1
|
Ethanol-tolerant pickering emulsion stabilized by gliadin nanoparticles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Zhang H, Hu Y, Chen X, Wang S, Cao L, Dong S, Shi Z, Chen Y, Xiong L, Zhang Y, Zhang D, Yu B, Chen W, Wang Q, Tong P, Liu X, Zhang J, Zhou Q, Niu F, Yang W, Zhang W, Wang Y, Chen S, Jia J, Yang Q, Zhang P, Zhang Y, Miao J, Sun K, Shen T, Yu B, Yang L, Zhang L, Wang D, Liu G, Zhang Y, Su J. Expert consensus on the bone repair strategy for osteoporotic fractures in China. Front Endocrinol (Lausanne) 2022; 13:989648. [PMID: 36387842 PMCID: PMC9643410 DOI: 10.3389/fendo.2022.989648] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporotic fractures, also known as fragility fractures, are prevalent in the elderly and bring tremendous social burdens. Poor bone quality, weak repair capacity, instability, and high failure rate of internal fixation are main characteristics of osteoporotic fractures. Osteoporotic bone defects are common and need to be repaired by appropriate materials. Proximal humerus, distal radius, tibia plateau, calcaneus, and spine are common osteoporotic fractures with bone defect. Here, the consensus from the Osteoporosis Group of Chinese Orthopaedic Association concentrates on the epidemiology, characters, and management strategies of common osteoporotic fractures with bone defect to standardize clinical practice in bone repair of osteoporotic fractures.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xiao Chen
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sicheng Wang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Army Medical University, Chongqing, China
| | - Zhongmin Shi
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yanxi Chen
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liming Xiong
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Zhang
- Tangdu Hospital, Air Force Medical University, Xi'an, China
| | | | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong Hospital, Shanghai, China
| | - Wenming Chen
- Institute of Biomedical Engineering, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Qining Wang
- Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, China
| | - Peijian Tong
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ximing Liu
- Department of Orthopedics, General Hospital of Central Theater Command, Wuhan, China
| | - Jianzheng Zhang
- Department of Orthopedic Surgery, People's Liberation Army (PLA), Army General Hospital, Beijing, China
| | - Qiang Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Niu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Weiguo Yang
- Li Ka Shing Faculty of Medicine, Hongkong University, Hong Kong, Hong Kong SAR, China
| | - Wencai Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese medicine (TCM), Guangzhou, China
| | - Yong Wang
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Shijie Chen
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinpeng Jia
- Department of Orthopedics, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Qiang Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Peng Zhang
- Department of Orthopedics, Shandong Province Hospital, Jinan, China
| | - Yong Zhang
- Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jun Miao
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Kuo Sun
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Shen
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Yu
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, China
| | - Lei Yang
- Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Zhang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongliang Wang
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Dongliang Wang, ; Guohui Liu, ; Yingze Zhang, ; Jiacan Su,
| | - Guohui Liu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongliang Wang, ; Guohui Liu, ; Yingze Zhang, ; Jiacan Su,
| | - Yingze Zhang
- Department of Orthopedics, Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Dongliang Wang, ; Guohui Liu, ; Yingze Zhang, ; Jiacan Su,
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Dongliang Wang, ; Guohui Liu, ; Yingze Zhang, ; Jiacan Su,
| |
Collapse
|
3
|
Wang X, Brown NK, Wang B, Shariati K, Wang K, Fuchs S, Melero‐Martin JM, Ma M. Local Immunomodulatory Strategies to Prevent Allo-Rejection in Transplantation of Insulin-Producing Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003708. [PMID: 34258870 PMCID: PMC8425879 DOI: 10.1002/advs.202003708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/12/2021] [Indexed: 05/02/2023]
Abstract
Islet transplantation has shown promise as a curative therapy for type 1 diabetes (T1D). However, the side effects of systemic immunosuppression and limited long-term viability of engrafted islets, together with the scarcity of donor organs, highlight an urgent need for the development of new, improved, and safer cell-replacement strategies. Induction of local immunotolerance to prevent allo-rejection against islets and stem cell derived β cells has the potential to improve graft function and broaden the applicability of cellular therapy while minimizing adverse effects of systemic immunosuppression. In this mini review, recent developments in non-encapsulation, local immunomodulatory approaches for T1D cell replacement therapies, including islet/β cell modification, immunomodulatory biomaterial platforms, and co-transplantation of immunomodulatory cells are discussed. Key advantages and remaining challenges in translating such technologies to clinical settings are identified. Although many of the studies discussed are preliminary, the growing interest in the field has led to the exploration of new combinatorial strategies involving cellular engineering, immunotherapy, and novel biomaterials. Such interdisciplinary research will undoubtedly accelerate the development of therapies that can benefit the whole T1D population.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Natalie K. Brown
