1
|
Siekierska I, Burmistrz M, Trylska J. Evaluating delivery of peptide nucleic acids to Gram-negative bacteria using differently linked membrane-active peptides and their stapled analogs. Bioorg Med Chem Lett 2024; 114:129993. [PMID: 39426432 DOI: 10.1016/j.bmcl.2024.129993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Antisense oligonucleotides have been developed as therapeutic compounds, with peptide nucleic acid (PNA) emerging as a promising nucleic acid mimic for antimicrobial applications. To be effective, PNAs must be internalized into bacterial cells, as they are not naturally absorbed. A strategy to improve PNA membrane penetration and cellular uptake involves covalently conjugating them to cell-penetrating peptides. However, these membrane-active peptides can exhibit cytotoxicity, and their efficiency as PNA carriers needs to be enhanced. Therefore, we explored new peptide-PNA conjugates and their linkers to understand how they affect PNA uptake into bacteria. We conjugated PNA to two peptides, anoplin and (KFF)3K, along with their structurally stabilized hydrocarbon-stapled derivatives, and evaluated their transport into various bacterial strains. The PNA sequence targeted bacterial mRNA encoding the essential acyl carrier protein. As linkages, we used either a non-cleavable 8-amino-2,6-dioxaoctanoyl (ethylene glycol, eg1) linker or a reducible disulfide bridge. We found that the hydrocarbon-stapled peptides did not enhance PNA delivery, despite the strong inner- and outer-membrane-penetrating capabilities of the standalone peptides. Additionally, the disulfide bridge linkage, which is cleavable in the bacterial cytoplasm, decreased the antimicrobial activity of the peptide-PNA conjugates. Notably, we identified anoplin as a new potent PNA carrier peptide, with the anoplin-eg1-PNA conjugate demonstrating antibacterial activity against E. coli and S. Typhimurium strains in the 2-4 µM range.
Collapse
Affiliation(s)
- Izabela Siekierska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Michał Burmistrz
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| |
Collapse
|
2
|
Hadjicharalambous A, Newman H, Lewis N, Rowland C, Bournakas N, Stanway SJ, Dawson M, Skynner MJ, Beswick P. Investigating Penetration and Antimicrobial Activity of Vector-Bicycle Conjugates. ACS Infect Dis 2024; 10:2381-2389. [PMID: 38865197 PMCID: PMC11249977 DOI: 10.1021/acsinfecdis.3c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Growing antibiotic resistance is rapidly threatening the efficacy of treatments for Gram-negative infections. Bicycle molecules, constrained bicyclic peptides from diverse libraries generated by bacteriophage display that bind with high affinity to a chosen target are a potential new class of antibiotics. The generally impermeable bacterial outer membrane currently limits the access of peptides to bacteria. The conjugation of membrane active peptides offers an avenue for outer membrane penetration. Here, we investigate which physicochemical properties of a specific membrane active peptide (MAP), derived from ixosin-B, could be tweaked to enhance the penetration of conjugates by generating multiple MAP-Bicycle conjugate variants. We demonstrate that charge and hydrophobicity are important factors, which enhance penetration and, therefore, antimicrobial potency. Interestingly, we show that induction of secondary structure, but not a change in amphipathicity, is vital for effective penetration of the Gram-negative outer membrane. These results offer insights into the ways vectors could be designed to deliver Bicycle molecules (and other cargos) through biological membranes.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1QN, U.K.
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Hector Newman
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
- School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - Nick Lewis
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Catherine Rowland
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Nikolaos Bournakas
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Steven J. Stanway
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Michael Dawson
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Michael J. Skynner
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Paul Beswick
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| |
Collapse
|
3
|
Aguilera-Puga MDC, Plisson F. Structure-aware machine learning strategies for antimicrobial peptide discovery. Sci Rep 2024; 14:11995. [PMID: 38796582 PMCID: PMC11127937 DOI: 10.1038/s41598-024-62419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024] Open
Abstract
Machine learning models are revolutionizing our approaches to discovering and designing bioactive peptides. These models often need protein structure awareness, as they heavily rely on sequential data. The models excel at identifying sequences of a particular biological nature or activity, but they frequently fail to comprehend their intricate mechanism(s) of action. To solve two problems at once, we studied the mechanisms of action and structural landscape of antimicrobial peptides as (i) membrane-disrupting peptides, (ii) membrane-penetrating peptides, and (iii) protein-binding peptides. By analyzing critical features such as dipeptides and physicochemical descriptors, we developed models with high accuracy (86-88%) in predicting these categories. However, our initial models (1.0 and 2.0) exhibited a bias towards α-helical and coiled structures, influencing predictions. To address this structural bias, we implemented subset selection and data reduction strategies. The former gave three structure-specific models for peptides likely to fold into α-helices (models 1.1 and 2.1), coils (1.3 and 2.3), or mixed structures (1.4 and 2.4). The latter depleted over-represented structures, leading to structure-agnostic predictors 1.5 and 2.5. Additionally, our research highlights the sensitivity of important features to different structure classes across models.
