science, University of Ulster, Coleraine, BT52 1SA, UK
| | - William Ross Hunter
- School of Geography and Environmental Science, University of Ulster, Coleraine, BT52 1SA, UK.
- Fisheries and Aquatic Ecosystems Branch, Northern Ireland Agri-Food and Bioscience Institute, Belfast, BT9 5PX, UK.
| |
Collapse
|
15
|
Raes EJ, Karsh K, Kessler AJ, Cook PLM, Holmes BH, van de Kamp J, Bodrossy L, Bissett A. Can We Use Functional Genetics to Predict the Fate of Nitrogen in Estuaries? Front Microbiol 2020; 11:1261. [PMID: 32655525 PMCID: PMC7325967 DOI: 10.3389/fmicb.2020.01261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing nitrogen (N) loads present a threat to estuaries, which are among the most heavily populated and perturbed parts of the world. N removal is largely mediated by the sediment microbial process of denitrification, in direct competition to dissimilatory nitrate reduction to ammonium (DNRA), which recycles nitrate to ammonium. Molecular proxies for N pathways are increasingly measured and analyzed, a major question in microbial ecology, however, is whether these proxies can add predictive power around the fate of N. We analyzed the diversity and community composition of sediment nirS and nrfA genes in 11 temperate estuaries, covering four types of land use in Australia, and analyzed how these might be used to predict N removal. Our data suggest that sediment microbiomes play a central role in controlling the magnitude of the individual N removal rates in the 11 estuaries. Inclusion, however, of relative gene abundances of 16S, nirS, nrfA, including their ratios did not improve physicochemical measurement-based regression models to predict rates of denitrification or DNRA. Co-occurrence network analyses of nirS showed a greater modularity and a lower number of keystone OTUs in pristine sites compared to urban estuaries, suggesting a higher degree of niche partitioning in pristine estuaries. The distinctive differences between the urban and pristine network structures suggest that the nirS gene could be a likely gene candidate to understand the mechanisms by which these denitrifying communities form and respond to anthropogenic pressures.
Collapse
Affiliation(s)
- Eric J Raes
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Kristen Karsh
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Adam J Kessler
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC, Australia
| | - Perran L M Cook
- Water Studies Centre, School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Bronwyn H Holmes
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Jodie van de Kamp
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Levente Bodrossy
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, TAS, Australia
| |
Collapse
|
16
|
Ren Z, Niu D, Ma P, Wang Y, Wang Z, Fu H, Elser JJ. Bacterial Communities in Stream Biofilms in a Degrading Grassland Watershed on the Qinghai-Tibet Plateau. Front Microbiol 2020; 11:1021. [PMID: 32582054 PMCID: PMC7290132 DOI: 10.3389/fmicb.2020.01021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
Grassland is among the largest terrestrial biomes and is experiencing serious degradation, especially on the Qinghai-Tibet Plateau (QTP). However, the influences of grassland degradation on microbial communities in stream biofilms are largely unknown. Using 16S rRNA gene sequencing, we investigated the bacterial communities in stream biofilms in sub-basins with different grassland status in the Qinghai Lake watershed. Grassland status in the sub-basins was quantified using the normalized difference vegetation index (NDVI). Proteobacteria, Bacteroidetes, Cyanobacteria, and Verrucomicrobia were the dominant bacterial phyla. OTUs, 7,050, were detected in total, within which 19 were abundant taxa, and 6,922 were rare taxa. Chao 1, the number of observed OTUs, and phylogenetic diversity had positive correlations with carbon (C), nitrogen (N), and/or phosphorus (P) in biofilms per se. The variation of bacterial communities in stream biofilms was closely associated with the rate of change in NDVI, pH, conductivity, as well as C, N, P, contents and C:N ratio of the biofilms. Abundant subcommunities were more influenced by environmental variables relative to the whole community and to rare subcommunities. These results suggest that the history of grassland degradation (indicated as the rate of change in NDVI) influences bacterial communities in stream biofilms. Moreover, the bacterial community network showed high modularity with five major modules (>50 nodes) that responded differently to environmental variables. According to the module structure, only one module connector and 12 module hubs were identified, suggesting high fragmentation of the network and considerable independence of the modules. Most of the keystone taxa were rare taxa, consistent with fragmentation of the network and with adverse consequences for bacterial community integrity and function in the biofilms. By documenting the properties of bacterial communities in stream biofilms in a degrading grassland watershed, our study adds to our knowledge of the potential influences of grassland degradation on aquatic ecosystems.
