1
|
Tian B, Xu X, Li L, Tian Y, Liu Y, Mu Y, Lu J, Song K, Lv J, He Q, Zhong W, Xia H, Lan C. Epigenetic Insights Into Necrotizing Enterocolitis: Unraveling Methylation-Regulated Biomarkers. Inflammation 2025; 48:236-253. [PMID: 38814387 PMCID: PMC11807086 DOI: 10.1007/s10753-024-02054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Necrotizing enterocolitis (NEC) is a multifactorial gastrointestinal disease with high morbidity and mortality among premature infants. This study aimed to identify novel methylation-regulated biomarkers in NEC intestinal tissue through multiomics analysis. We analyzed DNA methylation and transcriptome datasets from ileum and colon tissues of patients with NEC. We identify methylation-related differential genes (MrDEGs) based on the rule that the degree of methylation in the promoter region is inversely proportional to RNA transcription. These MrDEGs included ADAP1, GUCA2A, BCL2L14, FUT3, MISP, USH1C, ITGA3, UNC93A and IL22RA1. Single-cell data revealed that MrDEGs were mainly located in the intestinal epithelial part of intestinal tissue. These MrDEGs were verified through Target gene bisulfite sequencing and RT-qPCR. We successfully identified and verified the ADAP1, GUCA2A, IL22RA1 and MISP, primarily expressed in intestinal epithelial villus cells through single-cell data. Through single-gene gene set enrichment analysis, we found that these genes participate mainly in the pathological process of T-cell differentiation and the suppression of intestinal inflammation in NEC. This study enhances our understanding of the pathogenesis of NEC and may promote the development of new precision medicine methods for NEC prediction and diagnosis.
Collapse
Affiliation(s)
- Bowen Tian
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaogang Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Lin Li
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Yan Tian
- Department of Anesthesiology, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Yanqing Liu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Yide Mu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Jieting Lu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Song
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Junjian Lv
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Qiuming He
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China.
| | - Huimin Xia
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China.
| | - Chaoting Lan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Jang JW, Capaldi E, Smith T, Verma P, Varga J, Ho KJ. Trimethylamine N-oxide: a meta-organismal axis linking the gut and fibrosis. Mol Med 2024; 30:128. [PMID: 39180015 PMCID: PMC11344357 DOI: 10.1186/s10020-024-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Tissue fibrosis is a common pathway to failure in many organ systems and is the cellular and molecular driver of myriad chronic diseases that are incompletely understood and lack effective treatment. Recent studies suggest that gut microbe-dependent metabolites might be involved in the initiation and progression of fibrosis in multiple organ systems. MAIN BODY OF THE MANUSCRIPT In a meta-organismal pathway that begins in the gut, gut microbiota convert dietary precursors such as choline, phosphatidylcholine, and L-carnitine into trimethylamine (TMA), which is absorbed and subsequently converted to trimethylamine N-oxide (TMAO) via the host enzyme flavin-containing monooxygenase 3 (FMO3) in the liver. Chronic exposure to elevated TMAO appears to be associated with vascular injury and enhanced fibrosis propensity in diverse conditions, including chronic kidney disease, heart failure, metabolic dysfunction-associated steatotic liver disease, and systemic sclerosis. CONCLUSION Despite the high prevalence of fibrosis, little is known to date about the role of gut dysbiosis and of microbe-dependent metabolites in its pathogenesis. This review summarizes recent important advances in the understanding of the complex metabolism and functional role of TMAO in pathologic fibrosis and highlights unanswered questions.
