1
|
Rossi KL, Budzinski RC, Medeiros ES, Boaretto BRR, Muller L, Feudel U. Dynamical properties and mechanisms of metastability: A perspective in neuroscience. Phys Rev E 2025; 111:021001. [PMID: 40103058 DOI: 10.1103/physreve.111.021001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Indexed: 03/20/2025]
Abstract
Metastability, characterized by a variability of regimes in time, is a ubiquitous type of neural dynamics. It has been formulated in many different ways in the neuroscience literature, however, which may cause some confusion. In this Perspective, we discuss metastability from the point of view of dynamical systems theory. We extract from the literature a very simple but general definition through the concept of metastable regimes as long-lived but transient epochs of activity with unique dynamical properties. This definition serves as an umbrella term that encompasses formulations from other works, and readily connects to concepts from dynamical systems theory. This allows us to examine general dynamical properties of metastable regimes, propose in a didactic manner several dynamics-based mechanisms that generate them, and discuss a theoretical tool to characterize them quantitatively. This Perspective leads to insights that help to address issues debated in the literature and also suggests pathways for future research.
Collapse
Affiliation(s)
- Kalel L Rossi
- Carl von Ossietzky University Oldenburg, Theoretical Physics/Complex Systems, ICBM, 26129 Oldenburg, Lower Saxony, Germany
| | - Roberto C Budzinski
- Western University, Department of Mathematics and Western Institute for Neuroscience, N6A 3K7 London, Ontario, Canada
- Fields Institute, Fields Lab for Network Science, M5T 3J1 Toronto, Ontario, Canada
| | - Everton S Medeiros
- São Paulo State University (UNESP), Institute of Geosciences and Exact Sciences, Avenida 24A 1515, 13506-900 Rio Claro, São Paulo, Brazil
| | - Bruno R R Boaretto
- Universidade Federal de São Paulo, Institute of Science and Technology, 12247-014 São José dos Campos, São Paulo, Brazil
- Universitat Politecnica de Catalunya, Department of Physics, 08222 Terrassa, Barcelona, Spain
| | - Lyle Muller
- Western University, Department of Mathematics and Western Institute for Neuroscience, N6A 3K7 London, Ontario, Canada
- Fields Institute, Fields Lab for Network Science, M5T 3J1 Toronto, Ontario, Canada
| | - Ulrike Feudel
- Carl von Ossietzky University Oldenburg, Theoretical Physics/Complex Systems, ICBM, 26129 Oldenburg, Lower Saxony, Germany
| |
Collapse
|
2
|
Jiang X, Hou C, Ma J, Li H. Alterations in local activity and whole-brain functional connectivity in human immunodeficiency virus-associated neurocognitive disorders: a resting-state functional magnetic resonance imaging study. Quant Imaging Med Surg 2025; 15:563-580. [PMID: 39838977 PMCID: PMC11744116 DOI: 10.21037/qims-24-1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/06/2024] [Indexed: 01/23/2025]
Abstract
Background Approximately half of human immunodeficiency virus (HIV) patients experience HIV-associated neurocognitive disorders (HAND); however, the neurophysiological mechanisms underlying HAND remain unclear. This study aimed to evaluate changes in functional brain activity patterns during the early stages of HIV infection by comparing local and global indicators using resting-state functional magnetic resonance imaging (rs-fMRI). Methods A total of 165 people living with HIV (PLWH) but without neurocognitive disorders (PWND), 173 patients with asymptomatic neurocognitive impairment (ANI), and 100 matched healthy controls (HCs) were included in the study. A cross-sectional study of the participants was conducted. The metrics of functional segregation and integration were computed, using graph theory to explore differences across methodologies. Brain functional changes in the PWND and ANI groups were assessed, and correlations between the rs-fMRI metrics, clinical data, and cognitive function were examined. Results As cognitive function declined, changes reflected by regional homogeneity (ReHo) were primarily observed in the default mode network (DMN). In the DMN and visual network (VIS), amplitude of low-frequency fluctuation (ALFF) decreases were mainly observed in the parieto-occipital lobes, while increases were mainly observed in the limbic network (LIM). Reductions in fractional ALFF (fALFF) were mainly observed in the somatomotor network (SMN) and LIM, while increases were observed in the DMN and LIM. Unlike local indicators, global functional connectivity (FC) significantly decreased in both the PWND and ANI groups compared to the HC group. The ANI group showed partial increases in FC compared to the PWND group, with major changes observed in the DMN, VIS, and LIM. Notably, FC between the right insula and right supramarginal gyrus decreased significantly following HIV infection, while FC between the right caudate nucleus and the left middle frontal gyrus declined further in the ANI group. Graph theory further confirmed the significance of the DMN, and revealed changes in the eigenvector centrality mapping (ECM) values of the frontoparietal network (FPN) and dorsal attention network (DAN). Conclusions HIV patients exhibit complex changes in both local and global brain activity, regardless of cognitive impairment. Widespread abnormalities primarily involve the DMN, VIS, and LIM. Changes in FC along the fronto-striatal pathway may play a crucial role in the decline of cognitive function in individuals with HAND. Our findings provide new insights that may assist in the early detection of brain damage in the early stages of HIV infection. The use of multiple methodologies may offer a more comprehensive and effective approach, enabling the early detection of brain damage in HIV patients.
Collapse
Affiliation(s)
- Xingyuan Jiang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanke Hou
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Juming Ma
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. Front Comput Neurosci 2023; 17:1295395. [PMID: 38188355 PMCID: PMC10770256 DOI: 10.3389/fncom.2023.1295395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activities between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, which was first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC aligns well with the observed FC when compared with that simulated traditional structural connectome.
