1
|
Johnston C, Leong SY, Teape C, Liesaputra V, Oey I. Low-intensity pulsed electric field processing prior to germination improves in vitro digestibility of faba bean (Vicia faba L.) flour and its derived products: A case study on legume-enriched wheat bread. Food Chem 2024; 449:139321. [PMID: 38615637 DOI: 10.1016/j.foodchem.2024.139321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
This study investigated the effect of low-intensity pulsed electric field (PEF) (0.3-0.7 kV/cm) and/or germination (0-72 h, 20 °C) on faba beans prior to flour- and breadmaking. PEF (0.5 and 0.7 kV/cm) had no significant effect on the germination performance of faba bean but had a positive effect on in vitro starch and protein hydrolysis of PEF-treated beans germinated for 72 h. The incorporation of flour from soaked, germinated, PEF-treated, and PEF-treated+germinated faba beans into wheat bread, at 30% mass level, improved the nutritional composition (total starch and protein contents) and protein digestibility but it reduced the specific volume and increased the density, brownness, and hardness of the bread. This finding shows for the first time that PEF-treatment (<0.7 kV/cm) of faba beans followed by germination (72 h) improved in vitro starch and protein hydrolysis of its flour and the protein digestibility at gastric phase of its enriched wheat bread.
Collapse
Affiliation(s)
- Courtney Johnston
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; Riddet Institute, Palmerston North 4442, New Zealand.
| | - Sze Ying Leong
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; Riddet Institute, Palmerston North 4442, New Zealand.
| | - Callum Teape
- School of Computing, University of Otago, Dunedin 9054, New Zealand.
| | | | - Indrawati Oey
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; Riddet Institute, Palmerston North 4442, New Zealand.
| |
Collapse
|
2
|
Kaur J, Tiwari N, Asif MH, Dharmesh V, Naseem M, Srivastava PK, Srivastava S. Integrated genome-transcriptome analysis unveiled the mechanism of Debaryomyces hansenii-mediated arsenic stress amelioration in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133954. [PMID: 38484657 DOI: 10.1016/j.jhazmat.2024.133954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 04/07/2024]
Abstract
Globally, rice is becoming more vulnerable to arsenic (As) pollution, posing a serious threat to public food safety. Previously Debaryomyces hansenii was found to reduce grain As content of rice. To better understand the underlying mechanism, we performed a genome analysis to identify the key genes in D. hansenii responsible for As tolerance and plant growth promotion. Notably, genes related to As resistance (ARR, Ycf1, and Yap) were observed in the genome of D. hansenii. The presence of auxin pathway and glutathione metabolism-related genes may explain the plant growth-promoting potential and As tolerance mechanism of this novel yeast strain. The genome annotation of D. hansenii indicated that it contains a repertoire of genes encoding antioxidants, well corroborated with the in vitro studies of GST, GR, and glutathione content. In addition, the effect of D. hansenii on gene expression profiling of rice plants under As stress was also examined. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed 307 genes, annotated in D. hansenii-treated rice, related to metabolic pathways (184), photosynthesis (12), glutathione (10), tryptophan (4), and biosynthesis of secondary metabolite (117). Higher expression of regulatory elements like AUX/IAA and WRKY transcription factors (TFs), and defense-responsive genes dismutases, catalases, peroxiredoxin, and glutaredoxins during D. hansenii+As exposure was also observed. Combined analysis revealed that D. hansenii genes are contributing to stress mitigation in rice by supporting plant growth and As-tolerance. The study lays the foundation to develop yeast as a beneficial biofertilizer for As-prone areas.