Collapse
Affiliation(s)
- Mariana D C Aguilera-Puga
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato Unit, 36824, Irapuato, Guanajuato, Mexico
| | - Fabien Plisson
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato Unit, 36824, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
4
|
Costa ISD, Junot T, Silva FL, Felix W, Cardozo Fh JL, Pereira de Araujo AF, Pais do Amaral C, Gonçalves S, Santos NC, Leite JRSA, Bloch C, Brand GD. Occurrence and evolutionary conservation analysis of α-helical cationic amphiphilic segments in the human proteome. FEBS J 2024; 291:547-565. [PMID: 37945538 DOI: 10.1111/febs.16997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/14/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The existence of encrypted fragments with antimicrobial activity in human proteins has been thoroughly demonstrated in the literature. Recently, algorithms for the large-scale identification of these segments in whole proteomes were developed, and the pervasiveness of this phenomenon was stated. These algorithms typically mine encrypted cationic and amphiphilic segments of proteins, which, when synthesized as individual polypeptide sequences, exert antimicrobial activity by membrane disruption. In the present report, the human reference proteome was submitted to the software kamal for the uncovering of protein segments that correspond to putative intragenic antimicrobial peptides (IAPs). The assessment of the identity of these segments, frequency, functional classes of parent proteins, structural relevance, and evolutionary conservation of amino acid residues within their corresponding proteins was conducted in silico. Additionally, the antimicrobial and anticancer activity of six selected synthetic peptides was evaluated. Our results indicate that cationic and amphiphilic segments can be found in 2% of all human proteins, but are more common in transmembrane and peripheral membrane proteins. These segments are surface-exposed basic patches whose amino acid residues present similar conservation scores to other residues with similar solvent accessibility. Moreover, the antimicrobial and anticancer activity of the synthetic putative IAP sequences was irrespective to whether these are associated to membranes in the cellular setting. Our study discusses these findings in light of the current understanding of encrypted peptide sequences, offering some insights into the relevance of these segments to the organism in the context of their harboring proteins or as separate polypeptide sequences.
Collapse
Affiliation(s)
- Igor S D Costa
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| | - Tiago Junot
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| | - Fernanda L Silva
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| | - Wanessa Felix
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada - NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brazil
| | - José L Cardozo Fh
- Laboratório de Espectrometria de Massa - LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Antonio F Pereira de Araujo
- Laboratório de Biofísica Teórica e Computacional, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | | | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - José R S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada - NuPMIA, Faculdade de Medicina, Universidade de Brasília, Brazil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa - LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Guilherme D Brand
- Laboratório de Síntese e Análise de Biomoléculas - LSAB, Instituto de Química, Universidade de Brasília, Brazil
| |
Collapse
|
5
|
Aguilera-Puga MDC, Cancelarich NL, Marani MM, de la Fuente-Nunez C, Plisson F. Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence. Methods Mol Biol 2024; 2714:329-352. [PMID: 37676607 DOI: 10.1007/978-1-0716-3441-7_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Peptides modulate many processes of human physiology targeting ion channels, protein receptors, or enzymes. They represent valuable starting points for the development of new biologics against communicable and non-communicable disorders. However, turning native peptide ligands into druggable materials requires high selectivity and efficacy, predictable metabolism, and good safety profiles. Machine learning models have gradually emerged as cost-effective and time-saving solutions to predict and generate new proteins with optimal properties. In this chapter, we will discuss the evolution and applications of predictive modeling and generative modeling to discover and design safe and effective antimicrobial peptides. We will also present their current limitations and suggest future research directions, applicable to peptide drug design campaigns.
Collapse
Affiliation(s)
- Mariana D C Aguilera-Puga
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, Mexico
- CINVESTAV-IPN, Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, Mexico
| | - Natalia L Cancelarich
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Argentina
| | - Mariela M Marani
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Puerto Madryn, Argentina
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Fabien Plisson
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, Mexico.