Collapse
Affiliation(s)
- Thanos Manos
- ETIS, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Cergy-Pontoise, CY Cergy Paris Université, Cergy, France
| | - Sandra Diaz-Pier
- Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Zito GA, Hartmann A, Béranger B, Weber S, Aybek S, Faouzi J, Roze E, Vidailhet M, Worbe Y. Multivariate classification provides a neural signature of Tourette disorder. Psychol Med 2023; 53:2361-2369. [PMID: 35135638 DOI: 10.1017/s0033291721004232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tourette disorder (TD), hallmarks of which are motor and vocal tics, has been related to functional abnormalities in large-scale brain networks. Using a fully data driven approach in a prospective, case-control study, we tested the hypothesis that functional connectivity of these networks carries a neural signature of TD. Our aim was to investigate (i) the brain networks that distinguish adult patients with TD from controls, and (ii) the effects of antipsychotic medication on these networks. METHODS Using a multivariate analysis based on support vector machine (SVM), we developed a predictive model of resting state functional connectivity in 48 patients and 51 controls, and identified brain networks that were most affected by disease and pharmacological treatments. We also performed standard univariate analyses to identify differences in specific connections across groups. RESULTS SVM was able to identify TD with 67% accuracy (p = 0.004), based on the connectivity in widespread networks involving the striatum, fronto-parietal cortical areas and the cerebellum. Medicated and unmedicated patients were discriminated with 69% accuracy (p = 0.019), based on the connectivity among striatum, insular and cerebellar networks. Univariate approaches revealed differences in functional connectivity within the striatum in patients v. controls, and between the caudate and insular cortex in medicated v. unmedicated TD. CONCLUSIONS SVM was able to identify a neuronal network that distinguishes patients with TD from control, as well as medicated and unmedicated patients with TD, holding a promise to identify imaging-based biomarkers of TD for clinical use and evaluation of the effects of treatment.
Collapse
Affiliation(s)
- Giuseppe A Zito
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
- Support Centre for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern CH-3010, Switzerland
| | - Andreas Hartmann
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
- National Reference Center for Tourette Syndrome, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Benoît Béranger
- Center for NeuroImaging Research (CENIR), Paris Brain Institute, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMR, 7225, Paris, France
| | - Samantha Weber
- Psychosomatics Unit of the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern CH-3010, Switzerland
| | - Selma Aybek
- Psychosomatics Unit of the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern CH-3010, Switzerland
| | - Johann Faouzi
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, Inria Paris, Aramis project-team, Paris, France
| | - Emmanuel Roze
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
| | - Marie Vidailhet
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
| | - Yulia Worbe
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
- National Reference Center for Tourette Syndrome, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
5
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528836. [PMID: 36824821 PMCID: PMC9948985 DOI: 10.1101/2023.02.16.528836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activity between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC well aligns with the observed FC when compared to that simulated with traditional structural connectome. Simulations were performed using the open source framework The Virtual Brain on High Performance Computing infrastructure.
Collapse
|
6
|
Targeting neural correlates of placebo effects. COGNITIVE, AFFECTIVE, & BEHAVIORAL NEUROSCIENCE 2022; 23:217-236. [PMID: 36517733 DOI: 10.3758/s13415-022-01039-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 12/15/2022]
Abstract
Harnessing the placebo effects would prompt critical ramifications for research and clinical practice. Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation and multifocal transcranial electric stimulation, could manipulate the placebo response by modulating the activity and excitability of its neural correlates. To identify potential stimulation targets, we conducted a meta-analysis to investigate placebo-associated regions in healthy volunteers, including studies with emotional components and painful stimuli. Using biophysical modeling, we identified NIBS solutions to manipulate placebo effects by targeting either a single key region or multiple connected areas. Moving to a network-oriented approach, we then ran a quantitative network mapping analysis on the functional connectivity profile of clusters emerging from the meta-analysis. As a result, we suggest a multielectrode optimized montage engaging the connectivity patterns of placebo-associated functional brain networks. These NIBS solutions hope to provide a starting point to actively control, modulate or enhance placebo effects in future clinical studies and cognitive enhancement studies.
Collapse
|
7
|
Moguilner S, Birba A, Fittipaldi S, Gonzalez-Campo C, Tagliazucchi E, Reyes P, Matallana D, Parra MA, Slachevsky A, Farías G, Cruzat J, García A, Eyre HA, Joie RL, Rabinovici G, Whelan R, Ibáñez A. Multi-feature computational framework for combined signatures of dementia in underrepresented settings. J Neural Eng 2022; 19:10.1088/1741-2552/ac87d0. [PMID: 35940105 PMCID: PMC11177279 DOI: 10.1088/1741-2552/ac87d0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Objective.The differential diagnosis of behavioral variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD) remains challenging in underrepresented, underdiagnosed groups, including Latinos, as advanced biomarkers are rarely available. Recent guidelines for the study of dementia highlight the critical role of biomarkers. Thus, novel cost-effective complementary approaches are required in clinical settings.Approach. We developed a novel framework based on a gradient boosting machine learning classifier, tuned by Bayesian optimization, on a multi-feature multimodal approach (combining demographic, neuropsychological, magnetic resonance imaging (MRI), and electroencephalography/functional MRI connectivity data) to characterize neurodegeneration using site harmonization and sequential feature selection. We assessed 54 bvFTD and 76 AD patients and 152 healthy controls (HCs) from a Latin American consortium (ReDLat).Main results. The multimodal model yielded high area under the curve classification values (bvFTD patients vs HCs: 0.93 (±0.01); AD patients vs HCs: 0.95 (±0.01); bvFTD vs AD patients: 0.92 (±0.01)). The feature selection approach successfully filtered non-informative multimodal markers (from thousands to dozens).Results. Proved robust against multimodal heterogeneity, sociodemographic variability, and missing data.Significance. The model accurately identified dementia subtypes using measures readily available in underrepresented settings, with a similar performance than advanced biomarkers. This approach, if confirmed and replicated, may potentially complement clinical assessments in developing countries.