Collapse
Affiliation(s)
- Jasvinder Kaur
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Nikita Tiwari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Mehar Hasan Asif
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varsha Dharmesh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mariya Naseem
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Pankaj Kumar Srivastava
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suchi Srivastava
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Quiñones CO, Gesto-Borroto R, Wilson RV, Hernández-Madrigal SV, Lorence A. Alternative pathways leading to ascorbate biosynthesis in plants: lessons from the last 25 years. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2644-2663. [PMID: 38488689 DOI: 10.1093/jxb/erae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
l-Ascorbic acid (AsA) is an antioxidant with important roles in plant stress physiology, growth, and development. AsA also plays an essential role in human health, preventing scurvy. Humans do not synthesize AsA, which needs to be supplied via a diet rich in fresh produce. Research efforts have provided progress in the elucidation of a complex metabolic network with at least four routes leading to AsA formation in plants. In this review, three alternative pathways, namely the d-galacturonate, the l-gulose, and the myo-inositol pathways, are presented with the supporting evidence of their operation in multiple plant species. We critically discuss feeding studies using precursors and their conversion to AsA in plant organs, and research where the expression of key genes encoding enzymes involved in the alternative pathways showed >100% AsA content increase in the transgenics and in many cases accompanied by enhanced tolerance to multiple stresses. We propose that the alternative pathways are vital in AsA production in response to stressful conditions and to compensate in cases where the flux through the d-mannose/l-galactose pathway is reduced. The genes and enzymes that have been characterized so far in these alternative pathways represent important tools that are being used to develop more climate-tolerant crops.
Collapse
Affiliation(s)
- Cherryl O Quiñones
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Reinier Gesto-Borroto
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Rachael V Wilson
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Sara V Hernández-Madrigal
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
- Department of Chemistry and Physics, Arkansas State University, PO Box 419, State University, AR 72467, USA
| |
Collapse
|
4
|
Wang D, Zheng J, Sarsaiya S, Jin L, Chen J. Unveiling terahertz wave stress effects and mechanisms in Pinellia ternata: Challenges, insights, and future directions. PHYSIOLOGIA PLANTARUM 2024; 176:e14195. [PMID: 38332400 DOI: 10.1111/ppl.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
This review aims to elucidate the intricate effects and mechanisms of terahertz (THz) wave stress on Pinellia ternata, providing valuable insights into plant responses. The primary objective is to highlight the imperative for future research dedicated to comprehending THz wave impacts across plant structures, with a specific focus on the molecular intricacies governing root system structure and function, from shoots to roots. Notably, this review highlights the accelerated plant growth induced by THz waves, especially in conjunction with other environmental stressors, and the subsequent alterations in cellular homeostasis, resulting in the generation of reactive oxygen species (ROS) and an increase in brassinosteroids. Brassinosteroids are explored for their dual role as toxic by-products of stress metabolism and vital signal transduction molecules in plant responses to abiotic stresses. The paper further investigates the spatio-temporal regulation and long-distance transport of phytohormones, including growth hormone, cytokinin, and abscisic acid (ABA), which significantly influence the growth and development of P. ternata under THz wave stress. With a comprehensive review of Reactive oxygen species (ROS) and Brassinosteroid Insensitive (BRI) homeostasis and signalling under THz wave stress, the article elucidates the current understanding of BRI involvement in stress perception, stress signalling, and domestication response regulation. Additionally, it underscores the importance of spatio-temporal regulation and long-distance transport of key plant hormones, such as growth hormone, cytokinin, and ABA, in determining root growth and development under THz wave stress. The study of how plants perceive and respond to environmental stresses holds fundamental biological significance, and enhancing plant stress tolerance is crucial for promoting sustainable agricultural practices and mitigating the environmental burdens associated with low-tolerance crop cultivation.