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Bo Wang
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Kaavian Shariati
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Kai Wang
- Department of Cardiac SurgeryBoston Children's HospitalBostonMA02115USA
- Department of SurgeryHarvard Medical SchoolBostonMA02115USA
| | - Stephanie Fuchs
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Juan M. Melero‐Martin
- Department of Cardiac SurgeryBoston Children's HospitalBostonMA02115USA
- Department of SurgeryHarvard Medical SchoolBostonMA02115USA
- Harvard Stem Cell InstituteCambridgeMA02138USA
| | - Minglin Ma
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| |
Collapse
|
4
|
Liu X, Wang Y, Ma Z, Zhou W, Wang X, Zhou H, Wang X, Wang J, Shi W. HABS‐Silicate Controlled Synthesis of Worm‐Like Calcite via Orientated Attachment. ChemistrySelect 2021. [DOI: 10.1002/slct.202003622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiangbin Liu
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing 163318 China
- Oil Production Engineering Research Institute of Daqing Oilfield Ltd. Daqing 163453 China
| | - Yanling Wang
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing 163318 China
| | - Zaiqiang Ma
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing 163318 China
| | - Wanfu Zhou
- Oil Production Engineering Research Institute of Daqing Oilfield Ltd. Daqing 163453 China
| | - Xin Wang
- Oil Production Engineering Research Institute of Daqing Oilfield Ltd. Daqing 163453 China
| | - Huajian Zhou
- Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education Northeast Petroleum University Daqing 163318 China
| | - Xiaofeng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130023 China
| | - Jun Wang
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing 163318 China
| | - Weiguang Shi
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing 163318 China
- Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education Northeast Petroleum University Daqing 163318 China
| |
Collapse
|
5
|
Bao CL, Liu SZ, Shang ZD, Liu YJ, Wang J, Zhang WX, Dong B, Cao YH. Bacillus amyloliquefaciens TL106 protects mice against enterohaemorrhagic Escherichia coli O157:H7-induced intestinal disease through improving immune response, intestinal barrier function and gut microbiota. J Appl Microbiol 2020; 131:470-484. [PMID: 33289241 DOI: 10.1111/jam.14952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/20/2023]
Abstract
AIMS This study evaluated the effects of Bacillus amyloliquefaciens TL106, isolated from Tibetan pigs' faeces, on the growth performance, immune response, intestinal barrier function, morphology of jejunum, caecum and colon, and gut microbiota in the mice with enterohaemorrhagic Escherichia coli (EHEC)-induced intestinal diseases. METHODS AND RESULTS In all, 40 female C57BL/6J mice were randomly divided into four groups: mice fed a normal diet (Control), mice oral administration of TL106 daily (Ba), mice challenged with EHEC O157:H7 on day 15 (O157) and mice oral administration of TL106 daily and challenged with EHEC O157:H7 on day 15 (Ba+O157). The TL106 was administrated to mice for 14 days, and mice were infected with O157:H7 at day 15. We found that TL106 could prevent the weight loss caused by O157:H7 infection and alleviated the associated increase in pro-inflammatory factors (TNF-α, IL-1β, IL-6 and IL-8) and decrease in anti-inflammatory factor (IL-10) in serum and intestinal tissues of mice caused by O157:H7 infection (P < 0·05). Additionally, TL106 could prevent disruption of gut morphology caused by O157:H7 infection, and alleviate the associated decrease in expression of tight junction proteins (ZO-1, occludin and claudin-1) in jejunum and colon (P < 0·05). In caecum and colon, the alpha diversity for bacterial community analysis of Chao and ACE index in Ba+O157 group were higher than O157 group. The TL106 stabilized gut microbiota disturbed by O157:H7, including increasing Lachnospiraceae, Prevotellaceae, Muribaculaceae and Akkermansiaceae, and reducing Lactobacillaceae. CONCLUSIONS We indicated the B. amyloliquefaciens TL106 can effectively protect mice against EHEC O157:H7 infection by relieving inflammation, improving intestinal barrier function, mitigating permeability disruption and stabilizing the gut microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY Bacillus amyloliquefaciens TL106 can prevent and treat intestinal disease induced by EHEC O157:H7 in mice, which may be a promising probiotic for disease prevention in animals.