Collapse
Affiliation(s)
- Sebastian Moguilner
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), CA, United States of America
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Trinity College Dublin, Dublin, Ireland
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Sol Fittipaldi
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | | | - Enzo Tagliazucchi
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Pablo Reyes
- Medical School, Aging Institute, Psychiatry and Mental Health, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Diana Matallana
- Medical School, Aging Institute, Psychiatry and Mental Health, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Mario A Parra
- MAP: School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Andrea Slachevsky
- Gerosciences Center for Brain Health and Metabolism, Santiago, Chile
- Faculty of Medicine, University of Chile, Santiago, Chile
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and University of Chile, Santiago, Chile
- Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago de Chile, Chile
| | - Gonzalo Farías
- Faculty of Medicine, University of Chile, Santiago, Chile
| | - Josefina Cruzat
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Adolfo García
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), CA, United States of America
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
- Trinity College Dublin, Dublin, Ireland
| | - Harris A Eyre
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), CA, United States of America
- Neuroscience-Inspired Policy Initiative, Organisation for Economic Co-operation and Development and PRODEO Institute, Paris, France
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States of America
- Trinity College Dublin, Dublin, Ireland
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States of America
| | - Gil Rabinovici
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), CA, United States of America
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States of America
- Trinity College Dublin, Dublin, Ireland
| | - Robert Whelan
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), CA, United States of America
- Trinity College Dublin, Dublin, Ireland
| | - Agustín Ibáñez
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), CA, United States of America
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Wei YC, Kung YC, Huang WY, Lin C, Chen YL, Chen CK, Shyu YC, Lin CP. Functional Connectivity Dynamics Altered of the Resting Brain in Subjective Cognitive Decline. Front Aging Neurosci 2022; 14:817137. [PMID: 35813944 PMCID: PMC9263398 DOI: 10.3389/fnagi.2022.817137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/19/2022] [Indexed: 12/05/2022] Open
Abstract
Background Subjective cognitive decline (SCD) appears in the preclinical stage of the Alzheimer's disease continuum. In this stage, dynamic features are more sensitive than static features to reflect early subtle changes in functional brain connectivity. Therefore, we studied local and extended dynamic connectivity of the resting brain of people with SCD to determine their intrinsic brain changes. Methods We enrolled cognitively normal older adults from the communities and divided them into SCD and normal control (NC) groups. We used mean dynamic amplitude of low-frequency fluctuation (mdALFF) to evaluate region of interest (ROI)-wise local dynamic connectivity of resting-state functional MRI. The dynamic functional connectivity (dFC) between ROIs was tested by whole-brain-based statistics. Results When comparing SCD (N = 40) with NC (N = 45), mdALFFmean decreased at right inferior parietal lobule (IPL) of the frontoparietal network (FPN). Still, it increased at the right middle temporal gyrus (MTG) of the ventral attention network (VAN) and right calcarine of the visual network (VIS). Also, the mdALFFvar (variance) increased at the left superior temporal gyrus of AUD, right MTG of VAN, right globus pallidum of the cingulo-opercular network (CON), and right lingual gyrus of VIS. Furthermore, mdALFFmean at right IPL of FPN are correlated negatively with subjective complaints and positively with objective cognitive performance. In the dFC seeded from the ROIs with local mdALFF group differences, SCD showed a generally lower dFCmean and higher dFCvar (variance) to other regions of the brain. These weakened and unstable functional connectivity appeared among FPN, CON, the default mode network, and the salience network, the large-scale networks of the triple network model for organizing neural resource allocations. Conclusion The local dynamic connectivity of SCD decreased in brain regions of cognitive executive control. Meanwhile, compensatory visual efforts and bottom-up attention rose. Mixed decrease and compensatory increase of dynamics of intrinsic brain activity suggest the transitional nature of SCD. The FPN local dynamics balance subjective and objective cognition and maintain cognitive preservation in preclinical dementia. Aberrant triple network model features the dFC alternations of SCD. Finally, the right lateralization phenomenon emerged early in the dementia continuum and affected local dynamic connectivity.
Collapse
Affiliation(s)
- Yi-Chia Wei
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yi-Chia Kung
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Yi Huang
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chemin Lin
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yao-Liang Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chih-Ken Chen
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
Das S, Puthankattil SD. Functional Connectivity and Complexity in the Phenomenological Model of Mild Cognitive-Impaired Alzheimer's Disease. Front Comput Neurosci 2022; 16:877912. [PMID: 35733555 PMCID: PMC9207343 DOI: 10.3389/fncom.2022.877912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundFunctional connectivity and complexity analysis has been discretely studied to understand intricate brain dynamics. The current study investigates the interplay between functional connectivity and complexity using the Kuramoto mean-field model.MethodFunctional connectivity matrices are estimated using the weighted phase lag index and complexity measures through popularly used complexity estimators such as Lempel-Ziv complexity (LZC), Higuchi's fractal dimension (HFD), and fluctuation-based dispersion entropy (FDispEn). Complexity measures are estimated on real and simulated electroencephalogram (EEG) signals of patients with mild cognitive-impaired Alzheimer's disease (MCI-AD) and controls. Complexity measures are further applied to simulated signals generated from lesion-induced connectivity matrix and studied its impact. It is a novel attempt to study the relation between functional connectivity and complexity using a neurocomputational model.ResultsReal EEG signals from patients with MCI-AD exhibited reduced functional connectivity and complexity in anterior and central regions. A simulation study has also displayed significantly reduced regional complexity in the patient group with respect to control. A similar reduction in complexity was further evident in simulation studies with lesion-induced control groups compared with non-lesion-induced control groups.ConclusionTaken together, simulation studies demonstrate a positive influence of reduced connectivity in the model imparting a reduced complexity in the EEG signal. The study revealed the presence of a direct relation between functional connectivity and complexity with reduced connectivity, yielding a decreased EEG complexity.
