1
|
Ponomarchuk O, Boudreault F, Gryczynski I, Lee B, Dzyuba SV, Fudala R, Gryczynski Z, Hanrahan JW, Grygorczyk R. Nanoscale Viscometry Reveals an Inherent Mucus Defect in Cystic Fibrosis. ACS NANO 2025; 19:4637-4649. [PMID: 39825840 DOI: 10.1021/acsnano.4c14927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release. Current understanding of mucin/mucus structure before and after secretion remains limited, and contradictory models exist. Here, we used a molecular viscometer and fluorescence lifetime imaging of human bronchoepithelial cells (Normal and CF) to measure nanometer-scale viscosity. We found significantly elevated intraluminal nanoviscosity in a population of CF mucin granules, indicating an intrinsic, presecretory mucin defect. Nanoviscosity influences protein conformational dynamics and function. Its elevation along the protein secretory pathway could arise from molecular overcrowding, impacting mucin's post-translational processing, hydration, and mucus rheology after release. The nanoviscosity of secreted CF mucus was elevated compared to that of non-CF. Interestingly, it was higher after release than in granules. Validation experiments indicate that reduced mobility of water hydrating mucin macromolecules may contribute to the high nanoviscosity in mucus and mucin granules. This suggests that mucins have a weakly ordered state in granules but adopt a highly ordered, nematic crystalline structure when secreted. This challenges the traditional view of mucus as a porous agarose-like gel and suggests an alternative model for mucin organization before and after secretion. Our study also indicates that endoplasmic reticulum stress due to molecular overcrowding could contribute to mucus pathogenesis in CF cells. It encourages the development of therapeutics that target presecretory mechanisms in CF and other muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Olga Ponomarchuk
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
| | - Francis Boudreault
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
| | - Ignacy Gryczynski
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Bong Lee
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Sergei V Dzyuba
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Rafal Fudala
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Zygmunt Gryczynski
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - John W Hanrahan
- Department of Physiology, McGill University, Montreal, Quebec H3A 0G4, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Ryszard Grygorczyk
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
- Département de Médecine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
2
|
Mascharak S, Guo JL, Griffin M, Berry CE, Wan DC, Longaker MT. Modelling and targeting mechanical forces in organ fibrosis. NATURE REVIEWS BIOENGINEERING 2024; 2:305-323. [PMID: 39552705 PMCID: PMC11567675 DOI: 10.1038/s44222-023-00144-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/19/2024]
Abstract
Few efficacious therapies exist for the treatment of fibrotic diseases, such as skin scarring, liver cirrhosis and pulmonary fibrosis, which is related to our limited understanding of the fundamental causes and mechanisms of fibrosis. Mechanical forces from cell-matrix interactions, cell-cell contact, fluid flow and other physical stimuli may play a central role in the initiation and propagation of fibrosis. In this Review, we highlight the mechanotransduction mechanisms by which various sources of physical force drive fibrotic disease processes, with an emphasis on central pathways that may be therapeutically targeted to prevent and reverse fibrosis. We then discuss engineered models of mechanotransduction in fibrosis, as well as molecular and biomaterials-based therapeutic approaches for limiting fibrosis and promoting regenerative healing phenotypes in various organs. Finally, we discuss challenges within fibrosis research that remain to be addressed and that may greatly benefit from next-generation bioengineered model systems.
