1
|
Tian M, Gao Y, Nie J, Sun F. Construction of near-infrared gradient hydrogel actuators using self-floating induction and LED photopolymerization. J Colloid Interface Sci 2025; 685:1143-1153. [PMID: 39889396 DOI: 10.1016/j.jcis.2025.01.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/26/2024] [Accepted: 01/14/2025] [Indexed: 02/03/2025]
Abstract
Creating gradient hydrogels for remote control of bionic systems continues to be challenging due to the complexity of the preparation process. Herein, we have proposed a strategy to prepare near-infrared photothermal conversion gradient hydrogel featuring self-floating-induced gradient structures through fast LED light-triggered photopolymerization. A judiciously designed polysiloxane acrylate crosslinker (PA-Si) possesses the self-floating, crosslinking, and initiating properties. The self-floating ability of the PA-Si enables the autonomous formation of compositional and crosslinking gradients within the hydrogel, resulting in top-down variations in contraction stress. The gradient hydrogel demonstrates excellent NIR light-driven response (50°/s), cyclic stability, and mechanical properties (4392.84 kJ/m3). Cargo four times its mass is grasped and lifted by the gradient hydrogel actuator under the NIR light irradiation, displaying impressive performance in light-driven bionics. This study delivers a convenient strategy for manufacturing gradient hydrogels with actuation capabilities and shows potential for application in soft actuators.
Collapse
Affiliation(s)
- Mengyuan Tian
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 People's Republic of China
| | - Yanjing Gao
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 People's Republic of China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 People's Republic of China; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 People's Republic of China
| | - Fang Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 People's Republic of China; College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 People's Republic of China.
| |
Collapse
|
2
|
Zhang Y, Yuan B, Shi Y, Chen X, Wang Z, He L, Wang B, Xiao J, Yu M, Gao Y, Zhang L, Zou C, Lan R, Yang H. A multi-responsive 3D deformable soft actuator with tunable structural color enabled by a graphene/cholesteric liquid crystal elastomer composite. MATERIALS HORIZONS 2025; 12:2014-2024. [PMID: 39745464 DOI: 10.1039/d4mh01604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Intelligent soft robots that integrate both structural color and controllable actuation ability have attracted substantial attention for constructing biomimetic systems, biomedical devices, and soft robotics. However, simultaneously endowing single-layer cholesteric liquid crystal elastomer (CLCE) soft actuators with reversible 3D deformability and vivid structural color changes is still challenging. Herein, a multi-responsive (force, heat and light) single-layer 3D deformable soft actuator with vivid structural color-changing ability is realized through the reduced graphene oxide (RGO) deposition-induced Janus structure of the CLCE using a precisely-controlled evaporation method. This single-layer structural color soft actuator can directly transform from a flat shape to a 3D shape through the photothermal effect. The introduction of RGO not only improves the mechanical properties and color saturation of the CLCE, but also endows it with near-infrared (NIR) light responsiveness via the photothermal effect. Moreover, due to the structural gradient resulting from the spontaneous deposition of RGO during the deswelling process, CLCEs show a stacked structure of the helical CLC layer and RGO-dispersed amorphous layer, which are capable of undergoing multiple reversible 3D deformations. The reversible deformations of biomimetic devices such as petal-like films imitating blooming flowers, thin strips imitating plant tendrils, and a cobweb-inspired catching net are achieved to demonstrate applications of this single-layer RGO/CLCE composite film. This work provides a simple strategy for the construction of single-layer 3D deformable soft actuators.
Collapse
Affiliation(s)
- Yuhan Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Baohua Yuan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Yingjie Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Xinyu Chen
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Zizheng Wang
- School of Materials Science and Engineering, Peking University, Beijing 1008711, P. R. China.
| | - Longxiang He
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Bingxuan Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Jiumei Xiao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Meina Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Yanzi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Lanying Zhang
- School of Materials Science and Engineering, Peking University, Beijing 1008711, P. R. China.
| | - Cheng Zou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Ruochen Lan
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing 1008711, P. R. China.
| |
Collapse
|
3
|
Zhang W, Tian H, Liu T, Liu H, Zhao F, Li X, Wang C, Chen X, Shao J. Chameleon-inspired active tunable structural color based on smart skin with multi-functions of structural color, sensing and actuation. MATERIALS HORIZONS 2023; 10:2024-2034. [PMID: 36942615 DOI: 10.1039/d3mh00070b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tunable structural color has many potential applications in artificial camouflage, mechanical sensors, etc. Despite the extensive efforts to develop efficient tunable structural color, there is still a wide gap between the existing "passive" tuning methods and the "active" strategy found on organisms such as chameleons that can change color according to the environment. Inspired by the active tunable color system of chameleons, we propose a smart skin comprising a nanoscale hole array of photonic crystals, carbon nanotube coatings, and liquid crystal elastomers, to integrate multiple functions, i.e., structural color tunability, sensing, and actuation, in one structure. The smart skin was further coupled with an image acquisition unit (which mimics eyes to obtain colors from the environment) and a controller (which mimics the brain to process the signals transmitted from the image acquisition unit to the smart skin), to construct an active tunable structural color system. The proposed system autonomously modulates the color according to the environmental color. To validate the color tuning, color scanning from red to green to blue or vice versa is demonstrated in this work, which could certainly open up new paths to create active tunable structural color systems, and thus, push the development of structural color-based devices and systems.