Collapse
Affiliation(s)
- Ze Ren
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Flathead Lake Biological Station, University of Montana, Polson, MT, United States.,Division of Biological Sciences, University of Montana, Missoula, MT, United States.,Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Decao Niu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Panpan Ma
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ying Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhaomin Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hua Fu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - James J Elser
- Flathead Lake Biological Station, University of Montana, Polson, MT, United States.,Division of Biological Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
17
|
Zhang L, Fang W, Li X, Gao G, Jiang J. Linking bacterial community shifts with changes in the dissolved organic matter pool in a eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137387. [PMID: 32114229 DOI: 10.1016/j.scitotenv.2020.137387] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Aquatic bacterial communities play crucial roles in the circulation of nutrients in watershed ecosystems. However, the interaction between bacterial communities and chromophoric dissolved organic matter (CDOM) in freshwater ecosystems has not been studied in depth. In our study, we examined the constitution and interactions of CDOM with the bacterial community in Lake Chaohu and its inflow rivers under the influence of different exogenous pollutants. The results revealed that the bacterial community diversity in the inflow rivers was significantly lower than that in the lake sites. Clustering of different types of polluted inflow rivers integrated with the most abundant genera observed in specific areas indicated that environmentally guided species selection had a large impact on the composition of aquatic bacterial communities. Moreover, our study suggests that communities in lake environments may be more susceptible to interference through a variety of physiologies or via functional redundancy, allowing them to preserve their community structure. Through linear discriminant analysis effect size (Lefse) methods, we revealed that some taxa (from phylum to genus) were consistently enriched in the lake sites. Based on correlation network analysis results, the supersession niches of bacterial community members related to different CDOM in the biogeochemical process was determined. This study provides an ecological basis for the control of external pollution and the protection of the water environment in watershed ecosystems.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Wangkai Fang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Xingchen Li
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiahu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
18
|
Sediment Microbial Diversity in Urban Piedmont North Carolina Watersheds Receiving Wastewater Input. WATER 2020. [DOI: 10.3390/w12061557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Urban streams are heavily influenced by human activity. One way that this occurs is through the reintroduction of treated effluent from wastewater treatment plants. We measured the microbial community composition of water, sediment, and soil at sites upstream and downstream from two Charlotte treatment facilities. We performed 16S rRNA gene sequencing to assay the microbial community composition at each site at four time points between the late winter and mid-summer of 2016. Despite the location of these streams in an urban area with many influences and disruptions, the streams maintain distinct water, sediment, and soil microbial profiles. While there is an overlap of microbial species in upstream and downstream sites, there are several taxa that differentiate these sites. Some taxa characteristics of human-associated microbial communities appear elevated in the downstream sediment communities. In the wastewater treatment plant and to a lesser extent in the downstream community, there are high abundance amplicon sequence variants (ASVs) which are less than 97% similar to any sequence in reference databases, suggesting that these environments contain an unexplored biological novelty. Taken together, these results suggest a need to more fully characterize the microbial communities associated with urban streams, and to integrate information about microbial community composition with mechanistic models.