Collapse
Affiliation(s)
- Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Jason L. Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Charlotte E. Berry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Derrick C. Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T. Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Banat H, Csóka I, Paróczai D, Burian K, Farkas Á, Ambrus R. A Novel Combined Dry Powder Inhaler Comprising Nanosized Ketoprofen-Embedded Mannitol-Coated Microparticles for Pulmonary Inflammations: Development, In Vitro-In Silico Characterization, and Cell Line Evaluation. Pharmaceuticals (Basel) 2024; 17:75. [PMID: 38256908 PMCID: PMC10818896 DOI: 10.3390/ph17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pulmonary inflammations such as chronic obstructive pulmonary disease and cystic fibrosis are widespread and can be fatal, especially when they are characterized by abnormal mucus accumulation. Inhaled corticosteroids are commonly used for lung inflammations despite their considerable side effects. By utilizing particle engineering techniques, a combined dry powder inhaler (DPI) comprising nanosized ketoprofen-embedded mannitol-coated microparticles was developed. A nanoembedded microparticle system means a novel advance in pulmonary delivery by enhancing local pulmonary deposition while avoiding clearance mechanisms. Ketoprofen, a poorly water-soluble anti-inflammatory drug, was dispersed in the stabilizer solution and then homogenized by ultraturrax. Following this, a ketoprofen-containing nanosuspension was produced by wet-media milling. Furthermore, co-spray drying was conducted with L-leucine (dispersity enhancer) and mannitol (coating and mucuactive agent). Particle size, morphology, dissolution, permeation, viscosity, in vitro and in silico deposition, cytotoxicity, and anti-inflammatory effect were investigated. The particle size of the ketoprofen-containing nanosuspension was ~230 nm. SEM images of the spray-dried powder displayed wrinkled, coated, and nearly spherical particles with a final size of ~2 µm (nano-in-micro), which is optimal for pulmonary delivery. The mannitol-containing samples decreased the viscosity of 10% mucin solution. The results of the mass median aerodynamic diameter (2.4-4.5 µm), fine particle fraction (56-71%), permeation (five-fold enhancement), and dissolution (80% release in 5 min) confirmed that the system is ideal for local inhalation. All samples showed a significant anti-inflammatory effect and decreased IL-6 on the LPS-treated U937 cell line with low cytotoxicity. Hence, developing an innovative combined DPI comprising ketoprofen and mannitol by employing a nano-in-micro approach is a potential treatment for lung inflammations.
Collapse
Affiliation(s)
- Heba Banat
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Dóra Paróczai
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Katalin Burian
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Árpád Farkas
- Centre for Energy Research, Hungarian Academy of Sciences, 1121 Budapest, Hungary;
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| |
Collapse
|
4
|
Pittman M, Ali AM, Chen Y. How sticky? How tight? How hot? Imaging probes for fluid viscosity, membrane tension and temperature measurements at the cellular level. Int J Biochem Cell Biol 2022; 153:106329. [PMID: 36336304 PMCID: PMC10148659 DOI: 10.1016/j.biocel.2022.106329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
We review the progress made in imaging probes for three important physical parameters: viscosity, membrane tension, and temperature, all of which play important roles in many cellular processes. Recent evidences showed that cell migration speed can be modulated by extracellular fluid viscosity; membrane tension contributes to the regulation of cell motility, exo-/endo-cytosis, and cell spread area; and temperature affects neural activity and adipocyte differentiation. We discuss the techniques implementing imaging-based probes to measure viscosity, membrane tension, and temperature at subcellular resolution dynamically. The merits and shortcomings of each technique are examined, and the future applications of the recently developed techniques are also explored.
Collapse
Affiliation(s)
- Matthew Pittman
- Department of Mechanical Engineering, Johns Hopkins University, MD, USA; Center for Cell Dynamics, Johns Hopkins University, MD, USA; Institute for NanoBio Technology, Johns Hopkins University, MD, USA
| | - Abdulla M Ali
- Center for Cell Dynamics, Johns Hopkins University, MD, USA; Institute for NanoBio Technology, Johns Hopkins University, MD, USA; T.C. Jenkins Department of Biophysics, Johns Hopkins University, MD, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, MD, USA; Center for Cell Dynamics, Johns Hopkins University, MD, USA; Institute for NanoBio Technology, Johns Hopkins University, MD, USA.
| |
Collapse
|
5
|
Kalyagin A, Antina L, Ksenofontov A, Antina E, Berezin M. Solvent-Dependent Fluorescence Properties of CH 2- bis(BODIPY)s. Int J Mol Sci 2022; 23:ijms232214402. [PMID: 36430881 PMCID: PMC9695564 DOI: 10.3390/ijms232214402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Biocompatible luminophores based on organic dyes, which have fluorescence characteristics that are highly sensitive to the properties of the solvating medium, are of particular interest as highly sensitive, selective, and easy-to-use analytical agents. We found that BODIPY dimers (2,2'-, 2,3'-3,3'-CH2-bis(BODIPY) (1-3)) demonstrate fluorescence characteristics with a high sensitivity to the presence of polar solvents. The intense fluorescence of 1-3 in nonpolar/low-polarity solvents is dramatically quenched in polar media (acetone, DMF, and DMSO). It has been established that the main reason for CH2-bis(BODIPY) fluorescence quenching is the specific solvation of dyes by electron-donating molecules (Solv) with the formation of stable supramolecular CH2-bis(BODIPY)·2Solv structures. Using steady-state absorption and fluorescence spectroscopy, time-resolved fluorescence spectroscopy, and computational modeling, the formation mechanism, composition, and structure of CH2-bis(BODIPY)·2Solv supramolecular complexes have been substantiated, and their stability has been evaluated. The results show the promise of developing fluorescent probes based on CH2-bis(BODIPY)s for detecting toxic N/O-containing compounds in solutions.