- CINVESTAV-IPN, Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
6
|
Papaioannou I, Owen JS, Yáñez‐Muñoz RJ. Clinical applications of gene therapy for rare diseases: A review. Int J Exp Pathol 2023; 104:154-176. [PMID: 37177842 PMCID: PMC10349259 DOI: 10.1111/iep.12478] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023] Open
Abstract
Rare diseases collectively exact a high toll on society due to their sheer number and overall prevalence. Their heterogeneity, diversity, and nature pose daunting clinical challenges for both management and treatment. In this review, we discuss recent advances in clinical applications of gene therapy for rare diseases, focusing on a variety of viral and non-viral strategies. The use of adeno-associated virus (AAV) vectors is discussed in the context of Luxturna, licenced for the treatment of RPE65 deficiency in the retinal epithelium. Imlygic, a herpes virus vector licenced for the treatment of refractory metastatic melanoma, will be an example of oncolytic vectors developed against rare cancers. Yescarta and Kymriah will showcase the use of retrovirus and lentivirus vectors in the autologous ex vivo production of chimeric antigen receptor T cells (CAR-T), licenced for the treatment of refractory leukaemias and lymphomas. Similar retroviral and lentiviral technology can be applied to autologous haematopoietic stem cells, exemplified by Strimvelis and Zynteglo, licenced treatments for adenosine deaminase-severe combined immunodeficiency (ADA-SCID) and β-thalassaemia respectively. Antisense oligonucleotide technologies will be highlighted through Onpattro and Tegsedi, RNA interference drugs licenced for familial transthyretin (TTR) amyloidosis, and Spinraza, a splice-switching treatment for spinal muscular atrophy (SMA). An initial comparison of the effectiveness of AAV and oligonucleotide therapies in SMA is possible with Zolgensma, an AAV serotype 9 vector, and Spinraza. Through these examples of marketed gene therapies and gene cell therapies, we will discuss the expanding applications of such novel technologies to previously intractable rare diseases.
Collapse
Affiliation(s)
| | - James S. Owen
- Division of MedicineUniversity College LondonLondonUK
| | - Rafael J. Yáñez‐Muñoz
- AGCTlab.orgCentre of Gene and Cell TherapyCentre for Biomedical SciencesDepartment of Biological SciencesSchool of Life Sciences and the EnvironmentRoyal Holloway University of LondonEghamUK
| |
Collapse
|
7
|
Viana de Freitas T, Karmakar U, Vasconcelos AG, Santos MA, Oliveira do Vale Lira B, Costa SR, Barbosa EA, Cardozo-Fh J, Correa R, Ribeiro DJS, Prates MV, Magalhães KG, Soller Ramada MH, Roberto de Souza Almeida Leite J, Bloch C, Lima de Oliveira A, Vendrell M, Brand GD. Release of immunomodulatory peptides at bacterial membrane interfaces as a novel strategy to fight microorganisms. J Biol Chem 2023; 299:103056. [PMID: 36822328 PMCID: PMC10074799 DOI: 10.1016/j.jbc.2023.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Cationic and amphiphilic peptides can be used as homing devices to accumulate conjugated antibiotics to bacteria-enriched sites and promote efficient microbial killing. However, just as important as tackling bacterial infections, is the modulation of the immune response in this complex microenvironment. In the present report, we designed a peptide chimaera called Chim2, formed by a membrane-active module, an enzyme hydrolysis site and a formyl peptide receptor 2 (FPR2) agonist. This molecule was designed to adsorb onto bacterial membranes, promote their lysis, and upon hydrolysis by local enzymes, release the FPR2 agonist sequence for activation and recruitment of immune cells. We synthesized the isolated peptide modules of Chim2 and characterized their biological activities independently and as a single polypeptide chain. We conducted antimicrobial assays, along with other tests aiming at the analyses of the cellular and immunological responses. In addition, assays using vesicles as models of eukaryotic and prokaryotic membranes were conducted and solution structures of Chim2 were generated by 1H NMR. Chim2 is antimicrobial, adsorbs preferentially to negatively charged vesicles while adopting an α-helix structure and exposes its disorganized tail to the solvent, which facilitates hydrolysis by tryptase-like enzymes, allowing the release of the FPR2 agonist fragment. This fragment was shown to induce accumulation of the cellular activation marker, lipid bodies, in mouse macrophages and the release of immunomodulatory interleukins. In conclusion, these data demonstrate that peptides with antimicrobial and immunomodulatory activities can be considered for further development as drugs.