Collapse
Affiliation(s)
- C L Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - S Z Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, People's Republic of China
| | - Z D Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, People's Republic of China
| | - Y J Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - J Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - W X Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - B Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Y H Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Zhao H, Zhang X, Zhou D, Weng Y, Qin W, Pan F, Lv S, Zhao X. Collagen, polycaprolactone and attapulgite composite scaffolds for in vivo bone repair in rabbit models. ACTA ACUST UNITED AC 2020; 15:045022. [PMID: 32224507 DOI: 10.1088/1748-605x/ab843f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although numerous materials have been explored as bone scaffolds, many of them are limited by their low osteoconductivity and high biodegradability. Therefore, new materials are desired to induce bone cell proliferation and facilitate bone formation. Attapulgite (ATP) is a hydrated silicate that exists in nature as a fibrillar clay mineral and is well known for its large specific surface area, high viscosity, and high absorption capacity, and therefore has the potential to be a new type of bone repair material due to its unique physicochemical properties. In this study, composite scaffolds composed of collagen/polycaprolactone/attapulgite (CPA) or collagen/polycaprolactone (CP) were fabricated through a salt-leaching method. The morphology, composition, microstructure, physical, and mechanical characteristics of the CPA and CP scaffolds were assessed. Cells from the mouse multipotent mesenchymal precursor cell line (D1 cells) were cocultured with the scaffolds, and cell adhesion, proliferation, and gene expression on the CPA and CP scaffolds were analyzed. Adult rabbits with radius defects were used to evaluate the performance of these scaffolds in repairing bone defects over 4-12 weeks. The experimental results showed that the cells demonstrated excellent attachment ability on the CPA scaffolds, as well as remarkable upregulation of the levels of osteoblastic markers such as Runx2, Osterix, collagen 1, osteopontin, and osteocalcin. Furthermore, results from radiography, micro-computed tomography, histological and immunohistochemical analysis demonstrated that abundant new bones were formed on the CPA scaffolds. Ultimately, these results demonstrated that CPA composite scaffolds show excellent potential in bone tissue engineering applications, with the capacity to be used as effective bone regeneration and repair scaffolds in clinical applications.
Collapse
Affiliation(s)
- Hongbin Zhao
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Schuhladen K, Roether JA, Boccaccini AR. Bioactive glasses meet phytotherapeutics: The potential of natural herbal medicines to extend the functionality of bioactive glasses. Biomaterials 2019; 217:119288. [DOI: 10.1016/j.biomaterials.2019.119288] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022]
|
8
|
Zhang Y, Li W, Liu D, Ge Y, Zhao M, Zhu X, Li W, Wang L, Zheng T, Li J. Oral Curcumin via Hydrophobic Porous Silicon Carrier: Preparation, Characterization, and Toxicological Evaluation In Vivo. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31661-31670. [PMID: 31430116 DOI: 10.1021/acsami.9b10368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Curcumin has antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic activities. However, the clinical application of curcumin has been restricted by the poor water solubility and low bioavailability of this molecule. In this work, hydrophobic porous silicon (pSi) particles were prepared by electrochemical etching method and grafted with the different hydrophobic groups on their surfaces. The loading efficiency of curcumin in pSi has been investigated. The properties of pSi particles have been characterized by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FTIR). The highest loading efficiency of curcumin can be obtained with pSi surface modified with the octadecyl silane group. The release properties of curcumin in hydrophobic pSi have been researched in vitro and in vivo. The curcumin in the hydrophobic pSi surface keeps a high antioxidant bioactivity. The toxicological evaluation of the hydrophobic pSi particles indicates they have a high in vivo biocompatibility within the observed dose ranges. The hydrophobic pSi particles could provide an effective and controlled release delivery carrier for curcumin, which may provide a new tool platform for the further development of curcumin.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Wei Li
- Department of Electronic and Electrical Engineering , The University of Sheffield , Sheffield S3 7HQ , United Kingdom
| | - Di Liu
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Yafang Ge
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Mengyuan Zhao
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Xuerui Zhu
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Longfeng Wang