Collapse
|
6
|
Methods of Sputum and Mucus Assessment for Muco-Obstructive Lung Diseases in 2022: Time to “Unplug” from Our Daily Routine! Cells 2022; 11:cells11050812. [PMID: 35269434 PMCID: PMC8909676 DOI: 10.3390/cells11050812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Obstructive lung diseases, such as chronic obstructive pulmonary disease, asthma, or non-cystic fibrosis bronchiectasis, share some major pathophysiological features: small airway involvement, dysregulation of adaptive and innate pulmonary immune homeostasis, mucus hyperproduction, and/or hyperconcentration. Mucus regulation is particularly valuable from a therapeutic perspective given it contributes to airflow obstruction, symptom intensity, disease severity, and to some extent, disease prognosis in these diseases. It is therefore crucial to understand the mucus constitution of our patients, its behavior in a stable state and during exacerbation, and its regulatory mechanisms. These are all elements representing potential therapeutic targets, especially in the era of biologics. Here, we first briefly discuss the composition and characteristics of sputum. We focus on mucus and mucins, and then elaborate on the different sample collection procedures and how their quality is ensured. We then give an overview of the different direct analytical techniques available in both clinical routine and more experimental settings, giving their advantages and limitations. We also report on indirect mucus assessment procedures (questionnaires, high-resolution computed tomography scanning of the chest, lung function tests). Finally, we consider ways of integrating these techniques with current and future therapeutic options. Cystic fibrosis will not be discussed given its monogenic nature.
Collapse
|
7
|
Martynov VI, Pakhomov AA. BODIPY derivatives as fluorescent reporters of molecular activities in living cells. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Fluorescent compounds have become indispensable tools for imaging molecular activities in the living cell. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is currently one of the most popular fluorescent reporters due to its unique photophysical properties. This review provides a general survey and presents a summary of recent advances in the development of new BODIPY-based cellular biomarkers and biosensors. The review starts with the consideration of the properties of BODIPY derivatives required for their application as cellular reporters. Then review provides examples of the design of sensors for different biologically important molecules, ions, membrane potential, temperature and viscosity defining the live cell status. Special attention is payed to BODPY-based phototransformable reporters.
The bibliography includes 339 references.
Collapse
|
8
|
Radiom M, Hénault R, Mani S, Iankovski AG, Norel X, Berret JF. Magnetic wire active microrheology of human respiratory mucus. SOFT MATTER 2021; 17:7585-7595. [PMID: 34341819 DOI: 10.1039/d1sm00512j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mucus is a viscoelastic gel secreted by the pulmonary epithelium in the tracheobronchial region of the lungs. The coordinated beating of cilia moves mucus upwards towards the pharynx, removing inhaled pathogens and particles from the airways. The efficacy of this clearance mechanism depends primarily on the rheological properties of mucus. Here we use magnetic wire based microrheology to study the viscoelastic properties of human mucus collected from human bronchus tubes. The response of wires between 5 and 80 μm in length to a rotating magnetic field is monitored by optical time-lapse microscopy and analyzed using constitutive equations of rheology, including those of Maxwell and Kelvin-Voigt. The static shear viscosity and elastic modulus can be inferred from low frequency (3 × 10-3-30 rad s-1) measurements, leading to the evaluation of the mucin network relaxation time. This relaxation time is found to be widely distributed, from one to several hundred seconds. Mucus is identified as a viscoelastic liquid with an elastic modulus of 2.5 ± 0.5 Pa and a static viscosity of 100 ± 40 Pa s. Our work shows that beyond the established spatial variations in rheological properties due to microcavities, mucus exhibits secondary inhomogeneities associated with the relaxation time of the mucin network that may be important for its flow properties.