Collapse
Affiliation(s)
- Dongdong Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Jiatong Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Leilei Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Jishuang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
5
|
Song J, Yang H, Qiao C, Zhu C, Bai T, Du H, Ma S, Wang N, Luo C, Zhang Y, Ma T, Li P, Tian L. Natural variations of chlorophyll fluorescence and ion transporter genes influenced the differential response of japonica rice germplasm with different salt tolerances. FRONTIERS IN PLANT SCIENCE 2023; 14:1095929. [PMID: 37008489 PMCID: PMC10063860 DOI: 10.3389/fpls.2023.1095929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
Soil salinity seriously restricts rice growth, development, and production globally. Chlorophyll fluorescence and ion content reflect the level of injury and resistance of rice under salt stress. To understand the differences in the response mechanisms of japonica rice with varying degrees of salt tolerance, we analyzed the chlorophyll fluorescence characteristics and ion homeostasis of 12 japonica rice germplasm accessions by comprehensive evaluation of phenotype, haplotype, and expression of salt tolerance-related genes. The results revealed that salt-sensitive accessions were rapidly affected by the damage due to salinity. Salt tolerance score (STS) and relative chlorophyll relative content (RSPAD) were extremely significantly reduced (p<0.01), and chlorophyll fluorescence and ion homeostasis were influenced by various degrees under salt stress. The STS, RSPAD, and five chlorophyll fluorescence parameters of salt-tolerant accessions (STA) were significantly higher than that of salt-sensitive accessions (SSA). Principal component analysis (PCA) with 13 indices suggested three principal components (PCs), with a cumulative contribution rate of 90.254%, which were used to screen Huangluo (typical salt-tolerant germplasm) and Shanfuliya (typical salt-sensitive germplasm) based on the comprehensive evaluation D-value (DCI ). The expression characteristics of chlorophyll fluorescence genes (OsABCI7 and OsHCF222) and ion transporter protein genes (OsHKT1;5, OsHKT2;1, OsHAK21, OsAKT2, OsNHX1, and OsSOS1) were analyzed. The expressions of these genes were higher in Huangluo than in Shanfuliya under salt stress. Haplotype analysis revealed four key variations associated with salt tolerance, including an SNP (+1605 bp) within OsABCI7 exon, an SSR (-1231 bp) within OsHAK21 promoter, an indel site at OsNHX1 promoter (-822 bp), and an SNP (-1866 bp) within OsAKT2 promoter. Variation in OsABCI7 protein structure and differential expression of these three ion-transporter genes may contribute to the differential response of japonica rice to salt stress.
Collapse
Affiliation(s)
- Jiawei Song
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Hui Yang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Chengbin Qiao
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Chunyan Zhu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Tianliang Bai
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Huaidong Du
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuaiguo Ma
- School of Agriculture, Ningxia University, Yinchuan, China
- Agricultural College, Tarim University, Alar, China
| | - Na Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Chengke Luo
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Yinxia Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Tianli Ma
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Peifu Li
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Lei Tian
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| |
Collapse
|
6
|
Bouain N, Cho H, Sandhu J, Tuiwong P, Prom-U-Thai C, Zheng L, Shahzad Z, Rouached H. Plant growth stimulation by high CO 2 depends on phosphorus homeostasis in chloroplasts. Curr Biol 2022; 32:4493-4500.e4. [PMID: 36075219 DOI: 10.1016/j.cub.2022.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
Elevated atmospheric CO2 enhances photosynthetic rate,1 thereby increasing biomass production in plants. Nevertheless, high CO2 reduces the accumulation of essential nutrients2 such as phosphorus (P),3 which are required for photosynthetic processes and plant growth. How plants ensure enhanced growth despite meager P status remains enigmatic. In this study, we utilize genome-wide association analysis in Arabidopsis thaliana to identify a P transporter, PHT4;3, which mediates the reduction of P in chloroplasts at high CO2. Decreasing chloroplastic P fine-tunes the accumulation of a sugar-P metabolite, phytic acid, to support plant growth. Furthermore, we demonstrate that this adaptive mechanism is conserved in rice. Our results establish a mechanistic framework for sustainable food production against the backdrop of soaring CO2 levels across the world.