Collapse
Affiliation(s)
- Weitian Zhang
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Hongmiao Tian
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Tianci Liu
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Haoran Liu
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Fabo Zhao
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Xiangming Li
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chunhui Wang
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Xiaoliang Chen
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinyou Shao
- Micro- and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
4
|
Zhang P, de Haan LT, Debije MG, Schenning APHJ. Liquid crystal-based structural color actuators. LIGHT, SCIENCE & APPLICATIONS 2022; 11:248. [PMID: 35931672 PMCID: PMC9356073 DOI: 10.1038/s41377-022-00937-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/17/2022] [Indexed: 05/08/2023]
Abstract
Animals can modify their body shape and/or color for protection, camouflage and communication. This adaptability has inspired fabrication of actuators with structural color changes to endow soft robots with additional functionalities. Using liquid crystal-based materials for actuators with structural color changes is a promising approach. In this review, we discuss the current state of liquid crystal-based actuators with structural color changes and the potential applications of these structural color actuators in soft robotic devices.
Collapse
Affiliation(s)
- Pei Zhang
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands
| | - Laurens T de Haan
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Michael G Debije
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
| | - Albert P H J Schenning
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Fang J, Zhuang Y, Liu K, Chen Z, Liu Z, Kong T, Xu J, Qi C. A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104347. [PMID: 35072360 PMCID: PMC8922102 DOI: 10.1002/advs.202104347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/30/2021] [Indexed: 05/07/2023]
Abstract
Research field of soft robotics develops exponentially since it opens up many imaginations, such as human-interactive robot, wearable robots, and transformable robots in unpredictable environments. Wet environments such as sea and in vivo represent dynamic and unstructured environments that adaptive soft robots can reach their potentials. Recent progresses in soft hybridized robotics performing tasks underwater herald a diversity of interactive soft robotics in wet environments. Here, the development of soft robots in wet environments is reviewed. The authors recapitulate biomimetic inspirations, recent advances in soft matter materials, representative fabrication techniques, system integration, and exemplary functions for underwater soft robots. The authors consider the key challenges the field faces in engineering material, software, and hardware that can bring highly intelligent soft robots into real world.
Collapse
Affiliation(s)
- Jielun Fang
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Yanfeng Zhuang
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Kailang Liu
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Zhuo Chen
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Tiantian Kong
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Jianhong Xu
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng Qi
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| |
Collapse
|
6
|
Li X, Liu J, Li D, Huang S, Huang K, Zhang X. Bioinspired Multi-Stimuli Responsive Actuators with Synergistic Color- and Morphing-Change Abilities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101295. [PMID: 34114362 PMCID: PMC8373155 DOI: 10.1002/advs.202101295] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Indexed: 05/08/2023]
Abstract
The combination of complex perception, defense, and camouflage mechanisms is a pivotal instinctive ability that equips organisms with survival advantages. The simulations of such fascinating multi-stimuli responsiveness, including thigmotropism, bioluminescence, color-changing ability, and so on, are of great significance for scientists to develop novel biomimetic smart materials. However, most biomimetic color-changing or luminescence materials can only realize a single stimulus-response, hence the design and fabrication of multi-stimuli responsive materials with synergistic color-changing are still on the way. Here, a bioinspired multi-stimuli responsive actuator with color- and morphing-change abilities is developed by taking advantage of the assembled cellulose nanocrystals-based cholesteric liquid crystal structure and its water/temperature response behaviors. The actuator exhibits superfast, reversible bi-directional humidity and near-infrared (NIR) light actuating ability (humidity: 9 s; NIR light: 16 s), accompanying with synergistic iridescent appearance which provides a visual cue for the movement of actuators. This work paves the way for biomimetic multi-stimuli responsive materials and will have a wide range of applications such as optical anti-counterfeiting devices, information storage materials, and smart soft robots.