Collapse
Affiliation(s)
- Thiago Viana de Freitas
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil
| | - Utsa Karmakar
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Andreanne G Vasconcelos
- Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Brasília, Distrito Federal, Brasil
| | - Michele A Santos
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil; Universidade de Brasília, Instituto de Química, Laboratório de Ressonância Magnética Nuclear, LRMN, Brasília, Distrito Federal, Brasil
| | - Bianca Oliveira do Vale Lira
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil; Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil
| | - Samuel Ribeiro Costa
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil
| | - Eder Alves Barbosa
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil
| | - José Cardozo-Fh
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brasil
| | - Rafael Correa
- Universidade de Brasília, Instituto de Biologia, Laboratório de Imunologia e Inflamação, LIMI, Brasília, Distrito Federal, Brasil
| | - Dalila J S Ribeiro
- Universidade de Brasília, Instituto de Biologia, Laboratório de Imunologia e Inflamação, LIMI, Brasília, Distrito Federal, Brasil
| | - Maura Vianna Prates
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brasil
| | - Kelly G Magalhães
- Universidade de Brasília, Instituto de Biologia, Laboratório de Imunologia e Inflamação, LIMI, Brasília, Distrito Federal, Brasil
| | - Marcelo Henrique Soller Ramada
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil; Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil
| | - José Roberto de Souza Almeida Leite
- Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Brasília, Distrito Federal, Brasil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brasil
| | - Aline Lima de Oliveira
- Universidade de Brasília, Instituto de Química, Laboratório de Ressonância Magnética Nuclear, LRMN, Brasília, Distrito Federal, Brasil
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Guilherme Dotto Brand
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil.
| |
Collapse
|
8
|
Santos MA, Silva FL, Lira BOV, Cardozo Fh JL, Vasconcelos AG, Araujo AR, Murad AM, Garay AV, Freitas SM, Leite JRSA, Bloch C, Ramada MHS, de Oliveira AL, Brand GD. Probing human proteins for short encrypted antimicrobial peptides reveals Hs10, a peptide with selective activity for gram-negative bacteria. Biochim Biophys Acta Gen Subj 2023; 1867:130265. [PMID: 36280021 DOI: 10.1016/j.bbagen.2022.130265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Some cationic and amphiphilic α-helical segments of proteins adsorb to prokaryotic membranes when synthesized as individual polypeptide sequences, resulting in broad and potent antimicrobial activity. However, amphiphilicity, a determinant physicochemical property for peptide-membrane interactions, can also be observed in some β-sheets. METHODS The software Kamal was used to scan the human reference proteome for short (7-11 amino acid residues) cationic and amphiphilic protein segments with the characteristic periodicity of β-sheets. Some of the uncovered peptides were chemically synthesized, and antimicrobial assays were conducted. Biophysical techniques were used to probe the molecular interaction of one peptide with phospholipid vesicles, lipopolysaccharides (LPS) and the bacterium Escherichia coli. RESULTS Thousands of compatible segments were found in human proteins, five were synthesized, and three presented antimicrobial activity in the micromolar range. Hs10, a nonapeptide fragment of the Complement C3 protein, could inhibit only the growth of tested Gram-negative microorganisms, presenting also little cytotoxicity to human fibroblasts. Hs10 interacted with LPS while transitioning from an unstructured segment to a β-sheet and increased the hydrodynamic radius of LPS particles. This peptide also promoted morphological alterations in E. coli cells. CONCLUSIONS Data presented herein introduce yet another molecular template to probe proteins in search for encrypted membrane-active segments and demonstrates that, using this approach, short peptides with low cytotoxicity and high selectivity to prokaryotic cells might be obtained. GENERAL SIGNIFICANCE This work widens the biotechnological potential of the human proteome as a source of antimicrobial peptides with application in human health.