Collapse
|
19
|
Liu Y, Ren Z, Qu X, Zhang M, Yu Y, Zhang Y, Peng W. Microbial community structure and functional properties in permanently and seasonally flooded areas in Poyang Lake. Sci Rep 2020; 10:4819. [PMID: 32179796 PMCID: PMC7076011 DOI: 10.1038/s41598-020-61569-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 02/27/2020] [Indexed: 01/11/2023] Open
Abstract
Water level fluctuations are an inherent feature regulating the ecological structures and functions of lakes. It is vital to understand the effects of water level fluctuations on bacterial communities and metabolic characteristics in freshwater lakes in a changing world. However, information on the microbial community structure and functional properties in permanently and seasonally flooded areas are lacking. Poyang Lake is a typical seasonal lake linked to the Yangtze River and is significantly affected by water level fluctuations. Bottom water was collected from 12 sampling sites: seven inundated for the whole year (inundated areas) and five drained during the dry season (emerged areas). High-throughput 16S rRNA gene sequencing was used to identify the bacterial communities. The results showed that the taxonomic structure and potential functions of the bacterial communities were significantly different between the inundated and emerged areas. Cyanobacteria was dominant in both areas, but the relative abundance of Cyanobacteria was much higher in the emerged areas than in the inundated areas. Bacterial communities were taxonomically sensitive in the inundated areas and functionally sensitive in the emerged areas. Nitrogen, phosphorus, and dissolved organic carbon concentrations and their ratios, as well as dissolved oxygen, played important roles in promoting the bacterial taxonomic and functional compositional patterns in both areas. According to the metabolic predictions based on 16S rRNA gene sequences, the relative abundance of functional genes related to assimilatory nitrate reduction in the emerged areas was higher than in the inundated areas, and the relative abundance of functional genes related to dissimilatory nitrate reduction in the inundated areas was higher. These differences might have been caused by the nitrogen differences between the permanently and seasonally flooded areas caused by intra-annual water level fluctuations. The relative abundance of functional genes associated with denitrification was not significantly different in the inundated and emerged areas. This study improved our knowledge of bacterial community structure and nitrogen metabolic processes in permanently and seasonally flooded areas caused by water level fluctuations in a seasonal lake.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Ze Ren
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519085, China.
- Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA.
| | - Xiaodong Qu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Min Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yang Yu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yuhang Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Wenqi Peng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| |
Collapse
|
20
|
Argudo M, Gich F, Bonet B, Espinosa C, Gutiérrez M, Guasch H. Responses of resident (DNA) and active (RNA) microbial communities in fluvial biofilms under different polluted scenarios. CHEMOSPHERE 2020; 242:125108. [PMID: 31669992 DOI: 10.1016/j.chemosphere.2019.125108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Pollution from human activities is a major threat to the ecological integrity of fluvial ecosystems. Microbial communities are the most abundant organisms in biofilms, and are key indicators of various pollutants. We investigated the effects some human stressors (nutrients and heavy metals) have on the structure and activity of microbial communities in seven sampling sites located in the Ter River basin (NE Spain). Water and biofilm samples were collected in order to characterize physicochemical and biofilm parameters. The 16S rRNA gene was analysed out from DNA and RNA extracts to obtain α and β diversity. Principal coordinates analyses (PCoA) of the operational taxonomic units (OTUs) in the resident microbial community revealed that nutrients and conductivity were the main driving forces behind the diversity and composition. The effects of mining have had mainly seen on the taxonomic composition of the active microbial community, but also at the OTUs level. Remarkably, metal-impacted communities were very active, which would indicate a close link with the stress faced, that is probably related to the stimulation of detoxification.
Collapse
Affiliation(s)
- María Argudo
- Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071, Girona, Spain; Center for Advanced Studies of Blanes (CEAB-CSIC), Accés a La Cala Sant Francesc 14, 17300, Blanes, Girona, Spain
| | - Frederic Gich
- Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071, Girona, Spain
| | - Berta Bonet
- School of Geography, Earth and Environmental Sciences (GEES), University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Carmen Espinosa
- BETA Tech Center. TECNIO Network, U Science Tech, University of Vic - Central University of Catalonia, de La Laura 13, 08500, Vic, Spain; Centre d'Estudis dels Rius Mediterranis, Museu Industrial del Ter. Passeig del Ter, 2, 08560, Manlleu, Spain
| | - Marina Gutiérrez
- Department of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara, Italy
| | - Helena Guasch
- Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071, Girona, Spain; Center for Advanced Studies of Blanes (CEAB-CSIC), Accés a La Cala Sant Francesc 14, 17300, Blanes, Girona, Spain.