Collapse
Affiliation(s)
- Nadia Bouain
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Huikyong Cho
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Jaspreet Sandhu
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Patcharin Tuiwong
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zaigham Shahzad
- Department of Life Sciences, SBASSE, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Hatem Rouached
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
7
|
Amaral DC, Brown PH. Foliar Application of an Inositol-Based Plant Biostimulant Boosts Zinc Accumulation in Wheat Grains: A μ-X-Ray Fluorescence Case Study. FRONTIERS IN PLANT SCIENCE 2022; 13:837695. [PMID: 35463431 PMCID: PMC9020830 DOI: 10.3389/fpls.2022.837695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/31/2022] [Indexed: 05/25/2023]
Abstract
There has been much interest in the incorporation of organic molecules or biostimulants into foliar fertilizers with the rationalization that these compounds will enhance the uptake, or subsequent mobility of the applied nutrient. The objective of this research was to investigate the effects of an inositol-based plant stimulant on the mobility and accumulation of foliar-applied zinc (Zn) in wheat plants (Triticum aestivum L.). High-resolution elemental imaging with micro-X-ray fluorescence (μ-XRF) was utilized to examine Zn distribution within the vascular bundle of the leaf and whole grains. The inclusion of myo-inositol with Zinc sulfate, significantly increased Zn concentration in shoots in contrast to untreated controls and Zn sulfate applied alone. Foliar Zn treated plants increased Zn in grains by 5-25% with myo-inositol plus Zn treated plants significantly increasing grain Zn concentration compared to both Zn treated and non-treated controls. XRF imaging revealed Zn enrichment in the bran layer and germ, with a very low Zn concentration present in the endosperm. Plants treated with Zn plus myo-inositol showed an enhanced and uniform distribution of Zn throughout the bran layer and germ with an increased concentration in the endosperm. While our data suggest that foliar application of myo-inositol in combination with Zn may be a promising strategy to increase the absorption and mobility of Zn in the plant tissue and subsequently to enhance Zn accumulation in grains, further research is needed to clarify the mechanisms by which myo-inositol affects plant metabolism and nutrient mobility.
Collapse
Affiliation(s)
- Douglas C. Amaral
- Division of Agriculture and Natural Resources, University of California, Davis, Davis, CA, United States
| | - Patrick H. Brown
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Tesei D, Chiang AJ, Kalkum M, Stajich JE, Mohan GBM, Sterflinger K, Venkateswaran K. Effects of Simulated Microgravity on the Proteome and Secretome of the Polyextremotolerant Black Fungus Knufia chersonesos. Front Genet 2021; 12:638708. [PMID: 33815472 PMCID: PMC8012687 DOI: 10.3389/fgene.2021.638708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Black fungi are a group of melanotic microfungi characterized by remarkable polyextremotolerance. Due to a broad ecological plasticity and adaptations at the cellular level, it is predicted that they may survive in a variety of extreme environments, including harsh niches on Earth and Mars, and in outer space. However, the molecular mechanisms aiding survival, especially in space, are yet to be fully elucidated. Based on these premises, the rock-inhabiting black fungus Knufia chersonesos (Wt) and its non-melanized mutant (Mut) were exposed to simulated microgravity-one of the prevalent features characterizing space conditions-by growing the cultures in high-aspect-ratio vessels (HARVs). Qualitative and quantitative proteomic analyses were performed on the mycelia and supernatant of culture medium (secretome) to assess alterations in cell physiology in response to low-shear simulated microgravity (LSSMG) and to ultimately evaluate the role of cell-wall melanization in stress survival. Differential expression was observed for proteins involved in carbohydrate and lipid metabolic processes, transport, and ribosome biogenesis and translation via ribosomal translational machinery. However, no evidence of significant activation of stress components or starvation response was detected, except for the scytalone dehydratase, enzyme involved in the synthesis of dihydroxynaphthalene (DNH) melanin, which was found to be upregulated in the secretome of the wild type and downregulated in the mutant. Differences in protein modulation were observed between K. chersonesos Wt and Mut, with several proteins being downregulated under LSSMG in the Mut when compared to the Wt. Lastly, no major morphological alterations were observed following exposure to LSSMG. Similarly, the strains' survivability was not negatively affected. This study is the first to characterize the response to simulated microgravity in black fungi, which might have implications on future astrobiological missions.