Collapse
Affiliation(s)
- Jae Woong Jang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Emma Capaldi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Tracy Smith
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Priyanka Verma
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - John Varga
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - Karen J Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Velez Lopez A, Waddell A, Antonacci S, Castillo D, Santucci N, Ollberding NJ, Eshleman EM, Denson LA, Alenghat T. Microbiota-derived butyrate dampens linaclotide stimulation of the guanylate cyclase C pathway in patient-derived colonoids. Neurogastroenterol Motil 2023; 35:e14681. [PMID: 37736865 PMCID: PMC10841278 DOI: 10.1111/nmo.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/25/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND & AIMS Disorders of gut-brain interaction (DGBI) are complex conditions that result in decreased quality of life and a significant cost burden. Linaclotide, a guanylin cyclase C (GCC) receptor agonist, is approved as a DGBI treatment. However, its efficacy has been limited and variable across DGBI patients. Microbiota and metabolomic alterations are noted in DGBI patients, provoking the hypothesis that the microbiota may impact the GCC response to current therapeutics. METHODS Human-derived intestinal organoids were grown from pediatric DGBI, non-IBD colon biopsies (colonoids). Colonoids were treated with 250 nM linaclotide and assayed for cGMP to develop a model of GCC activity. Butyrate was administered to human colonoids overnight at a concentration of 1 mM. Colonoid lysates were analyzed for cGMP levels by ELISA. For the swelling assay, colonoids were photographed pre- and post-treatment and volume was measured using ImageJ. Principal coordinate analyses (PCoA) were performed on the Bray-Curtis dissimilarity and Jaccard distance to assess differences in the community composition of short-chain fatty acid (SCFA) producing microbial species in the intestinal microbiota from pediatric patients with IBS and healthy control samples. KEY RESULTS Linaclotide treatment induced a significant increase in [cGMP] and swelling of patient-derived colonoids, demonstrating a human in vitro model of linaclotide-induced GCC activation. Shotgun sequencing analysis of pediatric IBS patients and healthy controls showed differences in the composition of commensal SCFA-producing bacteria. Butyrate exposure significantly dampened linaclotide-induced cGMP levels and swelling in patient-derived colonoids. CONCLUSIONS & INFERENCES Patient-derived colonoids demonstrate that microbiota-derived butyrate can dampen human colonic responses to linaclotide. This study supports incorporation of microbiota and metabolomic assessment to improve precision medicine for DGBI patients.
Collapse
Affiliation(s)
- Alejandro Velez Lopez
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Amanda Waddell
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Simona Antonacci
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Daniel Castillo
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Neha Santucci
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Nicholas J. Ollberding
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Emily M. Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Lee A. Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
4
|
Bonetti A, Toschi A, Tugnoli B, Piva A, Grilli E. A blend of selected botanicals maintains intestinal epithelial integrity and reduces susceptibility to Escherichia coli F4 infection by modulating acute and chronic inflammation in vitro. Front Vet Sci 2023; 10:1275802. [PMID: 37841479 PMCID: PMC10570737 DOI: 10.3389/fvets.2023.1275802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
In the pig production cycle, the most delicate phase is weaning, a sudden and early change that requires a quick adaptation, at the cost of developing inflammation and oxidation, especially at the intestinal level. In this period, pathogens like enterotoxigenic Escherichia coli (ETEC) contribute to the establishment of diarrhea, with long-lasting detrimental effects. Botanicals and their single bioactive components represent sustainable well-recognized tools in animal nutrition thanks to their wide-ranging beneficial functions. The aim of this study was to investigate the in vitro mechanism of action of a blend of botanicals (BOT), composed of thymol, grapeseed extract, and capsicum oleoresin, in supporting intestinal cell health during inflammatory challenges and ETEC infections. To reach this, we performed inflammatory and ETEC challenges on Caco-2 cells treated with BOT, measuring epithelial integrity, cellular oxidative stress, bacterial translocation and adhesion, gene expression levels, and examining tight junction distribution. BOT protected enterocytes against acute inflammation: while the challenge reduced epithelial tightness by 40%, BOT significantly limited its drop to 30%, also allowing faster recovery rates. In the case of chronic inflammation, BOT systematically improved by an average of 25% the integrity of challenged cells (p < 0.05). Moreover, when cells were infected with ETEC, BOT maintained epithelial integrity at the same level as an effective antibiotic and significantly reduced bacterial translocation by 1 log average. The mode of action of BOT was strictly related to the modulation of the inflammatory response, protecting tight junctions' expression and structure. In addition, BOT influenced ETEC adhesion to intestinal cells (-4%, p < 0.05), also thanks to the reduction of enterocytes' susceptibility to pathogens. Finally, BOT effectively scavenged reactive oxygen species generated by inflammatory and H2O2 challenges, thus alleviating oxidative stress by 40% compared to challenge (p < 0.05). These results support the employment of BOT in piglets at weaning to help manage bacterial infections and relieve transient or prolonged stressful states thanks to the modulation of host-pathogen interaction and the fine-tuning activity on the inflammatory tone.