| |
Collapse
|
21
|
Peipoch M, Miller SR, Antao TR, Valett HM. Niche partitioning of microbial communities in riverine floodplains. Sci Rep 2019; 9:16384. [PMID: 31705005 PMCID: PMC6841707 DOI: 10.1038/s41598-019-52865-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022] Open
Abstract
Riverine floodplains exhibit high floral and faunal diversity as a consequence of their biophysical complexity. Extension of such niche partitioning processes to microbial communities is far less resolved or supported. Here, we evaluated the responses of aquatic biofilms diversity to environmental gradients across ten riverine floodplains with differing degrees of flow alteration and habitat diversity to assess whether complex floodplains support biofilm communities with greater biodiversity and species interactions. No significant evidence was found to support a central role for habitat diversity in promoting microbial diversity across 116 samples derived from 62 aquatic habitats, as neither α (H': 2.8-4.1) nor β (Sørensen: 0.3-0.39) diversity were positively related to floodplain complexity across the ten floodplains. In contrast, our results documented the sensitivity of biofilm communities to regional templates manifested as gradients of carbon, nitrogen, and phosphorous availability. Large-scale conditions reflecting nitrogen limitation increased the relative abundance of N-fixing cyanobacteria (up to 0.34 as fraction of total reads), constrained the total number of interactions among bacterial taxa, and reinforced negative over positive interactions, generating unique microbial communities and networks that reflect large-scale species sorting in response to regional geochemical gradients.
Collapse
Affiliation(s)
- Marc Peipoch
- Stroud Water Research Center, Avondale, PA, USA.
| | - Scott R Miller
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Tiago R Antao
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - H Maurice Valett
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
22
|
Impact of Nutrient and Stoichiometry Gradients on Microbial Assemblages in Erhai Lake and Its Input Streams. WATER 2019. [DOI: 10.3390/w11081711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Networks of lakes and streams are linked by downslope flows of material and energy within catchments. Understanding how bacterial assemblages are associated with nutrients and stoichiometric gradients in lakes and streams is essential for understanding biogeochemical cycling in freshwater ecosystems. In this study, we conducted field sampling of bacterial communities from lake water and stream biofilms in Erhai Lake watershed. We determined bacterial communities using high-throughput 16S rRNA gene sequencing and explored the relationship between bacterial composition and environmental factors using networking analysis, canonical correspondence analysis (CCA), and variation partitioning analysis (VPA). Physicochemical parameters, nutrients, and nutrient ratios gradients between the lake and the streams were strongly associated with the differences in community composition and the dominant taxa. Cyanobacteria dominated in Erhai Lake, while Proteobacteria dominated in streams. The stream bacterial network was more stable with multiple stressors, including physicochemical-factors and nutrient-factors, while the lake bacterial network was more fragile and susceptible to human activities with dominant nutrients (phosphorus). Negative correlations between bacterial communities and soluble reactive phosphorus (SRP) as well as positive correlations between bacterial communities and dissolved organic carbon (DOC) in the network indicated these factors had strong effect on bacterial succession. Erhai Lake is in a eutrophic state, and high relative abundances of Synechococcus (40.62%) and Microcystis (16.2%) were noted during the course of our study. CCA indicated that nutrients (phosphorus) were key parameters driving Cyanobacteria-dominated community structure. By classifying the environmental factors into five categories, VPA analyses identified that P-factor (total phosphorus (TP) and SRP) as well as the synergistic effect of C-factor (DOC), N-factor (NO3−), and P-factor (TP and SRP) played a central role in structuring the bacterial communities in Erhai Lake. Heterogeneous physicochemical conditions explained the variations in bacterial assemblages in streams. This study provides a picture of stream–lake linkages from the perspective of bacterial community structure as well as key factors driving bacterial assemblages within lakes and streams at the whole watershed scale. We further argue that better management of phosphorus on the watershed scale is needed for ameliorating eutrophication of Erhai Lake.