Collapse
Affiliation(s)
- Xinkai Li
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityNo.24 South Section 1, Yihuan RoadChengdu610065China
| | - Jize Liu
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityNo.24 South Section 1, Yihuan RoadChengdu610065China
| | - Dongdong Li
- Environmental protection facilities or service departmentGuangxi Beitou Environmental Protection & Water Group Co.Ltd. 153 Minzu AvenueNanning530029China
| | - Shaoquan Huang
- National Engineering Research Center for Non‐Food BiorefineryGuangxi Key Laboratory of Bio‐refineryGuangxi Academy of Sciences98 Daling RoadNanning530007China
| | - Kai Huang
- National Engineering Research Center for Non‐Food BiorefineryGuangxi Key Laboratory of Bio‐refineryGuangxi Academy of Sciences98 Daling RoadNanning530007China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityNo.24 South Section 1, Yihuan RoadChengdu610065China
| |
Collapse
|
7
|
Chen Y, Yang J, Zhang X, Feng Y, Zeng H, Wang L, Feng W. Light-driven bimorph soft actuators: design, fabrication, and properties. MATERIALS HORIZONS 2021; 8:728-757. [PMID: 34821314 DOI: 10.1039/d0mh01406k] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Soft robots that can move like living organisms and adapt to their surroundings are currently in the limelight from fundamental studies to technological applications, due to their advances in material flexibility, human-friendly interaction, and biological adaptation that surpass conventional rigid machines. Light-fueled smart actuators based on responsive soft materials are considered to be one of the most promising candidates to promote the field of untethered soft robotics, thereby attracting considerable attention amongst materials scientists and microroboticists to investigate photomechanics, photoswitch, bioinspired design, and actuation realization. In this review, we discuss the recent state-of-the-art advances in light-driven bimorph soft actuators, with the focus on bilayer strategy, i.e., integration between photoactive and passive layers within a single material system. Bilayer structures can endow soft actuators with unprecedented features such as ultrasensitivity, programmability, superior compatibility, robustness, and sophistication in controllability. We begin with an explanation about the working principle of bimorph soft actuators and introduction of a synthesis pathway toward light-responsive materials for soft robotics. Then, photothermal and photochemical bimorph soft actuators are sequentially introduced, with an emphasis on the design strategy, actuation performance, underlying mechanism, and emerging applications. Finally, this review is concluded with a perspective on the existing challenges and future opportunities in this nascent research Frontier.
Collapse
Affiliation(s)
- Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Ambulo CP, Tasmim S, Wang S, Abdelrahman MK, Zimmern PE, Ware TH. Processing advances in liquid crystal elastomers provide a path to biomedical applications. JOURNAL OF APPLIED PHYSICS 2020; 128:140901. [PMID: 33060862 PMCID: PMC7546753 DOI: 10.1063/5.0021143] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/24/2020] [Indexed: 05/08/2023]
Abstract
Liquid crystal elastomers (LCEs) are a class of stimuli-responsive polymers that undergo reversible shape-change in response to environmental changes. The shape change of LCEs can be programmed during processing by orienting the liquid crystal phase prior to crosslinking. The suite of processing techniques that has been developed has resulted in a myriad of LCEs with different shape-changing behavior and mechanical properties. Aligning LCEs via mechanical straining yields large uniaxial actuators capable of a moderate force output. Magnetic fields are utilized to control the alignment within LCE microstructures. The generation of out-of-plane deformations such as bending, twisting, and coning is enabled by surface alignment techniques within thin films. 4D printing processes have emerged that enable the fabrication of centimeter-scale, 3D LCE structures with a complex alignment. The processing technique also determines, to a large extent, the potential applications of the LCE. For example, 4D printing enables the fabrication of LCE actuators capable of replicating the forces generated by human muscles. Employing surface alignment techniques, LCE films can be designed for use as coatings or as substrates for stretchable electronics. The growth of new processes and strategies opens and strengthens the path for LCEs to be applicable within biomedical device designs.
Collapse
Affiliation(s)
- Cedric P Ambulo
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | | | | - Philippe E Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
9
|
Shen Z, Chen F, Zhu X, Yong KT, Gu G. Stimuli-responsive functional materials for soft robotics. J Mater Chem B 2020; 8:8972-8991. [PMID: 32901646 DOI: 10.1039/d0tb01585g] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Functional materials have spurred the advancement of soft robotics with the potential to perform safe interactions and adaptative functions in unstructured environments. The responses of functional materials under external stimuli lend themselves to programmable actuation and sensing, opening up new possibilities of robot design with built-in mechanical intelligence and unlocking new applications. Here, we review the development of stimuli-responsive functional materials particularly used for soft robotic systems. This review covers five representative types of soft stimuli-responsive functional materials, namely (i) dielectric elastomers, (ii) hydrogels, (iii) shape memory polymers, (iv) liquid crystal elastomers, and (v) magnetic materials, with focuses on their inherent material properties, working mechanisms, and design strategies for actuation and sensing. We also highlight the state-of-the-art applications of soft stimuli-responsive functional materials in locomotion robots, grippers and sensors. Finally, we summarize the current challenges and map out future trends for engineering next-generation functional materials for soft robotics.