Collapse
Affiliation(s)
- Andrea Bonetti
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Ozzano dell’Emilia, Bologna, Italy
| | | | | | - Andrea Piva
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Ozzano dell’Emilia, Bologna, Italy
- Vetagro S.p.A., Reggio Emilia, Italy
| | - Ester Grilli
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Ozzano dell’Emilia, Bologna, Italy
- Vetagro Inc., Chicago, IL, United States
| |
Collapse
|
5
|
Andersen V, Bennike TB, Bang C, Rioux JD, Hébert-Milette I, Sato T, Hansen AK, Nielsen OH. Investigating the Crime Scene-Molecular Signatures in Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:11217. [PMID: 37446397 PMCID: PMC10342864 DOI: 10.3390/ijms241311217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are without cure and troublesome to manage because of the considerable diversity between patients and the lack of reliable biomarkers. Several studies have demonstrated that diet, gut microbiota, genetics and other patient factors are essential for disease occurrence and progression. Understanding the link between these factors is crucial for identifying molecular signatures that identify biomarkers to advance the management of IBD. Recent technological breakthroughs and data integration have fuelled the intensity of this research. This research demonstrates that the effect of diet depends on patient factors and gut microbial activity. It also identifies a range of potential biomarkers for IBD management, including mucosa-derived cytokines, gasdermins and neutrophil extracellular traps, all of which need further evaluation before clinical translation. This review provides an update on cutting-edge research in IBD that aims to improve disease management and patient quality of life.
Collapse
Affiliation(s)
- Vibeke Andersen
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, Institute of Regional Research, University of Southern Denmark, 5000 Odense, Denmark;
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Tue B. Bennike
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, Institute of Regional Research, University of Southern Denmark, 5000 Odense, Denmark;
- Medical Microbiology and Immunology, Department of Health Science and Technology, Aalborg University, 9000 Aalborg, Denmark
| | - Corinna Bang
- Institute for Clinical Molecular Biology, Christian-Albrecht’s University, 24105 Kiel, Germany;
| | - John D. Rioux
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; (J.D.R.); (I.H.-M.)
- Montreal Heart Institute Research Institute, Montreal, QC H1T 1C8, Canada
| | - Isabelle Hébert-Milette
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; (J.D.R.); (I.H.-M.)
- Montreal Heart Institute Research Institute, Montreal, QC H1T 1C8, Canada
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Axel K. Hansen
- Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark;
| | - Ole H. Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
6
|
Goto M, Yoshino S, Hiroshima K, Kawakami T, Murota K, Shimamoto S, Hidaka Y. The Molecular Basis of Heat-Stable Enterotoxin for Vaccine Development and Cancer Cell Detection. Molecules 2023; 28:molecules28031128. [PMID: 36770798 PMCID: PMC9920858 DOI: 10.3390/molecules28031128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Heat-stable enterotoxin (STa) produced by Enterotoxigenic E. coli is responsible for causing acute diarrhea in infants in developing countries. However, the chemical synthesis of STa peptides with the native conformation and the correct intra-molecular disulfide bonds is a major hurdle for vaccine development. To address this issue, we herein report on the design and preparation of STa analogs and a convenient chemical method for obtaining STa molecules with the correct conformation. To develop an STa vaccine, we focused on a structure in a type II β-turn in the STa molecule and introduced a D-Lys residue as a conjugation site for carrier proteins. In addition, the -Glu-Leu- sequence in the STa molecule was replaced with a -Asp-Val- sequence to decrease the toxic activity of the peptide to make it more amenable for use in vaccinations. To solve several issues associated with the synthesis of STa, such as the formation of non-native disulfide isomers, the native disulfide pairings were regioselectively formed in a stepwise manner. A native form or topological isomer of the designed STa peptide, which possesses a right-handed or a left-handed spiral structure, respectively, were synthesized in high synthetic yields. The conformation of the synthetic STa peptide was also confirmed by CD and NMR spectroscopy. To further utilize the designed STa peptide, it was labeled with fluorescein for fluorescent detection, since recent studies have also focused on the use of STa for detecting cancer cells, such as Caco-2 and T84. The labeled STa peptide was able to specifically and efficiently detect 293T cells expressing the recombinant STa receptor (GC-C) protein and Caco-2 cells. The findings reported here provide an outline of the molecular basis for using STa for vaccine development and in the detection of cancer cells.