Collapse
|
10
|
MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis. Comput Biol Med 2022; 142:105239. [DOI: 10.1016/j.compbiomed.2022.105239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/22/2022]
|
11
|
Cortical traveling waves reflect state-dependent hierarchical sequencing of local regions in the human connectome network. Sci Rep 2022; 12:334. [PMID: 35013416 PMCID: PMC8748796 DOI: 10.1038/s41598-021-04169-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022] Open
Abstract
Recent human studies using electrocorticography have demonstrated that alpha and theta band oscillations form traveling waves on the cortical surface. According to neural synchronization theories, the cortical traveling waves may group local cortical regions and sequence them by phase synchronization; however these contributions have not yet been assessed. This study aimed to evaluate the functional contributions of traveling waves using connectome-based network modeling. In the simulation, we observed stable traveling waves on the entire cortical surface wherein the topographical pattern of these phases was substantially correlated with the empirically obtained resting-state networks, and local radial waves also appeared within the size of the empirical networks (< 50 mm). Importantly, individual regions in the entire network were instantaneously sequenced by their internal frequencies, and regions with higher intrinsic frequency were seen in the earlier phases of the traveling waves. Based on the communication-through-coherence theory, this phase configuration produced a hierarchical organization of each region by unidirectional communication between the arbitrarily paired regions. In conclusion, cortical traveling waves reflect the intrinsic frequency-dependent hierarchical sequencing of local regions, global traveling waves sequence the set of large-scale cortical networks, and local traveling waves sequence local regions within individual cortical networks.
Collapse
|
12
|
Yang L, Wei J, Li Y, Wang B, Guo H, Yang Y, Xiang J. Test–Retest Reliability of Synchrony and Metastability in Resting State fMRI. Brain Sci 2021; 12:brainsci12010066. [PMID: 35053813 PMCID: PMC8773904 DOI: 10.3390/brainsci12010066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, interest has been growing in dynamic characteristic of brain signals from resting-state functional magnetic resonance imaging (rs-fMRI). Synchrony and metastability, as neurodynamic indexes, are considered as one of methods for analyzing dynamic characteristics. Although much research has studied the analysis of neurodynamic indices, few have investigated its reliability. In this paper, the datasets from the Human Connectome Project have been used to explore the test–retest reliabilities of synchrony and metastability from multiple angles through intra-class correlation (ICC). The results showed that both of these indexes had fair test–retest reliability, but they are strongly affected by the field strength, the spatial resolution, and scanning interval, less affected by the temporal resolution. Denoising processing can help improve their ICC values. In addition, the reliability of neurodynamic indexes was affected by the node definition strategy, but these effects were not apparent. In particular, by comparing the test–retest reliability of different resting-state networks, we found that synchrony of different networks was basically stable, but the metastability varied considerably. Among these, DMN and LIM had a relatively higher test–retest reliability of metastability than other networks. This paper provides a methodological reference for exploring the brain dynamic neural activity by using synchrony and metastability in fMRI signals.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Xiang
- Correspondence: ; Tel.: +86-186-0351-1178
| |
Collapse
|
13
|
Gallos IK, Mantonakis L, Spilioti E, Kattoulas E, Savvidou E, Anyfandi E, Karavasilis E, Kelekis N, Smyrnis N, Siettos CI. The relation of integrated psychological therapy to resting state functional brain connectivity networks in patients with schizophrenia. Psychiatry Res 2021; 306:114270. [PMID: 34775295 DOI: 10.1016/j.psychres.2021.114270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/22/2021] [Accepted: 10/31/2021] [Indexed: 01/05/2023]
Abstract
Functional brain dysconnectivity measured with resting state functional magnetic resonance imaging (rsfMRI) has been linked to cognitive impairment in schizophrenia. This study investigated the effects on functional brain connectivity of Integrated Psychological Therapy (IPT), a cognitive behavioral oriented group intervention program, in 31 patients with schizophrenia. Patients received IPT or an equal intensity non-specific psychological treatment in a non-randomized design. Evidence of improvement in executive and social functions, psychopathology and overall level of functioning was observed after treatment completion at six months only in the IPT treatment group and was partially sustained at one-year follow up. Independent Component Analysis and Isometric Mapping (ISOMAP), a non-linear manifold learning algorithm, were used to construct functional connectivity networks from the rsfMRI data. Functional brain dysconnectivity was observed in patients compared to a group of 17 healthy controls, both globally and specifically including the default mode (DMN) and frontoparietal network (FPN). DMN and FPN connectivity were reversed towards healthy control patterns only in the IPT treatment group and these effects were sustained at follow up for DMN but not FPN. These data suggest the use of rsfMRI as a biomarker for accessing and monitoring the therapeutic effects of cognitive remediation therapy in schizophrenia.
