1
|
Sutherland CA, Prigozhin DM, Monroe JG, Krasileva KV. High allelic diversity in Arabidopsis NLRs is associated with distinct genomic features. EMBO Rep 2024; 25:2306-2322. [PMID: 38528170 PMCID: PMC11093987 DOI: 10.1038/s44319-024-00122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Plants rely on Nucleotide-binding, Leucine-rich repeat Receptors (NLRs) for pathogen recognition. Highly variable NLRs (hvNLRs) show remarkable intraspecies diversity, while their low-variability paralogs (non-hvNLRs) are conserved between ecotypes. At a population level, hvNLRs provide new pathogen-recognition specificities, but the association between allelic diversity and genomic and epigenomic features has not been established. Our investigation of NLRs in Arabidopsis Col-0 has revealed that hvNLRs show higher expression, less gene body cytosine methylation, and closer proximity to transposable elements than non-hvNLRs. hvNLRs show elevated synonymous and nonsynonymous nucleotide diversity and are in chromatin states associated with an increased probability of mutation. Diversifying selection maintains variability at a subset of codons of hvNLRs, while purifying selection maintains conservation at non-hvNLRs. How these features are established and maintained, and whether they contribute to the observed diversity of hvNLRs is key to understanding the evolution of plant innate immune receptors.
Collapse
Affiliation(s)
- Chandler A Sutherland
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Daniil M Prigozhin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - J Grey Monroe
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
|
3
|
Karolak A, Branciamore S, McCune JS, Lee PP, Rodin AS, Rockne RC. Concepts and Applications of Information Theory to Immuno-Oncology. Trends Cancer 2021; 7:335-346. [PMID: 33618998 PMCID: PMC8156485 DOI: 10.1016/j.trecan.2020.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 01/27/2023]
Abstract
Recent successes of immune-modulating therapies for cancer have stimulated research on information flow within the immune system and, in turn, clinical applications of concepts from information theory. Through information theory, one can describe and formalize, in a mathematically rigorous fashion, the function of interconnected components of the immune system in health and disease. Specifically, using concepts including entropy, mutual information, and channel capacity, one can quantify the storage, transmission, encoding, and flow of information within and between cellular components of the immune system on multiple temporal and spatial scales. To understand, at the quantitative level, immune signaling function and dysfunction in cancer, we present a methodology-oriented review of information-theoretic treatment of biochemical signal transduction and transmission coupled with mathematical modeling.
Collapse
Affiliation(s)
- Aleksandra Karolak
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute of City of Hope, Duarte, CA, USA; Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jeannine S McCune
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, CA, USA
| | - Andrei S Rodin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Russell C Rockne
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
4
|
Stafford P, Johnston SA, Kantarci OH, Zare-Shahabadi A, Warrington A, Rodriguez M. Antibody characterization using immunosignatures. PLoS One 2020; 15:e0229080. [PMID: 32196507 PMCID: PMC7083272 DOI: 10.1371/journal.pone.0229080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/29/2020] [Indexed: 12/02/2022] Open
Abstract
Therapeutic monoclonal antibodies have the potential to work as biological therapeutics. OKT3, Herceptin, Keytruda and others have positively impacted healthcare. Antibodies evolved naturally to provide high specificity and high affinity once mature. These characteristics can make them useful as therapeutics. However, we may be missing characteristics that are not obvious. We present a means of measuring antibodies in an unbiased manner that may highlight therapeutic activity. We propose using a microarray of random peptides to assess antibody properties. We tested twenty-four different commercial antibodies to gain some perspective about how much information can be derived from binding antibodies to random peptide libraries. Some monoclonals preferred to bind shorter peptides, some longer, some preferred motifs closer to the C-term, some nearer the N-term. We tested some antibodies with clinical activity but whose function was blinded to us at the time. We were provided with twenty-one different monoclonal antibodies, thirteen mouse and eight human IgM. These antibodies produced a variety of binding patterns on the random peptide arrays. When unblinded, the antibodies with polyspecific binding were the ones with the greatest therapeutic activity. The protein target to these therapeutic monoclonals is still unknown but using common sequence motifs from the peptides we predicted several human and mouse proteins. The same five highest proteins appeared in both mouse and human lists.