Collapse
Affiliation(s)
- Masaya Goto
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shinya Yoshino
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Kyona Hiroshima
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kaeko Murota
- Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Shigeru Shimamoto
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Correspondence: (S.S.); (Y.H.); Tel.: +81-6-6721-2332 (S.S.)
| | - Yuji Hidaka
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Correspondence: (S.S.); (Y.H.); Tel.: +81-6-6721-2332 (S.S.)
| |
Collapse
|
7
|
Grześk G, Nowaczyk A. Current Modulation of Guanylate Cyclase Pathway Activity-Mechanism and Clinical Implications. Molecules 2021; 26:molecules26113418. [PMID: 34200064 PMCID: PMC8200204 DOI: 10.3390/molecules26113418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
For years, guanylate cyclase seemed to be homogenic and tissue nonspecific enzyme; however, in the last few years, in light of preclinical and clinical trials, it became an interesting target for pharmacological intervention. There are several possible options leading to an increase in cyclic guanosine monophosphate concentrations. The first one is related to the uses of analogues of natriuretic peptides. The second is related to increasing levels of natriuretic peptides by the inhibition of degradation. The third leads to an increase in cyclic guanosine monophosphate concentration by the inhibition of its degradation by the inhibition of phosphodiesterase type 5. The last option involves increasing the concentration of cyclic guanosine monophosphate by the additional direct activation of soluble guanylate cyclase. Treatment based on the modulation of guanylate cyclase function is one of the most promising technologies in pharmacology. Pharmacological intervention is stable, effective and safe. Especially interesting is the role of stimulators and activators of soluble guanylate cyclase, which are able to increase the enzymatic activity to generate cyclic guanosine monophosphate independently of nitric oxide. Moreover, most of these agents are effective in chronic treatment in heart failure patients and pulmonary hypertension, and have potential to be a first line option.
Collapse
Affiliation(s)
- Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 75 Ujejskiego St., 85-168 Bydgoszcz, Poland;
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-585-3904
| |
Collapse
|
8
|
Wang B, Huang Q, Li S, Wu J, Yuan X, Sun H, Tang L. [Changes of guanylate cyclase C in colon tissues of rats with intestinal injury associated with severe acute pancreatitis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:376-383. [PMID: 33849828 DOI: 10.12122/j.issn.1673-4254.2021.03.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore the dynamic changes of guanylate cyclase C (GC-C) in the colon tissues of rats with intestinal injury associated with severe acute pancreatitis (SAP). OBJECTIVE Thirty-six SD rats were randomized equally into two groups to receive either sham operation or retrograde pumping of 5% sodium taurocholate (0.1 mL/100 g) into the pancreaticobiliary duct following laparotomy to induce SAP. At 12, 24, and 48 h after modeling, 6 rats from each group were euthanized and the colon tissues were collected for Western blotting, immunohistochemistry and RT-PCR to determine the changes in GC-C expression, and the lowest GC-C expression was deemed to indicate the most serious intestinal injury and the time window for intervention. Another 18 SD rats were randomized into 3 groups for sham operation, SAP modeling or intragastric administration of linaclotide (a GC-C agonist) solution once daily at the dose of 10 μg/kg. At 12 h after modeling, the pathological changes in the pancreas and colon were observed with HE staining; the serum level of AMY, DAO, D-Lac and TNF-α were measured with ELISA, and the expressions of GC-C and claudin-1 were detected using Western blotting, immunohistochemical and transmission electron microscopy. OBJECTIVE The expression of GC-C was significantly reduced in the colon of rats in SAP group, and its lowest expression occurred at 12 h after modeling (P < 0.05) followed by gradual increase over time. Claudin-1 showed a similar trend in the colon. Compared with the sham-operated rats, the rats in SAP and Linaclotide groups showed significantly increased pathological scores of the colon tissues (P < 0.05) and serum levels of AMY, DAO, D-Lac and TNF-α and decreased expressions of GC-C and claudin-1 in the colon (P < 0.05). Compared with those in SAP group, the rats in linaclotide group had significantly lower colonic histopathological scores, lower serum levels of AMY, DAO, D-Lac and TNF-α, and higher expression levels of GC-C and claudin-1 in the colon tissue. OBJECTIVE In rats with SAP-related intestinal injury, the expression of GC-C in the colon tissue decreases to the lowest level at 12 h after SAP onset followed by gradual increase. activating GC-C can increase the expression levels of GC-C and claudin-1 and alleviate intestinal injury, suggesting the role of GC-C in maintaining intestinal barrier integrity by regulating the expression of tight junction proteins.