Collapse
Affiliation(s)
- Michele A Santos
- Laboratório de Ressonância Magnética Nuclear, LRMN, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil; Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Fernanda L Silva
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Bianca O V Lira
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - José L Cardozo Fh
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Andreanne G Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil
| | - Alyne R Araujo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, Parnaíba, PI, Brazil
| | - André M Murad
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Aisel V Garay
- Laboratório de Biofísica Molecular, Instituto de Biologia, Universidade de Brasília (IB-CEL/UnB), Campus Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - Sonia M Freitas
- Laboratório de Biofísica Molecular, Instituto de Biologia, Universidade de Brasília (IB-CEL/UnB), Campus Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Marcelo H S Ramada
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Aline Lima de Oliveira
- Laboratório de Ressonância Magnética Nuclear, LRMN, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Guilherme D Brand
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
9
|
Hadjicharalambous A, Bournakas N, Newman H, Skynner MJ, Beswick P. Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics (Basel) 2022; 11:1636. [PMID: 36421280 PMCID: PMC9686638 DOI: 10.3390/antibiotics11111636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to understand the molecular features that drive the interactions of membranes with membrane active peptides. This review examines the features of a membrane these peptides exploit for translocation, as well as the physicochemical characteristics of membrane active peptides which are important for translocation. Moreover, it presents examples of how these features have been used in recent years to create conjugates consisting of a membrane active peptide, called a "vector", attached to either a current or novel antibiotic, called a "cargo" or "payload". In addition, the review discusses what properties may contribute to an ideal peptide vector able to deliver cargoes across the bacterial outer membrane as the rising issue of antimicrobial resistance demands new strategies to be employed to combat this global public health threat.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Nikolaos Bournakas
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Hector Newman
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Michael J. Skynner
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Paul Beswick
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| |
Collapse
|
10
|
In Silico Prediction of Anti-Infective and Cell-Penetrating Peptides from Thalassophryne nattereri Natterin Toxins. Pharmaceuticals (Basel) 2022; 15:ph15091141. [PMID: 36145362 PMCID: PMC9501638 DOI: 10.3390/ph15091141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022] Open
Abstract
The therapeutic potential of venom-derived peptides, such as bioactive peptides (BAPs), is determined by specificity, stability, and pharmacokinetics properties. BAPs, including anti-infective or antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs), share several physicochemical characteristics and are potential alternatives to antibiotic-based therapies and drug delivery systems, respectively. This study used in silico methods to predict AMPs and CPPs derived from natterins from the venomous fish Thalassophryne nattereri. Fifty-seven BAPs (19 AMPs, 8 CPPs, and 30 AMPs/CPPs) were identified using the web servers CAMP, AMPA, AmpGram, C2Pred, and CellPPD. The physicochemical properties were analyzed using ProtParam, PepCalc, and DispHred tools. The membrane-binding potential and cellular location of each peptide were analyzed using the Boman index by APD3, and TMHMM web servers. All CPPs and two AMPs showed high membrane-binding potential. Fifty-four peptides were located in the plasma membrane. Peptide immunogenicity, toxicity, allergenicity, and ADMET parameters were evaluated using several web servers. Sixteen antiviral peptides and 37 anticancer peptides were predicted using the web servers Meta-iAVP and ACPred. Secondary structures and helical wheel projections were predicted using the PEP-FOLD3 and Heliquest web servers. Fifteen peptides are potential lead compounds and were selected to be further synthesized and tested experimentally in vitro to validate the in silico screening. The use of computer-aided design for predicting peptide structure and activity is fast and cost-effective and facilitates the design of potent therapeutic peptides. The results demonstrate that toxins form a natural biotechnological platform in drug discovery, and the presence of CPP and AMP sequences in toxin families opens new possibilities in toxin biochemistry research.
Collapse
|
11
|
Li Z, Jin K, Chen H, Zhang L, Zhang G, Jiang Y, Zou H, Wang W, Qi G, Qu X. A machine learning approach-based array sensor for rapidly predicting the mechanisms of action of antibacterial compounds. NANOSCALE 2022; 14:3087-3096. [PMID: 35167631 DOI: 10.1039/d1nr07452k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid and accurate identification of the mechanisms of action (MoAs) of antibacterial compounds remains a challenge for the development of antibacterial compounds. Computational inference methods for determining the MoAs of antibacterial compounds have been developed in recent years. In particular, approaches combining machine learning technology enable precisely recognizing the MoA of antibacterial compounds. However, these methods heavily rely on the big data resulting from multiplexed experiments. As such, these approaches tend to produce minimal throughput and are not comprehensive enough to be adapted to widespread industrial applications. Here, we present a machine learning approach based on a customized array sensor for directly identifying the MoAs of antibacterial compounds. The array sensor consists of different two-dimensional nanomaterial fluorescence quenchers with different fluorescence-labeled single-stranded DNAs (ssDNAs). By mapping the subtle difference of the physicochemical properties on the bacterial surface treated with different antibacterial compound stimuli, the array sensor ensures visualizing the recognition process. Moreover, the customized array sensor produces a high volume of the MoA database, overcoming the dependence on big data. We further use the array sensor to build a chemical-response unique "fingerprint" database of MoAs. By combining a neural network-based genetic algorithm (NNGA), we rapidly discriminate the MoAs of four antibiotics with an overall accuracy of 100%. Furthermore, a new screening antibacterial peptide has been discovered and evaluated by our approach for determining the MoA with high accuracy proven by other techniques.