Collapse
Affiliation(s)
- Phillip Stafford
- Department of Bioinformatics, Caris Life Sciences, Phoenix, Arizona, United States of America
| | - Stephen Albert Johnston
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Orhun H. Kantarci
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| | - Ameneh Zare-Shahabadi
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Arthur Warrington
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
5
|
Alzeer J. Halalopathy: A science of trust in medicine. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2019; 17:150-154. [PMID: 30948352 DOI: 10.1016/j.joim.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/20/2019] [Indexed: 01/19/2023]
Abstract
The human body is well organized, regulated and connected. One of the greatest scientific challenges today is to integrate mind, behaviour and health. Enormous advances in health care have been achieved. However, diseases like cancer still require treatment options beyond therapeutic drugs, namely surgery and radiation. Human being is not only made of cells, tissues and organs, but also feelings and sensations. Linking mental state with physical health is essential to include all elements of disease. For this purpose, halalopathy has been introduced as a new model to integrate mind, behaviour and health, where psychology, spirituality and rationality can be integrated together to generate a well-organized, regulated and connected health system. Halalopathic approaches are based on mind-trust-drug and mind-trust-belief. If the drug and human's belief are compatible, trust in the rationally designed drug will be synergized and placebo effects will be activated to initiate the healing process. Such an organized health system will lower the body's entropy and increase potential energy, which is an important aspect to promote the healing process, with a therapeutic drug toward complete recovery. This study enlightens laws of compatibility to initiate a domino chain effect to activate placebo effects and lower the body's entropy. The healing power of each effect will contribute to the healing process and enhance the total drug effects.
Collapse
Affiliation(s)
- Jawad Alzeer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
6
|
Zhang J, Shen L, Johnston SA. Using Frameshift Peptide Arrays for Cancer Neo-Antigens Screening. Sci Rep 2018; 8:17366. [PMID: 30478295 PMCID: PMC6255861 DOI: 10.1038/s41598-018-35673-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022] Open
Abstract
It has been demonstrated that DNA mutations generating neo-antigens are important for an effective immune response to tumors as evident from recent clinical studies of immune checkpoint inhibitors (ICIs). Further, it was shown that frameshift peptides (FSP) generated in tumors from insertions and deletions (INDELs) of microsatellites (MS) in coding region are a very good correlate of positive response to PD1 treatment. However, these types of DNA-sourced FSPs are infrequent in cancer. We hypothesize that tumors may also generate FSPs in transcription errors through INDELs in MS or by exon mis-splicing. Since there are a finite number of predictable sequences of such possible FSPs in the genome, we propose that peptide arrays with all possible FSPs could be used to analyze antibody reactivity to FSPs in patient sera as a FS neo-antigen screen. If this were the case it would facilitate finding common tumor neoantigens for cancer vaccines. Here we test this proposal using an array of 377 predicted FS antigens. The results of screening 9 types of dog cancer sera indicate that cancer samples had significantly higher antibody responses against FSPs than non-cancer samples. Both common reactive FSPs and cancer-type specific immune responses were detected. In addition, the protection of a common reactive FSP was tested in mouse tumor models, comparing to the non-reactive FSPs. The mouse homologs non-reactive FSPs did not offer protection in either the mouse melanoma or breast cancer models while the reactive FSP did in both models. The tumor protection was positively correlated to antibody response to the FSP. These data suggest that FSP arrays could be used for cancer neo-antigen screening.
Collapse
Affiliation(s)
- Jian Zhang
- The Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Luhui Shen
- The Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Stephen Albert Johnston
- The Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|