Collapse
Affiliation(s)
- Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Abby J. Chiang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Ganesh Babu Malli Mohan
- Department of Biotechnology, Centre for Research and Infectious Diseases, SASTRA Deemed University, Thanjavur, India
| | - Katja Sterflinger
- Institute for Natural Sciences and Technology in the Arts, Academy of Fine Arts Vienna, Vienna, Austria
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
9
|
Rodas-Junco BA, Racagni-Di-Palma GE, Canul-Chan M, Usorach J, Hernández-Sotomayor SMT. Link between Lipid Second Messengers and Osmotic Stress in Plants. Int J Mol Sci 2021; 22:2658. [PMID: 33800808 PMCID: PMC7961891 DOI: 10.3390/ijms22052658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Plants are subject to different types of stress, which consequently affect their growth and development. They have developed mechanisms for recognizing and processing an extracellular signal. Second messengers are transient molecules that modulate the physiological responses in plant cells under stress conditions. In this sense, it has been shown in various plant models that membrane lipids are substrates for the generation of second lipid messengers such as phosphoinositide, phosphatidic acid, sphingolipids, and lysophospholipids. In recent years, research on lipid second messengers has been moving toward using genetic and molecular approaches to reveal the molecular setting in which these molecules act in response to osmotic stress. In this sense, these studies have established that second messengers can transiently recruit target proteins to the membrane and, therefore, affect protein conformation, activity, and gene expression. This review summarizes recent advances in responses related to the link between lipid second messengers and osmotic stress in plant cells.
Collapse
Affiliation(s)
- Beatriz A. Rodas-Junco
- CONACYT—Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán (UADY), Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, C.P. 97203 Mérida, Mexico
| | | | - Michel Canul-Chan
- Facultad de Ciencias Químicas, Universidad Veracruzana, Prolongación de Avenida Oriente 6 Num. 1009, Rafael Alvarado, C.P. 94340 Orizaba, Mexico;
| | - Javier Usorach
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Mexico;
| | - S. M. Teresa Hernández-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Mexico;
| |
Collapse
|
10
|
Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140682. [PMID: 32758827 DOI: 10.1016/j.scitotenv.2020.140682] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
New eco-friendly approaches are required to improve plant biomass production. Beneficial plant growth-promoting (PGP) bacteria may be exploited as excellent and efficient biotechnological tools to improve plant growth in various - including stressful - environments. We present an overview of bacterial mechanisms which contribute to plant health, growth, and development. Plant growth promoting rhizobacteria (PGPR) can interact with plants directly by increasing the availability of essential nutrients (e.g. nitrogen, phosphorus, iron), production and regulation of compounds involved in plant growth (e.g. phytohormones), and stress hormonal status (e.g. ethylene levels by ACC-deaminase). They can also indirectly affect plants by protecting them against diseases via competition with pathogens for highly limited nutrients, biocontrol of pathogens through production of aseptic-activity compounds, synthesis of fungal cell wall lysing enzymes, and induction of systemic responses in host plants. The potential of PGPR to facilitate plant growth is of fundamental importance, especially in case of abiotic stress, where bacteria can support plant fitness, stress tolerance, and/or even assist in remediation of pollutants. Providing additional evidence and better understanding of bacterial traits underlying plant growth-promotion can inspire and stir up the development of innovative solutions exploiting PGPR in times of highly variable environmental and climatological conditions.