Collapse
Affiliation(s)
- Zhijun Li
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Kun Jin
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Hong Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Jiujiang Research Institute of Xiamen University, Jiujiang 332000, China
| | - Liyuan Zhang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, c, MA 02138, USA.
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guitao Zhang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yizhou Jiang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Haixia Zou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Wentao Wang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Guangpei Qi
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xiangmeng Qu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
12
|
Bio-Membrane Internalization Mechanisms of Arginine-Rich Cell-Penetrating Peptides in Various Species. MEMBRANES 2022; 12:membranes12010088. [PMID: 35054614 PMCID: PMC8778423 DOI: 10.3390/membranes12010088] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023]
Abstract
Recently, membrane-active peptides or proteins that include antimicrobial peptides (AMPs), cytolytic proteins, and cell-penetrating peptides (CPPs) have attracted attention due to their potential applications in the biomedical field. Among them, CPPs have been regarded as a potent drug/molecules delivery system. Various cargoes, such as DNAs, RNAs, bioactive proteins/peptides, nanoparticles and drugs, can be carried by CPPs and delivered into cells in either covalent or noncovalent manners. Here, we focused on four arginine-rich CPPs and reviewed the mechanisms that these CPPs used for intracellular uptake across cellular plasma membranes. The varying transduction efficiencies of them alone or with cargoes were discussed, and the membrane permeability was also expounded for CPP/cargoes delivery in various species. Direct membrane translocation (penetration) and endocytosis are two principal mechanisms for arginine-rich CPPs mediated cargo delivery. Furthermore, the amino acid sequence is the primary key factor that determines the cellular internalization mechanism. Importantly, the non-cytotoxic nature and the wide applicability make CPPs a trending tool for cellular delivery.
Collapse
|
13
|
Schistocins: Novel antimicrobial peptides encrypted in the Schistosoma mansoni Kunitz Inhibitor SmKI-1. Biochim Biophys Acta Gen Subj 2021; 1865:129989. [PMID: 34389467 DOI: 10.1016/j.bbagen.2021.129989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Here we describe a new class of cryptides (peptides encrypted within a larger protein) with antimicrobial properties, named schistocins, derived from SmKI-1, a key protein in Shistosoma mansoni survival. This is a multi-functional protein with biotechnological potential usage as a therapeutic molecule in inflammatory diseases and to control schistosomiasis. METHODS We used our algorithm enCrypted, to perform an in silico proteolysis of SmKI-1 and a screening for potential antimicrobial activity. The selected peptides were chemically synthesized, tested in vitro and evaluated by both structural (CD, NMR) and biophysical (ITC) studies to access their structure-function relationship. RESULTS EnCrypted was capable of predicting AMPs in SmKI-1. Our biophysical analyses described a membrane-induced conformational change from random coil-to-α-helix and a peptide-membrane equilibrium for all schistocins. Our structural data allowed us to suggest a well-known mode of peptide-membrane interaction in which electrostatic attraction between the cationic peptides and anionic membranes results in the bilayer disordering. Moreover, the NMR exchange H/D data with the higher entropic contribution observed for the peptide-membrane interaction showed that shistocins have different orientations upon the membrane. CONCLUSIONS This work demonstrate the robustness for using the physicochemical features of predicted peptides in the identification of new bioactive cryptides besides the relevance of combining these analyses with biophysical methods to understand the peptide-membrane affinity and improve further algorithms. GENERAL SIGNIFICANCE Bioprospecting cryptides can be conducted through data mining of protein databases demonstrating the success of our strategy. The peptides-based agents derived from SmKI-1 might have high impact for system-biology and biotechnology.