Collapse
Affiliation(s)
- Zequn Shen
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. and State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feifei Chen
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. and State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyang Zhu
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. and State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Guoying Gu
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. and State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, Ren M, Wang Y, Chen J, Chen W, Chai Y, Tao X. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901958. [PMID: 31273850 DOI: 10.1002/adma.201901958] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/02/2019] [Indexed: 05/21/2023]
Abstract
The programmable nature of smart textiles makes them an indispensable part of an emerging new technology field. Smart textile-integrated microelectronic systems (STIMES), which combine microelectronics and technology such as artificial intelligence and augmented or virtual reality, have been intensively explored. A vast range of research activities have been reported. Many promising applications in healthcare, the internet of things (IoT), smart city management, robotics, etc., have been demonstrated around the world. A timely overview and comprehensive review of progress of this field in the last five years are provided. Several main aspects are covered: functional materials, major fabrication processes of smart textile components, functional devices, system architectures and heterogeneous integration, wearable applications in human and nonhuman-related areas, and the safety and security of STIMES. The major types of textile-integrated nonconventional functional devices are discussed in detail: sensors, actuators, displays, antennas, energy harvesters and their hybrids, batteries and supercapacitors, circuit boards, and memory devices.
Collapse
Affiliation(s)
- Jidong Shi
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Su Liu
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lisha Zhang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Bao Yang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lin Shu
- School of Electronic and Information Engineering, Southern China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Ying Yang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ming Ren
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yang Wang
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiewei Chen
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yang Chai
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiaoming Tao
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
11
|
Li S, Bai H, Shepherd RF, Zhao H. Bio‐inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces. Angew Chem Int Ed Engl 2019; 58:11182-11204. [DOI: 10.1002/anie.201813402] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Shuo Li
- Department of Materials Science and Engineering Cornell University USA
| | - Hedan Bai
- Sibley School of Mechanical and Aerospace Engineering Cornell University USA
| | - Robert F. Shepherd
- Department of Materials Science and Engineering Cornell University USA
- Sibley School of Mechanical and Aerospace Engineering Cornell University USA
| | - Huichan Zhao
- Department of Mechanical Engineering Tsinghua University China
| |
Collapse
|
12
|
Li S, Bai H, Shepherd RF, Zhao H. Bioinspiriertes Design und additive Fertigung von weichen Materialien, Maschinen, Robotern und haptischen Schnittstellen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shuo Li
- Department of Materials Science and Engineering; Cornell University; USA
| | - Hedan Bai
- Sibley School of Mechanical and Aerospace Engineering; Cornell University; USA
| | - Robert F. Shepherd
- Department of Materials Science and Engineering; Cornell University; USA
- Sibley School of Mechanical and Aerospace Engineering; Cornell University; USA
| | - Huichan Zhao
- Department of Mechanical Engineering; Tsinghua University; China
| |
Collapse
|
13
|
Jiang Y, Zeng S, Yao Y, Xu S, Dong Q, Chen P, Wang Z, Zhang M, Zhu M, Xu G, Zeng H, Sun L. Dynamic Optics with Transparency and Color Changes under Ambient Conditions. Polymers (Basel) 2019; 11:E103. [PMID: 30960088 PMCID: PMC6401870 DOI: 10.3390/polym11010103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 11/28/2022] Open
Abstract
Mechanochromic materials have recently received tremendous attention because of their potential applications in humanoid robots, smart windows, strain sensors, anti-counterfeit tags, etc. However, improvements in device design are highly desired for practical implementation in a broader working environment with a high stability. In this article, a novel and robust mechanochromism was designed and fabricated via a facile method. Silica nanoparticles (NPs) that serve as a trigger of color switch were embedded in elastomer to form a bi-layer hybrid film. Upon stretching under ambient conditions, the hybrid film can change color as well as transparency. Furthermore, it demonstrates excellent reversibility and reproducibility and is promising for widespread application.
Collapse
Affiliation(s)
- Yejia Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Songshan Zeng
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Yu Yao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyu Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qiaonan Dong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pingxu Chen
- National Engineering Laboratory of Plastics Modification and Processing, and Research and Development Center, Kingfa Science and Technology Company, Ltd., Guangzhou 510663, China.
| | - Zhaofeng Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China.
| | - Monica Zhang
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Mengting Zhu
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Gefan Xu
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Huidan Zeng
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|