Collapse
Affiliation(s)
- Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Małgorzata Wójcik
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Izabela Swiecicka
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Sofie Thijs
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| | - Jaco Vangronsveld
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| |
Collapse
|
11
|
Thakur S, Goswami K, Rao P, Kaushik S, Singh BP, Kain P, Asthana S, Bhattacharjee S, Guchhait P, Eswaran SV. Fluoresceinated Aminohexanol Tethered Inositol Hexakisphosphate: Studies on Arabidopsis thaliana and Drosophila melanogaster and Docking with 2P1M Receptor. ACS OMEGA 2020; 5:9585-9597. [PMID: 32363311 PMCID: PMC7191843 DOI: 10.1021/acsomega.0c00961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/01/2020] [Indexed: 05/17/2023]
Abstract
Inositol hexakisphosphate (InsP6; phytic acid) is considered as the second messenger and plays a very important role in plants, animals, and human beings. It is the principal storage form of phosphorus in many plant tissues, especially in dry fruits, bran, and seeds. The resulting anion is a colorless species that plays a critical role in nutrition and is believed to cure many diseases. A fluoresceinated aminohexanol tethered inositol hexakisphosphate (III) had been synthesized earlier involving many complicated steps. We describe here a simple two-step synthesis of (III) and its characterization using different techniques such as matrix-assisted laser desorption ionization mass spectrometry, tandem mass spectrometry, and Fourier transform infrared, ultraviolet-visible, ultraviolet-fluorescence, 1H nuclear magnetic resonance (NMR), and two-dimensional NMR spectroscopies. The effect of (III) has been investigated in the model systems, Arabidopsis thaliana and Drosophila melanogaster. Using Schrodinger software, computational studies on the binding of (III) with the protein 2P1M (Auxin-receptor TIR1-adaptor ASK1 complex) has revealed strong binding propensity with this compound. These studies on the fluoresceinated tethered phytic acid could have far reaching implications on its efficacy for human health and treatment of diseases (cancer/tumor and glioblastoma) and for understanding phosphorous recycling in the environment, especially for plant systems.
Collapse
Affiliation(s)
- Sujeet
Kumar Thakur
- TERI
School of Advanced Studies, Plot No. 10, Vasant Kunj Institutional Area, Vasant
Kunj, Institutional Area, New Delhi 110070, India
| | - Krishnendu Goswami
- Regional
Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad, 121001 Haryana, India
| | - Pallavi Rao
- Amity
University, Noida, 201313 Uttar Pradesh, India
| | - Shivam Kaushik
- Regional
Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad, 121001 Haryana, India
| | - Bhanu Pratap Singh
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad, 121001 Haryana, India
| | - Pinky Kain
- Regional
Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad, 121001 Haryana, India
| | - Shailendra Asthana
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad, 121001 Haryana, India
| | - Saikat Bhattacharjee
- Regional
Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad, 121001 Haryana, India
| | - Prasenjit Guchhait
- Regional
Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad, 121001 Haryana, India
| | - Sambasivan V. Eswaran
- Teri
Deakin Nano Biotechnology Centre (TDNBC), Teri Gram, Gwal Pahari, Gurgaon- Faridabad Expressway, Gurugram, 122002 Haryana, India
| |
Collapse
|
12
|
Prescience of endogenous regulation in Arabidopsis thaliana by Pseudomonas putida MTCC 5279 under phosphate starved salinity stress condition. Sci Rep 2020; 10:5855. [PMID: 32246044 PMCID: PMC7125087 DOI: 10.1038/s41598-020-62725-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 03/09/2020] [Indexed: 11/08/2022] Open
Abstract
Phosphorus (P) availability and salinity stress are two major constraints for agriculture productivity. A combination of salinity and P starvation is known to be more deleterious to plant health. Plant growth promoting rhizobacteria are known to ameliorate abiotic stress in plants by increasing the availability of different nutrients. However, interaction mechanisms of plant grown under salinity and P stress condition and effect of beneficial microbe for stress alleviation is still obscure. Earlier we reported the molecular insight of auxin producing, phosphate solubilising Pseudomonas putida MTCC 5279 (RAR) mediated plant growth promotion in Arabidopsis thaliana. In present study new trait of proline and phosphatase production of RAR and its impact on modulation of physiological phenomenon under phosphate starved-salinity stress condition in A. thaliana has been investigated. Different physiological and molecular determinants under RAR- A. thaliana interaction showed that auxin producing RAR shows tryptophan dependence for growth and proline production in ATP dependant manner under salinity stress. However, under P deprived conditions growth and proline production are independent of tryptophan. RAR mediated lateral root branching and root hair density through modulation of abscisic acid signalling was observed. Acidic phosphatase activity under P starved and salinity stress condition was majorly modulated along with ROS metabolism and expression of stress responsive/phosphate transporter genes. A strong correlation of different morpho-physiological factor with RAR + salt conditions, showed We concluded that enhanced adverse effect of salinity with unavailability of P was dampened in presence of P. putida MTCC 5279 (RAR) in A. thaliana, though more efficiently salinity stress conditions. Therefore, alleviation of combined stress of salinity induced phosphate nutrient deficiency by inoculation of beneficial microbe, P. putida MTCC 5279 offer good opportunities for enhancing the agricultural productivity.