Collapse
|
14
|
Kardani K, Bolhassani A. Antimicrobial/anticancer peptides: bioactive molecules and therapeutic agents. Immunotherapy 2021; 13:669-684. [PMID: 33878901 DOI: 10.2217/imt-2020-0312] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been known as host-defense peptides. These cationic and amphipathic peptides are relatively short (∼5-50 L-amino acids) with molecular weight less than 10 kDa. AMPs have various roles including immunomodulatory, angiogenic and antitumor activities. Anticancer peptides (ACPs) are a main subset of AMPs as a novel therapeutic approach against tumor cells. The physicochemical properties of the ACPs influence their cell penetration, stability and efficiency of targeting. Up to now, several databases and web servers for in silico prediction of AMPs/ACPs have been established prior to the lab analysis. The present review focuses on the recent advancement about AMPs/ACPs activities including their in silico prediction by computational tools and their potential applications as therapeutic agents especially in cancer.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Mariano G, Gomes de Sá L, Carmo da Silva E, Santos M, Cardozo Fh J, Lira B, Barbosa E, Araujo A, Leite J, Ramada M, Bloch Jr. C, Oliveira A, Chaker J, Brand G. Characterization of novel human intragenic antimicrobial peptides, incorporation and release studies from ureasil-polyether hybrid matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111581. [DOI: 10.1016/j.msec.2020.111581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/25/2022]
|
16
|
The Antioxidant Peptide Salamandrin-I: First Bioactive Peptide Identified from Skin Secretion of Salamandra Genus (Salamandra salamandra). Biomolecules 2020; 10:biom10040512. [PMID: 32230960 PMCID: PMC7226163 DOI: 10.3390/biom10040512] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Amphibian skin is a multifunctional organ that plays key roles in defense, breathing, and water balance. In this study, skin secretion samples of the fire salamander (Salamandra salamandra) were separated using RP-HPLC and de novo sequenced using MALDI-TOF MS/MS. Next, we used an in silico platform to screen antioxidant molecules in the framework of density functional theory. One of the identified peptides, salamandrin-I, [M + H]+ = 1406.6 Da, was selected for solid-phase synthesis; it showed free radical scavenging activity against DPPH and ABTS radicals. Salamandrin-I did not show antimicrobial activity against Gram-positive and -negative bacteria. In vitro assays using human microglia and red blood cells showed that salamandrin-I has no cytotoxicity up to the concentration of 100 µM. In addition, in vivo toxicity tests on Galleria mellonella larvae resulted in no mortality at 20 and 40 mg/kg. Antioxidant peptides derived from natural sources are increasingly attracting interest. Among several applications, these peptides, such as salamandrin-I, can be used as templates in the design of novel antioxidant molecules that may contribute to devising strategies for more effective control of neurological disease.
Collapse
|
17
|
Rončević T, Puizina J, Tossi A. Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era? Int J Mol Sci 2019; 20:E5713. [PMID: 31739573 PMCID: PMC6887943 DOI: 10.3390/ijms20225713] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Resistance to antibiotics is one of the main current threats to human health and every year multi-drug resistant bacteria are infecting millions of people worldwide, with many dying as a result. Ever since their discovery, some 40 years ago, the antimicrobial peptides (AMPs) of innate defense have been hailed as a potential alternative to conventional antibiotics due to their relatively low potential to elicit resistance. Despite continued effort by both academia and start-ups, currently there are still no antibiotics based on AMPs in use. In this study, we discuss what we know and what we do not know about these agents, and what we need to know to successfully translate discovery to application. Understanding the complex mechanics of action of these peptides is the main prerequisite for identifying and/or designing or redesigning novel molecules with potent biological activity. However, other aspects also need to be well elucidated, i.e., the (bio)synthetic processes, physiological and pathological contexts of their activity, and a quantitative understanding of how physico-chemical properties affect activity. Research groups worldwide are using biological, biophysical, and algorithmic techniques to develop models aimed at designing molecules with the necessary blend of antimicrobial potency and low toxicity. Shedding light on some open questions may contribute toward improving this process.