Collapse
Affiliation(s)
- I K Gallos
- School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - L Mantonakis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece; First Psychiatry Department, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece
| | - E Spilioti
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece; First Psychiatry Department, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece
| | - E Kattoulas
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece
| | - E Savvidou
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece
| | - E Anyfandi
- First Psychiatry Department, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece
| | - E Karavasilis
- Second Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece
| | - N Kelekis
- Second Department of Radiology, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece
| | - N Smyrnis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece; Second Psychiatry Department, National and Kapodistrian University of Athens, School of Medicine, University General Hospital "ATTIKON", Athens, Greece.
| | - C I Siettos
- Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
14
|
Sekar S, Kannath SK, Ramachandran S, Menon RN, Thomas B. Alterations in Resting-State Functional MRI Connectivity Related to Cognitive Changes in Intracranial Dural Arteriovenous Fistulas Before and After Embolization Treatment. J Magn Reson Imaging 2021; 55:1183-1199. [PMID: 34592019 DOI: 10.1002/jmri.27936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Cognitive decline is a non-hemorrhagic, major complication of intracranial dural arteriovenous fistula (DAVF), thought to be primarily related to venous hypertension. However, imaging features to predict cognitive decline are scanty in the literature. PURPOSE To evaluate functional connectivity (FC) changes of resting-state networks (RSNs) in DAVF before and after treatment and its relation to cognitive impairment. STUDY TYPE Prospective. SUBJECTS DAVF subjects were screened for inclusion. Pre-embolization (N = 33, mean age 45.9 years, 29 males), 1 month post-embolization (N = 20, mean age 42.7 years, 19 males), and healthy controls (HC, N = 33, mean age 45.09 years, 27 males). FIELD STRENGTH/SEQUENCE 3.0 T, resting-state functional magnetic resonance imaging (MRI), three-dimensional (3D) T1, T2 fast spin echo (FSE), diffusion weighted imaging (DWI), susceptibility weighted imaging (SWI), fluid-attenuated inversion recovery, and time of flight. ASSESSMENT Data quality assessment was performed. FC analysis was done using group independent component analysis (ICA) and seed to voxel analysis. Neuropsychology (NP) scores of patients were compared with HC and correlated with FC changes. STATISTICAL TESTS Voxel-wise parametric T-statistics for F-test was executed in FC analysis (p-FDR corrected <0.05). NP scores between DAVF group and HC group were compared using one-way analysis of variance with post hoc Bonferroni correction (P < 0.05). RESULTS Both RSNs analysis methods showed reduced FC at the precuneus-posterior cingulate cortex (PC-PCC) of default mode network (DMN), anterior cingulate cortex (ACC) of the salience network (SN), and possible compensatory increased connectivity at the frontoparietal (FPN) and dorsal attention (DAN) networks. DAVF with low NP scores showed reduced FC at DMN and SN and minimal to absent connectivity at FPN and DAN. At post-embolization 1-month follow-up, improvement in FC at PC-PCC of DMN and ACC of SN were noted. DATA CONCLUSION RS-fMRI in DAVF displayed FC changes that may be related to cognitive decline and its subsequent reversibility after treatment. FC changes at DMN, SN, FPN, and DAN were linked to cognitive decline and the corresponding NP scores. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Sabarish Sekar
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Santhosh Kumar Kannath
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Sushama Ramachandran
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Ramshekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
15
|
Marciano L, Camerini AL, Morese R. The Developing Brain in the Digital Era: A Scoping Review of Structural and Functional Correlates of Screen Time in Adolescence. Front Psychol 2021; 12:671817. [PMID: 34512437 PMCID: PMC8432290 DOI: 10.3389/fpsyg.2021.671817] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
The widespread diffusion of screen-based devices in adolescence has fueled a debate about the beneficial and detrimental effects on adolescents' well-being and development. With the aim of summarizing the existing literature on the associations between screen time (including Internet-related addictions) and adolescent brain development, the present scoping review summarized evidence from 16 task-unrelated and task-related neuroimaging studies, published between 2010 and 2020. Results highlight three important key messages: (i) a frequent and longer duration of screen-based media consumption (including Internet-related addictive behaviors) is related to a less efficient cognitive control system in adolescence, including areas of the Default Mode Network and the Central Executive Network; (ii) online activities act as strong rewards to the brain and repeated screen time augments the tendency to seek short-term gratifications; and (iii) neuroscientific research on the correlates between screen time and adolescent brain development is still at the beginning and in urgent need for further evidence, especially on the underlying causality mechanisms. Methodological, theoretical, and conceptual implications are discussed.
Collapse
Affiliation(s)
- Laura Marciano
- Institute of Public Health, Università della Svizzera italiana, Lugano, Switzerland
| | - Anne-Linda Camerini
- Institute of Public Health, Università della Svizzera italiana, Lugano, Switzerland
| | - Rosalba Morese
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Faculty of Communication, Culture and Society, Università della Svizzera italiana, Lugano, Switzerland
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| |
Collapse
|
16
|
Li L, Wang Y, Zeng Y, Hou S, Huang G, Zhang L, Yan N, Ren L, Zhang Z. Multimodal Neuroimaging Predictors of Learning Performance of Sensorimotor Rhythm Up-Regulation Neurofeedback. Front Neurosci 2021; 15:699999. [PMID: 34354567 PMCID: PMC8329704 DOI: 10.3389/fnins.2021.699999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Electroencephalographic (EEG) neurofeedback (NFB) is a popular neuromodulation method to help one selectively enhance or inhibit his/her brain activities by means of real-time visual or auditory feedback of EEG signals. Sensory motor rhythm (SMR) NFB protocol has been applied to improve cognitive performance, but a large proportion of participants failed to self-regulate their brain activities and could not benefit from NFB training. Therefore, it is important to identify the neural predictors of SMR up-regulation NFB training performance for a better understanding the mechanisms of individual difference in SMR NFB. Twenty-seven healthy participants (12 males, age: 23.1 ± 2.36) were enrolled to complete three sessions of SMR up-regulation NFB training and collection of multimodal neuroimaging data [resting-state EEG, structural magnetic resonance imaging (MRI), and resting-state functional MRI (fMRI)]. Correlation analyses were performed between within-session NFB learning index and anatomical and functional brain features extracted from multimodal neuroimaging data, in order to identify the neuroanatomical and neurophysiological predictors for NFB learning performance. Lastly, machine learning models were trained to predict NFB learning performance using features from each modality as well as multimodal features. According to our results, most participants were able to successfully increase the SMR power and the NFB learning performance was significantly correlated with a set of neuroimaging features, including resting-state EEG powers, gray/white matter volumes from MRI, regional and functional connectivity (FC) of resting-state fMRI. Importantly, results of prediction analysis indicate that NFB learning index can be better predicted using multimodal features compared with features of single modality. In conclusion, this study highlights the importance of multimodal neuroimaging technique as a tool to explain the individual difference in within-session NFB learning performance, and could provide a theoretical framework for early identification of individuals who cannot benefit from NFB training.
