1
|
Schreiber T, Koll N, Padberg C, de los Reyes B, Quinting T, Malyshkina A, Metzen E, Sutter K, Fandrey J, Winning S. Reduced vacuolar ATPase protects mice from Friend virus infection - an unintended but instructive effect in Hif-2afl mice. J Cell Sci 2024; 137:jcs261893. [PMID: 38856651 PMCID: PMC11234382 DOI: 10.1242/jcs.261893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/20/2024] [Indexed: 06/11/2024] Open
Abstract
During acute viral infections, innate immune cells invade inflamed tissues and face hypoxic areas. Hypoxia-inducible factors (HIFs) adapt cellular responses towards these conditions. We wanted to investigate the effects of a loss of HIF-2α in macrophages during acute Friend murine leukemia retrovirus (FV) infection in C57BL/6 mice using a Cre/loxP system. Remarkably, mice with floxed Hif-2a (Hif-2afl; Hif-2a is also known as Epas1) did not show any signs of FV infection independent of Cre activity. This prevented a detailed analysis of the role of macrophage HIF-2α for FV infection but allowed us to study a model of unexpected FV resistance. Hif-2afl mice showed a significant decrease in the expression of the Atp6v1e2 gene encoding for the E2 subunit of the vacuolar H+-ATPase, which resulted in a decreased acidification of lysosomes and limited virus entry into the cell. These findings highlight that the insertion of loxP sites is not always without functional consequences and has established a phenotype in the floxed Hif-2a mouse, which is not only unexpected, but unwanted and is of relevance for the use of this mouse strain in (at least virus) experiments.
Collapse
Affiliation(s)
- Timm Schreiber
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Physiology, Pathophysiology and Toxicology and Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, 58455 Witten, Germany
| | - Nora Koll
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Claudia Padberg
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Buena de los Reyes
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Theresa Quinting
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Anna Malyshkina
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Eric Metzen
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute for Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Sandra Winning
- Institute of Physiology, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
2
|
Xia D, Zhang X, Hao H, Jiang W, Chen C, Li H, Feng L, Li J, Wu Y, Zhang L, Hu Y. Strategies to prolong drug retention in solid tumors by aggregating Endo-CMC nanoparticles. J Control Release 2023; 360:705-717. [PMID: 37423525 DOI: 10.1016/j.jconrel.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/03/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Developing a highly effective nano-drug delivery system with sufficient drug permeability and retention in tumors is still a major challenge for oncotherapy. Herein, a tumor microenvironment responsive, aggregable nanocarriers embedded hydrogel (Endo-CMC@hydrogel) was developed to inhibit the tumoral angiogenesis and hypoxia for enhanced radiotherapy. The antiangiogenic drug (recombinant human endostatin, Endo) loaded carboxymethyl chitosan nanoparticles (Endo-CMC NPs) was wrapped by 3D hydrogel to comprise the Endo-CMC@hydrogel. After peritumoral injection, the Endo-CMC NPs were released, invaded deeply into the solid tumor, and cross-linked with intratumoral calcium ions. The cross-linking process enabled these Endo-CMC NPs to form larger particles, leading to long retention in tumor tissue to minimize premature clearance. This Endo-CMC@hydrogel, integrating the abilities of good tumoral penetration, long retention of anti-drug, and alleviation of hypoxia in tumor tissue, greatly improved the therapeutic effect of radiotherapy. This work provides a proof-of-concept of tumor microenvironment-responding and an aggregable nano-drug delivery system as promising antitumor drug carriers for effective tumor therapy.