Collapse
|
23
|
Qu X, Zhang M, Yang Y, Xie Y, Ren Z, Peng W, Du X. Taxonomic structure and potential nitrogen metabolism of microbial assemblage in a large hypereutrophic steppe lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21151-21160. [PMID: 31119540 DOI: 10.1007/s11356-019-05411-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Recent studies have expanded the interests about microbial community and function following the rapid development of high-throughput sequencing techniques in the freshwater ecosystem. In this study, we aimed to attain a deep understanding of microbial community structure and potential nitrogen metabolism in Hulun Lake, a shallow hypereutrophic steppe lake in the Mongolian Plateau in China. The result demonstrated that cyanobacteria were the most dominant phylum. Network analysis showed both intra- and inter-phylum co-occurrence were pervasive, and there were modular structures in the microbial assemblages. The cluster dominated by proteobacteria was mainly negatively connected to the cluster dominated by both proteobacteria and actinobacteria. Cyanobacteria were tightly clustered together and positively connected to these two clusters. The major nitrogen metabolism pathways were glutamine synthetase-glutamate synthase and assimilatory nitrate reduction, indicating the nitrogen was mainly retained in the lake by microbial uptake. Cyanobacteria contributed 43.25% gene reads involved in the overall nitrogen metabolism but mainly contributed to assimilatory nitrate reduction and nitrogen fixation, aggravating the lake eutrophication. This study adds to our knowledge of microbial assemblages and nitrogen metabolism in the shallow hypereutrophic lake and provided an insight understanding for the purposes of lake ecosystem's protection and efficient management in the Mongolian Plateau.
Collapse
Affiliation(s)
- Xiaodong Qu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Department of Water Environment, China Institute of Water Resources and Hydropower Research, Fuxing Road, Jia No.1, Haidian District, Beijing, 100038, China
| | - Min Zhang
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yu Yang
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Ying Xie
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Ze Ren
- Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA.
| | - Wenqi Peng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Department of Water Environment, China Institute of Water Resources and Hydropower Research, Fuxing Road, Jia No.1, Haidian District, Beijing, 100038, China.
| | - Xia Du
- Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| |
Collapse
|
24
|
Jordaan K, Comeau AM, Khasa DP, Bezuidenhout CC. An integrated insight into the response of bacterial communities to anthropogenic contaminants in a river: A case study of the Wonderfonteinspruit catchment area, South Africa. PLoS One 2019; 14:e0216758. [PMID: 31112559 PMCID: PMC6528982 DOI: 10.1371/journal.pone.0216758] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2023] Open
Abstract
Bacterial communities in human-impacted rivers and streams are exposed to multiple anthropogenic contaminants, which can eventually lead to biodiversity loss and function. The Wonderfonteinspruit catchment area is impacted by operational and abandoned gold mines, farms, and formal and informal settlements. In this study, we used 16S rRNA gene high-throughput sequencing to characterize bacterial communities in the lower Wonderfonteinspruit and their response to various contaminant sources. The results showed that composition and structure of bacterial communities differed significantly (P<0.05) between less (downstream) and more (upstream) polluted sites. The taxonomic and functional gene dissimilarities significantly correlated with each other, while downstream sites had more distinct functional genes. The relative abundance of Proteobacteria, Bacteroidetes and Actinobacteria was higher at upstream sites, while Acidobacteria, Cyanobacteria, Firmicutes and Verrucomicrobia were prominent at downstream sites. In addition, upstream sites were rich in genera pathogenic and/or potentially pathogenic to humans. Multivariate and correlation analyses suggest that bacterial diversity was significantly (P<0.05) impacted by pH and heavy metals (cobalt, arsenic, chromium, nickel and uranium). A significant fraction (~14%) of the compositional variation was explained by a combination of anthropogenic inputs, of which mining (~6%) was the main contributor to bacterial community variation. Network analysis indicated that bacterial communities had non-random inter- and intra-phyla associations and that the main taxa showed both positive and negative linkages to environmental parameters. Our results suggest that species sorting, due to environmental parameters, was the main process that structured bacterial communities. Furthermore, upstream sites had higher relative abundances of genes involved in xenobiotic degradation, suggesting stronger removal of polycyclic aromatic hydrocarbons and other organic compounds. This study provides insights into the influences of anthropogenic land use on bacterial community structure and functions in the lower Wonderfonteinspruit.