Collapse
Affiliation(s)
- Milad Radiom
- Université de Paris, CNRS, Matière et Systèmes Complexes, 75013 Paris, France.
| | | | | | | | | | | |
Collapse
|
9
|
Park S, Jung WH, Pittman M, Chen J, Chen Y. The Effects of Stiffness, Fluid Viscosity, and Geometry of Microenvironment in Homeostasis, Aging, and Diseases: A Brief Review. J Biomech Eng 2020; 142:100804. [PMID: 32803227 PMCID: PMC7477718 DOI: 10.1115/1.4048110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Cells sense biophysical cues in the micro-environment and respond to the cues biochemically and biophysically. Proper responses from cells are critical to maintain the homeostasis in the body. Abnormal biophysical cues will cause pathological development in the cells; pathological or aging cells, on the other hand, can alter their micro-environment to become abnormal. In this minireview, we discuss four important biophysical cues of the micro-environment-stiffness, curvature, extracellular matrix (ECM) architecture and viscosity-in terms of their roles in health, aging, and diseases.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Matthew Pittman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
10
|
Li J, Ye Z. The Potential Role and Regulatory Mechanisms of MUC5AC in Chronic Obstructive Pulmonary Disease. Molecules 2020; 25:molecules25194437. [PMID: 32992527 PMCID: PMC7582261 DOI: 10.3390/molecules25194437] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with high morbidity and mortality globally. Studies show that airway mucus hypersecretion strongly compromises lung function, leading to frequent hospitalization and mortality, highlighting an urgent need for effective COPD treatments. MUC5AC is known to contribute to severe muco-obstructive lung diseases, worsening COPD pathogenesis. Various pathways are implicated in the aberrant MUC5AC production and secretion MUC5AC. These include signaling pathways associated with mucus-secreting cell differentiation [nuclear factor-κB (NF-κB)and IL-13-STAT6- SAM pointed domain containing E26 transformation-specific transcription factor (SPDEF), as well as epithelial sodium channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR)], and signaling pathways related to mucus transport and excretion-ciliary beat frequency (CBF). Various inhibitors of mucus hypersecretion are in clinical use but have had limited benefits against COPD. Thus, novel therapies targeting airway mucus hypersecretion should be developed for effective management of muco-obstructive lung disease. Here, we systematically review the mechanisms and pathogenesis of airway mucus hypersecretion, with emphasis on multi-target and multi-link intervention strategies for the elucidation of novel inhibitors of airway mucus hypersecretion.
Collapse
Affiliation(s)
- Jingyuan Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Zuguang Ye
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: ; Tel./Fax: +86-10-8425-2805
| |
Collapse
|
11
|
Abstract
The airway surface functional microanatomy, including the ciliated airway epithelium and overlying mucus layer, is a critical component of the mucociliary escalator apparatus, an innate immune defense that helps to maintain a clean environment in the respiratory tract. Many genetic and acquired respiratory diseases have underlying pathophysiological mechanisms in which constituents of the airway surface functional microanatomy are defective. For example, in cystic fibrosis, mutations in the cystic fibrosis transmembrane conductance regulator gene, which normally produces a secretory anion channel protein, result in defective anion secretion and consequent dehydrated and acidic mucosal layer overlying the airway epithelium. This thick, viscous mucus results in depressed ciliary beating and delayed mucociliary transport, trapping bacteria and other pathogens, compromising host defenses and ultimately propagating disease progression. Thus, developing tools capable of studying the airway surface microanatomy has been critical to better understanding key pathophysiological mechanisms, and may become useful tools to monitor treatment outcomes. Here, we discuss functional imaging tools to study the airway surface functional microanatomy, and how their application has contributed to an improved understanding of airway disease pathophysiology.
Collapse
|
12
|
Li LL, Li K, Li MY, Shi L, Liu YH, Zhang H, Pan SL, Wang N, Zhou Q, Yu XQ. BODIPY-Based Two-Photon Fluorescent Probe for Real-Time Monitoring of Lysosomal Viscosity with Fluorescence Lifetime Imaging Microscopy. Anal Chem 2018; 90:5873-5878. [DOI: 10.1021/acs.analchem.8b00590] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ling-Ling Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Meng-Yang Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lei Shi
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hong Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Sheng-Lin Pan
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Nan Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Qian Zhou
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|