Collapse
|
13
|
Broad RC, Bonneau JP, Hellens RP, Johnson AA. Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E1790. [PMID: 32150968 PMCID: PMC7084844 DOI: 10.3390/ijms21051790] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/03/2023] Open
Abstract
Abiotic stresses, such as drought, salinity, and extreme temperatures, are major limiting factors in global crop productivity and are predicted to be exacerbated by climate change. The overproduction of reactive oxygen species (ROS) is a common consequence of many abiotic stresses. Ascorbate, also known as vitamin C, is the most abundant water-soluble antioxidant in plant cells and can combat oxidative stress directly as a ROS scavenger, or through the ascorbate-glutathione cycle-a major antioxidant system in plant cells. Engineering crops with enhanced ascorbate concentrations therefore has the potential to promote broad abiotic stress tolerance. Three distinct strategies have been utilized to increase ascorbate concentrations in plants: (i) increased biosynthesis, (ii) enhanced recycling, or (iii) modulating regulatory factors. Here, we review the genetic pathways underlying ascorbate biosynthesis, recycling, and regulation in plants, including a summary of all metabolic engineering strategies utilized to date to increase ascorbate concentrations in model and crop species. We then highlight transgene-free strategies utilizing genome editing tools to increase ascorbate concentrations in crops, such as editing the highly conserved upstream open reading frame that controls translation of the GDP-L-galactose phosphorylase gene.
Collapse
Affiliation(s)
- Ronan C. Broad
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Julien P. Bonneau
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Roger P. Hellens
- Centre for Tropical Crops and Biocommodities, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | | |
Collapse
|
14
|
Yan H, Sheng M, Wang C, Liu Y, Yang J, Liu F, Xu W, Su Z. AtSPX1-mediated transcriptional regulation during leaf senescence in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:238-246. [PMID: 31128694 DOI: 10.1016/j.plantsci.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Leaf senescence is the final stage of leaf growth, a highly coordinated and complicated process. Phosphorus as an essential macronutrient for plant growth is remobilized from senescing leaves to other vigorous parts of the plant. In this study, through data mining, we found some phosphate starvation induced genes such as AtSPX1, were significantly induced in aging leaves in Arabidopsis. We applied a reverse genetics approach to investigate the phenotypes of transgenic plants and mutant plants, and the results showed that the overexpression of AtSPX1 accelerated leaf senescence, suppressed Pi accumulation, promoted SA production and H2O2 levels in leaves, while the mutant lines of AtSPX1 showed slightly delayed leaf senescence. We conducted RNA-seq-based transcriptome analysis together with GO and GSEA enrichment analyses for transgenic vs. wild-type plants to elucidate the possible underlying regulatory mechanism. The 558 genes that were up-regulated in the overexpression plants 35S::AtSPX1/WT, were significantly enriched in the process of leaf senescence, Pi starvation responses and SA signaling pathways, as were the target genes of some transcription factors such as WRKYs and NACs. In a word, we characterized AtSPX1 as a key regulator, which mediated the crosstalks among leaf senescence, Pi starvation and SA signaling pathways in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minghao Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yue Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaotong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|