Collapse
Affiliation(s)
- Donglin Xia
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China; College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodong Zhang
- The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226362, China
| | - Huang Hao
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China; School of Health Medicine, Nantong Institute of Technology, Nantong, Jiangsu 226002, China
| | - Wei Jiang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chao Chen
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Haoming Li
- Medical school, Nantong University, Nantong, Jiangsu 226019, China
| | - Linzi Feng
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Jia Li
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Wu
- Department of General Surgery, Nantong Geriatric Rehabilitation Hospital, Nantong, Jiangsu 226019, China.
| | - Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
3
|
Wrobeln A, Leu T, Jablonska J, Geisthoff U, Lang S, Fandrey J, Droege F. Altered hypoxia inducible factor regulation in hereditary haemorrhagic telangiectasia. Sci Rep 2022; 12:5877. [PMID: 35393474 PMCID: PMC8988913 DOI: 10.1038/s41598-022-09759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with hereditary haemorrhagic telangiectasia (HHT), also known as Rendu–Osler–Weber syndrome, suffer from the consequences of abnormal vessel structures. These structures can lead to haemorrhages or shunt effects in liver, lungs and brain. This inherited and rare disease is characterized by mutations affecting the transforming growth factor-β (TGF-β)/Bone Morphogenetic Protein (BMP) pathway that results in arteriovenous malformations and studies indicate an impaired immune response. The mechanism underlying this altered immune response in HHT patients is still unknown. TGF-β interacts with hypoxia inducible factors (HIF), which both orchestrate inflammatory and angiogenic processes. Therefore, we analysed the expression of HIF and related genes in whole blood samples from HHT patients. We could show significantly decreased expression of HIF-1α on the mRNA and protein level. However, commonly known upstream regulators of HIF-1α in inflammatory responses were not affected, whereas HIF-1α target genes were significantly downregulated. There was no correlation between HIF1A or HIF2A gene expression and the severity of HHT detected. Our results represent a rare case of HIF-1α downregulation in a human disease, which underlines the relevance of HIFs in HHT. The study indicates an interaction of the known mutation in HHT and the dysregulation of HIF-1α in HHT patients, which might contribute to the clinical phenotype.
Collapse
Affiliation(s)
- Anna Wrobeln
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany.
| | - Tristan Leu
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Jadwiga Jablonska
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstaße 55, 45147, Essen, Germany
| | - Urban Geisthoff
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Freya Droege
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| |
Collapse
|
4
|
Prolyl hydroxylase domain 2 reduction enhances skeletal muscle tissue regeneration after soft tissue trauma in mice. PLoS One 2020; 15:e0233261. [PMID: 32413092 PMCID: PMC7228053 DOI: 10.1371/journal.pone.0233261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
The transcription factor Hypoxia-inducible factor 1 (HIF-1) plays a pivotal role in tissue regeneration. HIF-1 is negatively controlled by O2-dependent prolyl hydroxylases with a predominant role of prolyl hydroxylase 2 isoform (Phd2). Transgenic mice, hypomorphic for this isoform, accumulate more HIF-1 under normoxic conditions. Using these mice, we investigated the influence of Phd2 and HIF-1 on the regenerative capability of skeletal muscle tissue after myotrauma. Phd2-hypomorphic and wild type mice (on C57Bl/6 background) were grouped with regeneration times from 6 to 168 hours after closed mechanic muscle trauma to the hind limb. Tissue samples were analysed by immuno-staining and real-time PCR. Bone marrow derived macrophages of wild type and Phd2-hypomorphic mice were isolated and analysed via flow cytometry and quantitative real-time PCR. Phd2 reduction led to a higher regenerative capability due to enhanced activation of myogenic factors accompanied by induction of genes responsible for glucose and lactate metabolism in Phd2-hypomorphic mice. Macrophage infiltration into the trauma areas in hypomorphic mice started earlier and was more pronounced compared to wild type mice. Phd2-hypomorphic mice also showed higher numbers of macrophages in areas with sustained trauma 72 hours after myotrauma application. In conclusion, we postulate that the HIF-1 pathway is activated secondary to a Phd2 reduction which may lead to i) higher activation of myogenic factors, ii) increased number of positive stem cell proliferation markers, and iii) accelerated macrophage recruitment to areas of trauma, resulting in faster muscle tissue regeneration after myotrauma. With the current development of prolyl hydroxylase domain inhibitors, our findings point towards a potential clinical benefit after myotrauma.
Collapse
|