Collapse
Affiliation(s)
- Linling Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Yinxue Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Yixuan Zeng
- Department of Neurology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shaohui Hou
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Li Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Nan Yan
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lijie Ren
- Department of Neurology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
17
|
On a Quantitative Approach to Clinical Neuroscience in Psychiatry: Lessons from the Kuramoto Model. Harv Rev Psychiatry 2021; 29:318-326. [PMID: 34049338 DOI: 10.1097/hrp.0000000000000301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human brain is a complex system comprising subregions that dynamically exchange information between its various parts through synchronization. These dynamic, complex interactions ultimately play a role in perception, emotion, cognition, and behavior, as well as in various maladaptive neurologic and psychiatric processes. It is therefore important to understand how brain dynamics might be implicated in these processes. Over the past few years, network neuroscience and computational neuroscience have highlighted the importance of measures such as metastability (a property whereby members of an oscillating system tend to linger at the edge of synchronicity without permanently becoming synchronized) in quantifying brain dynamics. Altered metastability has been implicated in various psychiatric illnesses, such as traumatic brain injury and Alzheimer's disease. Computational models, which range in complexity, have been used to assess how various parameters affect metastability, synchronization, and functional connectivity. These models, though limited, can act as heuristics in understanding brain dynamics. This article (aimed at the clinical psychiatrist who might not possess an extensive mathematical background) is intended to provide a brief and qualitative summary of studies that have used a specific, highly simplified computational model of coupled oscillators (Kuramoto model) for understanding brain dynamics-which might bear some relevance to clinical psychiatry.
Collapse
|
18
|
An EEG-based methodology for the estimation of functional brain connectivity networks: Application to the analysis of newborn EEG seizure. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Hakimdavoodi H, Amirmazlaghani M. Using autoregressive-dynamic conditional correlation model with residual analysis to extract dynamic functional connectivity. J Neural Eng 2020; 17:035008. [DOI: 10.1088/1741-2552/ab965b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Chen X, Wang Q, Luo C, Yang Y, Jiang H, Guo X, Chen X, Yang J, Xu K. Increased functional dynamics in civil aviation pilots: Evidence from a neuroimaging study. PLoS One 2020; 15:e0234790. [PMID: 32555721 PMCID: PMC7302522 DOI: 10.1371/journal.pone.0234790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022] Open
Abstract
Civil aviation is a distinctive career. Pilots need to monitor the entire system in real time. However, the psychophysiological mechanism of flying is largely unknown. The human brain is a large-scale interconnected organization, and many stable intrinsic large-scale brain networks have been identified. Among them are three core neurocognitive networks: default mode network (DMN), central executive network (CEN), and salience network (SN). These three networks play a critical role in human cognition. This study aims to examine the dynamic properties of the three large-scale brain networks in civil aviation pilots. We collected resting-state functional magnetic resonance imaging data from pilots. Independent component analysis, which is a data-driven approach, was combined with sliding window dynamic functional connectivity analysis to detect the dynamic properties of large-scale brain networks. Our results revealed that pilots exhibit an increased interaction of the CEN with the DMN and the SN along with a decreased interaction within the CEN. In addition, the temporal properties of functional dynamics (number of transitions) increased in pilots compared to healthy controls. In general, pilots exhibited increased between-network functional connectivity, decreased within-network functional connectivity, and a higher number of transitions. These findings suggest that pilots might have better functional dynamics and cognitive flexibility.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Quanchuan Wang
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Yang
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Hao Jiang
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Xiangmei Guo
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Xipeng Chen
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Jiazhong Yang
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
- * E-mail: (JY); (KX)
| | - Kaijun Xu
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
- * E-mail: (JY); (KX)
| |
Collapse
|
21
|
Dynamical Mechanisms of Interictal Resting-State Functional Connectivity in Epilepsy. J Neurosci 2020; 40:5572-5588. [PMID: 32513827 PMCID: PMC7363471 DOI: 10.1523/jneurosci.0905-19.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Drug-resistant focal epilepsy is a large-scale brain networks disorder characterized by altered spatiotemporal patterns of functional connectivity (FC), even during interictal resting state (RS). Although RS-FC-based metrics can detect these changes, results from RS functional magnetic resonance imaging (RS-fMRI) studies are unclear and difficult to interpret, and the underlying dynamical mechanisms are still largely unknown. To better capture the RS dynamics, we phenomenologically extended the neural mass model of partial seizures, the Epileptor, by including two neuron subpopulations of epileptogenic and nonepileptogenic type, making it capable of producing physiological oscillations in addition to the epileptiform activity. Using the neuroinformatics platform The Virtual Brain, we reconstructed 14 epileptic and 5 healthy human (of either sex) brain network models (BNMs), based on individual anatomical connectivity and clinically defined epileptogenic heatmaps. Through systematic parameter exploration and fitting to neuroimaging data, we demonstrated that epileptic brains during interictal RS are associated with lower global excitability induced by a shift in the working point of the model, indicating that epileptic brains operate closer to a stable equilibrium point than healthy brains. Moreover, we showed that functional networks are unaffected by interictal spikes, corroborating previous experimental findings; additionally, we observed higher excitability in epileptogenic regions, in agreement with the data. We shed light on new dynamical mechanisms responsible for altered RS-FC in epilepsy, involving the following two key factors: (1) a shift of excitability of the whole brain leading to increased stability; and (2) a locally increased excitability in the epileptogenic regions supporting the mixture of hyperconnectivity and hypoconnectivity in these areas. SIGNIFICANCE STATEMENT Advances in functional neuroimaging provide compelling evidence for epilepsy-related brain network alterations, even during the interictal resting state (RS). However, the dynamical mechanisms underlying these changes are still elusive. To identify local and network processes behind the RS-functional connectivity (FC) spatiotemporal patterns, we systematically manipulated the local excitability and the global coupling in the virtual human epileptic patient brain network models (BNMs), complemented by the analysis of the impact of interictal spikes and fitting to the neuroimaging data. Our results suggest that a global shift of the dynamic working point of the brain model, coupled with locally hyperexcitable node dynamics of the epileptogenic networks, provides a mechanistic explanation of the epileptic processes during the interictal RS period. These, in turn, are associated with the changes in FC.