Collapse
Affiliation(s)
- K. Jordaan
- Unit for Environmental Sciences and Management, Microbiology, North-West University, South Africa, Potchefstroom, South Africa
- * E-mail:
| | - A. M. Comeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - D. P. Khasa
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - C. C. Bezuidenhout
- Unit for Environmental Sciences and Management, Microbiology, North-West University, South Africa, Potchefstroom, South Africa
| |
Collapse
|
25
|
Jepsen R, He K, Blaney L, Swan C. Effects of antimicrobial exposure on detrital biofilm metabolism in urban and rural stream environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1151-1160. [PMID: 30970480 DOI: 10.1016/j.scitotenv.2019.02.254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
The occurrence of antimicrobials and other pharmaceuticals in streams is increasingly being reported, yet the impacts of these contaminants of emerging concern on aquatic ecosystems are relatively unknown. Bacteria and fungi are vital components of stream environments and, therefore, exposure to antimicrobials may have important consequences for ecosystem services, such as carbon cycling. The objective of this study was to investigate how two antimicrobials, ciprofloxacin and climbazole, impact detrital biofilm metabolism in urban and rural streams. To establish baseline conditions, the biological oxygen demand (BOD) of red maple (Acer rubrum) biofilms was measured in one urban and one rural stream. In mesocosm studies, the BOD of biofilms on single- and mixed-species leaf litter from the same sites was measured after exposure to 10 μg/L of the antimicrobials, both in combination and individually. The presence of ciprofloxacin and climbazole did not affect BOD compared to the controls at the urban site, although significant differences were identified for select treatments at the rural site. In addition, the BOD of mixed-leaf biofilms was not significantly different from that of single species litter after exposure. Overall, exposure to 10 μg/L of the antimicrobials did not significantly impact community-level carbon processing by the leaf biofilms, and leaf mixtures did not result in increased biofilm BOD compared to single species leaves. The outcomes of this work demonstrate a need for further research for the understanding the effects of antimicrobials on rural streams to prevent unintended consequences to ecological processes and biota from future development, leaking septic systems, and wastewater spills.
Collapse
Affiliation(s)
- Rikke Jepsen
- Department of Geography and Environmental Systems, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Ke He
- University of Maryland, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Lee Blaney
- University of Maryland, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore County, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Christopher Swan
- Department of Geography and Environmental Systems, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
26
|
Liao H, Yu K, Duan Y, Ning Z, Li B, He L, Liu C. Profiling microbial communities in a watershed undergoing intensive anthropogenic activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1137-1147. [PMID: 30180322 DOI: 10.1016/j.scitotenv.2018.08.103] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
In lotic ecosystems highly susceptible to anthropogenic activities, the influences of environmental variables on microbial communities and their functions remain poorly understood, despite our rapidly increasing sequencing ability. In this study, we profiled the microbial communities in the hyporheic sediments of a watershed undergoing intensive anthropogenic activities via next-generation sequencing of 16S rRNA V4-V5 hypervariable regions on Illumina MiSeq platform. Tidal impacts on microbial communities were investigated via co-occurrence networks. In addition, the influences of physicochemical variables including salinity, and the concentrations of nutrients, organic matter and heavy metals on the microbial communities were explored via canonical correspondence analyses. The sediment samples were collected from 19 sites covering the whole main river stem of the target watershed (n = 19; Maozhou river watershed, Shenzhen, China). The samples were sub-divided in the field for microbiological analyses and measurements of physicochemical variables. The results indicated that core microbiome was associated with archaea methanogens and bacteria members from Proteobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, Synergistetes and Firmicutes, among which, gram-negative and anaerobic bacteria genera contributing to the cycling of carbon, nitrogen and sulfur were predominant. Site-specific microbiomes were revealed that may serve as indicators of local environmental conditions (e.g., members affiliated to Oceanospirillales were abundant at sites with salt intrusion). Distinct microbial co-occurrence networks were identified for non-tidal, inter-tidal and tidal sites. Major environmental factors influencing microbial community composition included the concentrations of nitrate and bicarbonate in river water, pore water concentrations of sulfate, dissolved organic carbon and electrical conductivity, as well as manganese concentrations associated with the solid sediment. Collectively, the results of this study provide fundamental insights into the influence of environmental perturbations on microbial community composition in a lotic system, which may aid in the design of effective remediation and/or restoration strategies in the target watershed and beyond.