Collapse
Affiliation(s)
- Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia;
- Laboratory for Aquaculture, Institute of Oceanography and Fisheries, 21000 Split, Croatia
| | - Jasna Puizina
- Department of Biology, Faculty of Science, University of Split, 21000 Split, Croatia;
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
18
|
Brand GD, Ramada MHS, Manickchand JR, Correa R, Ribeiro DJS, Santos MA, Vasconcelos AG, Abrão FY, Prates MV, Murad AM, Cardozo Fh JL, Leite JRSA, Magalhães KG, Oliveira AL, Bloch C. Intragenic antimicrobial peptides (IAPs) from human proteins with potent antimicrobial and anti-inflammatory activity. PLoS One 2019; 14:e0220656. [PMID: 31386688 PMCID: PMC6684085 DOI: 10.1371/journal.pone.0220656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/19/2019] [Indexed: 11/20/2022] Open
Abstract
Following the treads of our previous works on the unveiling of bioactive peptides encrypted in plant proteins from diverse species, the present manuscript reports the occurrence of four proof-of-concept intragenic antimicrobial peptides in human proteins, named Hs IAPs. These IAPs were prospected using the software Kamal, synthesized by solid phase chemistry, and had their interactions with model phospholipid vesicles investigated by differential scanning calorimetry and circular dichroism. Their antimicrobial activity against bacteria, yeasts and filamentous fungi was determined, along with their cytotoxicity towards erythrocytes. Our data demonstrates that Hs IAPs are capable to bind model membranes while attaining α-helical structure, and to inhibit the growth of microorganisms at concentrations as low as 1μM. Hs02, a novel sixteen residue long internal peptide (KWAVRIIRKFIKGFIS-NH2) derived from the unconventional myosin 1h protein, was further investigated in its capacity to inhibit lipopolysaccharide-induced release of TNF-α in murine macrophages. Hs02 presented potent anti-inflammatory activity, inhibiting the release of TNF-α in LPS-primed cells at the lowest assayed concentration, 0.1 μM. A three-dimensional solution structure of Hs02 bound to DPC micelles was determined by Nuclear Magnetic Resonance. Our work exemplifies how the human genome can be mined for molecules with biotechnological potential in human health and demonstrates that IAPs are actual alternatives to antimicrobial peptides as pharmaceutical agents or in their many other putative applications.
Collapse
Affiliation(s)
- Guilherme D. Brand
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília, DF, Brasil
- * E-mail:
| | - Marcelo H. S. Ramada
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brasil
- Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, DF, Brasil
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
| | - Júlia R. Manickchand
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília, DF, Brasil
| | - Rafael Correa
- Laboratório de Imunologia e Inflamação, LIMI, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brasil
| | - Dalila J. S. Ribeiro
- Laboratório de Imunologia e Inflamação, LIMI, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brasil
| | - Michele A. Santos
- Laboratório de Ressonância Magnética Nuclear, LRMN, Instituto de Química, Universidade de Brasília, Brasília, DF, Brasil
| | - Andreanne G. Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brasil
| | | | - Maura V. Prates
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
| | - André M. Murad
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
| | - José L. Cardozo Fh
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Departamento de Fitopatologia, Instituto Mato-Grossense do Algodão, Primavera do Leste, MT, Brasil
| | - José Roberto S. A. Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brasil
| | - Kelly G. Magalhães
- Laboratório de Imunologia e Inflamação, LIMI, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brasil
| | - Aline L. Oliveira
- Laboratório de Ressonância Magnética Nuclear, LRMN, Instituto de Química, Universidade de Brasília, Brasília, DF, Brasil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
| |
Collapse
|
19
|
Neundorf I. Antimicrobial and Cell-Penetrating Peptides: How to Understand Two Distinct Functions Despite Similar Physicochemical Properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:93-109. [PMID: 30980355 DOI: 10.1007/978-981-13-3588-4_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial and cell-penetrating peptides are both classes of membrane-active peptides sharing similar physicochemical properties. Both kinds of peptides have attracted much attention owing to their specific features. AMPs disrupt cell membranes of bacteria and display urgently needed antibiotic substances with alternative modes of action. Since the multidrug resistance of bacterial pathogens is a more and more raising concern, AMPs have gained much interest during the past years. On the other side, CPPs enter eukaryotic cells without substantially affecting the plasma membrane. They can be used as drug delivery platforms and have proven their usefulness in various applications. However, although both groups of peptides are quite similar, their intrinsic activity is often different, and responsible factors are still in discussion. The aim of this chapter is to summarize and shed light on recent findings and concepts dealing with differences and similarities of AMPs and CPPs and to understand these different functions.
Collapse
Affiliation(s)
- Ines Neundorf
- Department of Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany.
| |
Collapse
|
20
|
Alaybeyoglu B, Sariyar Akbulut B, Ozkirimli E. pVEC hydrophobic N-terminus is critical for antibacterial activity. J Pept Sci 2018; 24:e3083. [DOI: 10.1002/psc.3083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Begum Alaybeyoglu
- Chemical Engineering Department; Bogazici University; Bebek 34342 Istanbul Turkey
| | | | - Elif Ozkirimli
- Chemical Engineering Department; Bogazici University; Bebek 34342 Istanbul Turkey
| |
Collapse
|