Collapse
|
22
|
Alonso Martínez S, Marsman JBC, Kringelbach ML, Deco G, Ter Horst GJ. Reduced spatiotemporal brain dynamics are associated with increased depressive symptoms after a relationship breakup. Neuroimage Clin 2020; 27:102299. [PMID: 32516738 PMCID: PMC7284067 DOI: 10.1016/j.nicl.2020.102299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/24/2022]
Abstract
Depressive symptoms following a stressful life event, such as a relationship breakup, are common, and constitute a potent risk factor for the onset of a major depressive episode. Resting-state neuroimaging studies have increasingly identified abnormal whole-brain communication in patients with depression, but it is currently unclear whether depressive symptoms in individuals without a clinical diagnosis have reliable neural underpinnings. We investigated to what extent the severity of depressive symptoms in a non-clinical sample was associated with imbalances in the complex dynamics of the brain during rest. To this end, a novel intrinsic ignition approach was applied to resting-state neuroimaging data from sixty-nine participants with varying degrees of depressive symptoms following a relationship breakup. Ignition-based measures of integration, hierarchy, and metastability were calculated for each participant, revealing a negative correlation between these measures and depressive ratings. We found that the severity of depressive symptoms was associated with deficits in the brain's capacity to globally integrate and process information over time. Furthermore, we found that increased depressive symptoms were associated with reduced spatial diversity (i.e., hierarchy) and reduced temporal variability (i.e., metastability) in the functional organization of the brain. These findings suggest the merit of investigating constrained dynamical complexity as it is sensitive to the level of depressive symptoms even in a non-clinical sample.
Collapse
Affiliation(s)
- Sonsoles Alonso Martínez
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, 9713 AW Groningen, the Netherlands.
| | - Jan-Bernard C Marsman
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, 9713 AW Groningen, the Netherlands.
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, OX3 7JX Oxford, United Kingdom; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; Life and Health Sciences Research Institute, School of Medicine, University of Minho, 4710-057 Braga, Portugal.
| | - Gustavo Deco
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08010 Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, 08010 Barcelona, Spain.
| | - Gert J Ter Horst
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, 9713 AW Groningen, the Netherlands.
| |
Collapse
|
23
|
Shafiei G, Zeighami Y, Clark CA, Coull JT, Nagano-Saito A, Leyton M, Dagher A, Mišic B. Dopamine Signaling Modulates the Stability and Integration of Intrinsic Brain Networks. Cereb Cortex 2020; 29:397-409. [PMID: 30357316 PMCID: PMC6294404 DOI: 10.1093/cercor/bhy264] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 11/24/2022] Open
Abstract
Dopaminergic projections are hypothesized to stabilize neural signaling and neural representations, but how they shape regional information processing and large-scale network interactions remains unclear. Here we investigated effects of lowered dopamine levels on within-region temporal signal variability (measured by sample entropy) and between-region functional connectivity (measured by pairwise temporal correlations) in the healthy brain at rest. The acute phenylalanine and tyrosine depletion (APTD) method was used to decrease dopamine synthesis in 51 healthy participants who underwent resting-state functional MRI (fMRI) scanning. Functional connectivity and regional signal variability were estimated for each participant. Multivariate partial least squares (PLS) analysis was used to statistically assess changes in signal variability following APTD as compared with the balanced control treatment. The analysis captured a pattern of increased regional signal variability following dopamine depletion. Changes in hemodynamic signal variability were concomitant with changes in functional connectivity, such that nodes with greatest increase in signal variability following dopamine depletion also experienced greatest decrease in functional connectivity. Our results suggest that dopamine may act to stabilize neural signaling, particularly in networks related to motor function and orienting attention towards behaviorally-relevant stimuli. Moreover, dopamine-dependent signal variability is critically associated with functional embedding of individual areas in large-scale networks.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yashar Zeighami
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Crystal A Clark
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jennifer T Coull
- Laboratoire des Neurosciences Cognitives UMR 7291, Federation 3C, Aix-Marseille University, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Atsuko Nagano-Saito
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| | - Marco Leyton
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bratislav Mišic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
24
|
Lee WH, Rodrigue A, Glahn DC, Bassett DS, Frangou S. Heritability and Cognitive Relevance of Structural Brain Controllability. Cereb Cortex 2019; 30:3044-3054. [PMID: 31838501 PMCID: PMC7197079 DOI: 10.1093/cercor/bhz293] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/20/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023] Open
Abstract
Cognition and behavior are thought to emerge from the connections and interactions among brain regions. The precise nature of these relationships remains elusive. Here we use tools provided by network control theory to determine how the structural connectivity profile of brain regions may shape individual variation in cognition. In a cohort of healthy young adults (n = 1066), we computed two fundamental brain regional control patterns, average and modal controllability, which index the degree of influence of a region over others. We first established that regional brain controllability measures were both reproducible and heritable. Regions with controllability profiles theoretically conducive to facilitating multiple cognitive operations were over-represented in higher-order resting-state networks. Finally, variation in regional controllability accounted for about 50% of interindividual variability in multiple cognitive domains. We conclude that controllability is a biologically plausible property of the structural connectome and provides a mechanistic explanation for how brain structural architecture may influence cognitive functions.