Collapse
Affiliation(s)
- Hehuan Liao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Kai Yu
- School of Environmental Studies, China University of Geoscience, Wuhan, Hubei 430074, China
| | - Yanhua Duan
- School of Environmental Studies, China University of Geoscience, Wuhan, Hubei 430074, China
| | - Zigong Ning
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Binrui Li
- School of Environmental Studies, China University of Geoscience, Wuhan, Hubei 430074, China
| | - Leiyu He
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chongxuan Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
27
|
Microbial Community Composition and Antibiotic Resistance Genes within a North Carolina Urban Water System. WATER 2018. [DOI: 10.3390/w10111539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wastewater treatment plants (WWTPs) are thought to be potential incubators of antibiotic resistance. Persistence of commonly used antibiotics in wastewater may increase the potential for selection of resistance genes transferred between bacterial populations, some of which might pose a threat to human health. In this study, we measured the concentrations of ten antibiotics in wastewater plant influents and effluents, and in surface waters up- and downstream from two Charlotte area treatment facilities. We performed Illumina shotgun sequencing to assay the microbial community and resistome compositions at each site across four time points from late winter to mid-summer of 2016. Antibiotics are present throughout wastewater treatment, and elevated concentrations of multiple antibiotics are maintained in moving stream water downstream of effluent release. While some human gut and activated sludge associated taxa are detectable downstream, these seem to attenuate with distance while the core microbial community of the stream remains fairly consistent. We observe the slight suppression of functional pathways in the downstream microbial communities, including amino acid, carbohydrate, and nucleic acid metabolism, as well as nucleotide and amino acid scavenging. Nearly all antibiotic resistance genes (ARGs) and potentially pathogenic taxa are removed in the treatment process, though a few ARG markers are elevated downstream of effluent release. Taken together, these results represent baseline measurements that future studies can utilize to help to determine which factors control the movement of antibiotics and resistance genes through aquatic urban ecosystems before, during, and after wastewater treatment.
Collapse
|
28
|
Roberto AA, Van Gray JB, Leff LG. Sediment bacteria in an urban stream: Spatiotemporal patterns in community composition. WATER RESEARCH 2018; 134:353-369. [PMID: 29454907 DOI: 10.1016/j.watres.2018.01.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/04/2018] [Accepted: 01/20/2018] [Indexed: 05/25/2023]
Abstract
Sediment bacterial communities play a critical role in biogeochemical cycling in lotic ecosystems. Despite their ecological significance, the effects of urban discharge on spatiotemporal distribution of bacterial communities are understudied. In this study, we examined the effect of urban discharge on the spatiotemporal distribution of stream sediment bacteria in a northeast Ohio stream. Water and sediment samples were collected after large storm events (discharge > 100 m) from sites along a highly impacted stream (Tinkers Creek, Cuyahoga River watershed, Ohio, USA) and two reference streams. Although alpha (α) diversity was relatively constant spatially, multivariate analysis of bacterial community 16S rDNA profiles revealed significant spatial and temporal effects on beta (β) diversity and community composition and identified a number of significant correlative abiotic parameters. Clustering of upstream and reference sites from downstream sites of Tinkers Creek combined with the dominant families observed in specific locales suggests that environmentally-induced species sorting had a strong impact on the composition of sediment bacterial communities. Distinct groupings of bacterial families that are often associated with nutrient pollution (i.e., Comamonadaceae, Rhodobacteraceae, and Pirellulaceae) and other contaminants (i.e., Sphingomonadaceae and Phyllobacteriaceae) were more prominent at sites experiencing higher degrees of discharge associated with urbanization. Additionally, there were marked seasonal changes in community composition, with individual taxa exhibiting different seasonal abundance patterns. However, spatiotemporal variation in stream conditions did not affect bacterial community functional profiles. Together, these results suggest that local environmental drivers and niche filtering from discharge events associated with urbanization shape the bacterial community structure. However, dispersal limitations and interactions among other species likely play a role as well.
Collapse
Affiliation(s)
- Alescia A Roberto
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Jonathon B Van Gray
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Laura G Leff
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|