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210024 , P. R. China
| |
Collapse
|
9
|
Sarkar K, Kumar V, Devi KB, Ghosh D, Nandi SK, Roy M. Anomalous in Vitro and in Vivo Degradation of Magnesium Phosphate Bioceramics: Role of Zinc Addition. ACS Biomater Sci Eng 2019; 5:5097-5106. [PMID: 33455257 DOI: 10.1021/acsbiomaterials.9b00422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vitro and in vivo degradation behavior and biocompatibility of magnesium phosphate (MgP) bioceramics and the potential role of zinc (Zn) on degradation were compared. Samples were prepared by conventional solid-state sintering at 1200 °C for 2h. Zn-doped MgP (0.5 wt %) showed 50% less degradation than that of pure MgP after immersion into simulated body fluid (SBF) for 8 weeks. Osteoblast-like cell (MG-63) proliferation was evident in MgP ceramics, which was significantly enhanced upon Zn addition. Both Alamar Blue assay and Live/Dead imaging showed the highest cell attachment and proliferation for 0.5 wt % Zn-doped MgP. In vivo biocompatibility of these MgP ceramics were studied after implantation in the rabbit femur. The micro computed tomography (μ-CT) analysis showed that in vivo degradability increased with the increase in the Zn content which is in contradiction to in vitro degradability. Histological evaluation showed large influx of osteoclast cells to the implantation site for Zn-doped MgP samples compared to that of undoped MgP, which is the primary reason of increased degradability of these samples. After 90 days of implantation, large sections of 0.5 wt % Zn-doped MgP samples were replaced by newly formed bones. Fluorochrome labeling showed 78 ± 3% new bone formation for 0.5 wt % Zn-doped MgP ceramics compared to 56 ± 3% for pure MgP samples. Our findings suggest that the addition of Zn in MgP ceramics alters their sintering and degradation kinetics that leads to decreased in vitro degradation, however, when Zn-doped MgP ceramics were implanted in rabbits, higher degradability was observed due to lower Mg2+ ion concentration in the degradation media.
Collapse
Affiliation(s)
- Kaushik Sarkar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| | - Vinod Kumar
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - K Bavya Devi
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| | - Debaki Ghosh
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery & Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Mangal Roy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| |
Collapse
|
10
|
Stabler CL, Li Y, Stewart JM, Keselowsky BG. Engineering immunomodulatory biomaterials for type 1 diabetes. NATURE REVIEWS. MATERIALS 2019; 4:429-450. [PMID: 32617176 PMCID: PMC7332200 DOI: 10.1038/s41578-019-0112-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A cure for type 1 diabetes (T1D) would help millions of people worldwide, but remains elusive thus far. Tolerogenic vaccines and beta cell replacement therapy are complementary therapies that seek to address aberrant T1D autoimmune attack and subsequent beta cell loss. However, both approaches require some form of systematic immunosuppression, imparting risks to the patient. Biomaterials-based tools enable localized and targeted immunomodulation, and biomaterial properties can be designed and combined with immunomodulatory agents to locally instruct specific immune responses. In this Review, we discuss immunomodulatory biomaterial platforms for the development of T1D tolerogenic vaccines and beta cell replacement devices. We investigate nano- and microparticles for the delivery of tolerogenic agents and autoantigens, and as artificial antigen presenting cells, and highlight how bulk biomaterials can be used to provide immune tolerance. We examine biomaterials for drug delivery and as immunoisolation devices for cell therapy and islet transplantation, and explore synergies with other fields for the development of new T1D treatment strategies.
Collapse
Affiliation(s)
- CL Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Y Li
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - JM Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - BG Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
11
|
Lin Q, Li W, Liu D, Zhao M, Zhu X, Li W, Wang L, Zheng T, Li J. Porous Silicon Carrier Delivery System for Curcumin: Preparation, Characterization, and Cytotoxicity in Vitro. ACS APPLIED BIO MATERIALS 2019; 2:1041-1049. [DOI: 10.1021/acsabm.8b00645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qingxia Lin
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Wei Li
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, S3 7HQ, United Kingdom
| | - Di Liu
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Mengyuan Zhao
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Xuerui Zhu
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Weiwei Li
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Longfeng Wang
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Tiesong Zheng
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing 210024, China
| | - Jianlin Li
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing 210024, China
| |
Collapse
|