Collapse
Affiliation(s)
- Won Hee Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amanda Rodrigue
- Tommy Fuss Center for Neuropsychiatric Disease Research, Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Physics and Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
25
|
Hawkins E, Akarca D, Zhang M, Brkić D, Woolrich M, Baker K, Astle D. Functional network dynamics in a neurodevelopmental disorder of known genetic origin. Hum Brain Mapp 2019; 41:530-544. [PMID: 31639257 PMCID: PMC7268087 DOI: 10.1002/hbm.24820] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/17/2019] [Accepted: 09/30/2019] [Indexed: 01/03/2023] Open
Abstract
Dynamic connectivity in functional brain networks is a fundamental aspect of cognitive development, but we have little understanding of the mechanisms driving variability in these networks. Genes are likely to influence the emergence of fast network connectivity via their regulation of neuronal processes, but novel methods to capture these rapid dynamics have rarely been used in genetic populations. The current study redressed this by investigating brain network dynamics in a neurodevelopmental disorder of known genetic origin, by comparing individuals with a ZDHHC9-associated intellectual disability to individuals with no known impairment. We characterised transient network dynamics using a Hidden Markov Model (HMM) on magnetoencephalography (MEG) data, at rest and during auditory oddball stimulation. The HMM is a data-driven method that captures rapid patterns of coordinated brain activity recurring over time. Resting-state network dynamics distinguished the groups, with ZDHHC9 participants showing longer state activation and, crucially, ZDHHC9 gene expression levels predicted the group differences in dynamic connectivity across networks. In contrast, network dynamics during auditory oddball stimulation did not show this association. We demonstrate a link between regional gene expression and brain network dynamics, and present the new application of a powerful method for understanding the neural mechanisms linking genetic variation to cognitive difficulties.
Collapse
Affiliation(s)
- Erin Hawkins
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Danyal Akarca
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Mengya Zhang
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Diandra Brkić
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, University of Oxford, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Duncan Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Fink A, Benedek M, Koschutnig K, Papousek I, Weiss EM, Bagga D, Schöpf V. Modulation of resting-state network connectivity by verbal divergent thinking training. Brain Cogn 2018; 128:1-6. [DOI: 10.1016/j.bandc.2018.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/27/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
|
27
|
Lee WH, Doucet GE, Leibu E, Frangou S. Resting-state network connectivity and metastability predict clinical symptoms in schizophrenia. Schizophr Res 2018; 201:208-216. [PMID: 29709491 PMCID: PMC6317903 DOI: 10.1016/j.schres.2018.04.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND The functional architecture of resting-state networks (RSNs) is defined by their connectivity and metastability. Disrupted RSN connectivity has been amply demonstrated in schizophrenia while the role of metastability remains poorly defined. Here, we undertake a comprehensive characterisation of RSN organization in schizophrenia and test its contribution to the clinical profile of this disorder. METHODS We extracted RSNs representing the default mode (DMN), central executive (CEN), salience (SAL), language (LAN), sensorimotor (SMN), auditory (AN) and visual (VN) networks from resting-state functional magnetic resonance imaging data obtained from patients with schizophrenia (n = 85) and healthy individuals (n = 48). For each network, we computed its functional cohesiveness and integration and used the Kuramoto order parameter to compute metastability. We used stepwise multiple regression analyses to test these RSN features as predictors of symptom severity in patients. RESULTS RSN features respectively explained 14%, 17%, 12% and 5% of the variance in positive, negative, anxious/depressive and agitation/disorganization symptoms. Lower functional integration between the DMN, CEN and SMN primarily contributed to positive symptoms. The functional properties of the SAL network were key predictors of all other symptom dimensions; specifically, lower cohesiveness of the SAL, lower integration of this network with the LAN and higher integration with the CEN respectively contributed to negative, anxious/depressive and disorganization symptoms. Increased SAL metastability was associated with negative symptoms. CONCLUSIONS These results confirm the primacy of the SAL network for schizophrenia and demonstrate that abnormalities in RSN connectivity and metastability are significant predictors of schizophrenia-related psychopathology.
Collapse
Affiliation(s)
| | | | | | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
28
|
Lee WH, Moser DA, Ing A, Doucet GE, Frangou S. Behavioral and Health Correlates of Resting-State Metastability in the Human Connectome Project. Brain Topogr 2018; 32:80-86. [PMID: 30136050 PMCID: PMC6326990 DOI: 10.1007/s10548-018-0672-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022]
Abstract
Metastability is currently considered a fundamental property of the functional configuration of brain networks. The present study sought to generate a normative reference framework for the metastability of the major resting-state networks (RSNs) (resting-state metastability dataset) and discover their association with demographic, behavioral, physical and cognitive features (non-imaging dataset) from 818 participants of the Human Connectome Project. Using sparse canonical correlation analysis, we found that the metastability and non-imaging datasets showed significant but modest interdependency. Notable associations between the metastability variate and the non-imaging features were observed for higher-order cognitive ability and indicators of physical well-being. The intra-class correlation coefficient between the sibling pairs in the sample was very low which argues against a significant familial influence on RSN metastability.
Collapse
Affiliation(s)
- Won Hee Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Dominik Andreas Moser
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Alex Ing
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gaelle Eve Doucet
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|