Collapse
Affiliation(s)
- B Wang
- School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China.,Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - Q Huang
- Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - S Li
- School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China.,Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - J Wu
- School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China.,Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - X Yuan
- School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China.,Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - H Sun
- School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China.,Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - L Tang
- School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China.,Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
9
|
Nanto-Hara F, Kanemitsu Y, Fukuda S, Kikuchi K, Asaji K, Saigusa D, Iwasaki T, Ho HJ, Mishima E, Suzuki T, Suzuki C, Tsukimi T, Matsuhashi T, Oikawa Y, Akiyama Y, Kure S, Owada Y, Tomioka Y, Soga T, Ito S, Abe T. The guanylate cyclase C agonist linaclotide ameliorates the gut-cardio-renal axis in an adenine-induced mouse model of chronic kidney disease. Nephrol Dial Transplant 2020; 35:250-264. [PMID: 31411705 DOI: 10.1093/ndt/gfz126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/16/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Cardiorenal syndrome is a major cause of mortality in patients with chronic kidney disease (CKD). However, the involvement of detrimental humoral mediators in the pathogenesis of cardiorenal syndrome is still controversial. Trimethylamine-N-oxide (TMAO), a hepatic metabolic product of trimethylamine generated from dietary phosphatidylcholine or carnitine derived by the gut microbiota, has been linked directly with progression of cardiovascular disease and renal dysfunction. Thus, targeting TMAO may be a novel strategy for the prevention of cardiovascular disease and chronic kidney disease. METHODS Linaclotide, a guanylate cyclase C agonist, was administered to adenine-induced renal failure (RF) mice and changes in renal function and levels of gut-derived uremic toxins, as well as the gut microbiota community, were analyzed using metabolomic and metagenomic methods to reveal its cardiorenal effect. RESULTS Linaclotide decreased the plasma levels of TMAO at a clinically used low dose of 10 μg/kg in the adenine-induced RF mouse model. At a high concentration of 100 μg/kg, linaclotide clearly improved renal function and reduced the levels of various uremic toxins. A reduction in TMAO levels following linaclotide treatment was also observed in a choline-fed pro-atherosclerotic model. Linaclotide ameliorated renal inflammation and fibrosis and cardiac fibrosis, as well as decreased the expression of collagen I, transforming growth factor-β, galectin-3 (Gal-3) and ST2 genes. Plasma levels of Gal-3 and ST2 were also reduced. Because exposure of cardiomyocytes to TMAO increased fibronectin expression, these data suggest that linaclotide reduced the levels of TMAO and various uremic toxins and may result in not only renal, but also cardiac, fibrosis. F4/80-positive macrophages were abundant in small intestinal crypts in RF mice, and this increased expression was decreased by linaclotide. Reduced colonic claudin-1 levels were also restored by linaclotide, suggesting that linaclotide ameliorated the 'leaky gut' in RF mice. Metagenomic analysis revealed that the microbial order Clostridiales could be responsible for the change in TMAO levels. CONCLUSION Linaclotide reduced TMAO and uremic toxin levels and could be a powerful tool for the prevention and control of the cardiorenal syndrome by modification of the gut-cardio-renal axis.
Collapse
Affiliation(s)
- Fumika Nanto-Hara
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.,Department of Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitomi Kanemitsu
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Koichi Kikuchi
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Asaji
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Tomoyuki Iwasaki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hsin-Jung Ho
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.,Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eikan Mishima
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Suzuki
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.,Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chitose Suzuki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoya Tsukimi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Tetsuro Matsuhashi
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.,Division of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitsugu Oikawa
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.,Division of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukako Akiyama
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Division of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Owada
- Department of Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Tomoyoshi Soga
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Abe
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.,Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
10
|
Prasad H, Shenoy AR, Visweswariah SS. Cyclic nucleotides, gut physiology and inflammation. FEBS J 2020; 287:1970-1981. [PMID: 31889413 DOI: 10.1111/febs.15198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022]
Abstract
Misregulation of gut function and homeostasis impinges on the overall well-being of the entire organism. Diarrheal disease is the second leading cause of death in children under 5 years of age, and globally, 1.7 billion cases of childhood diarrhea are reported every year. Accompanying diarrheal episodes are a number of secondary effects in gut physiology and structure, such as erosion of the mucosal barrier that lines the gut, facilitating further inflammation of the gut in response to the normal microbiome. Here, we focus on pathogenic bacteria-mediated diarrhea, emphasizing the role of cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate in driving signaling outputs that result in the secretion of water and ions from the epithelial cells of the gut. We also speculate on how this aberrant efflux and influx of ions could modulate inflammasome signaling, and therefore cell survival and maintenance of gut architecture and function.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | | | |
Collapse
|
11
|
Tronstad RR, Polushina T, Brattbakk HR, Stansberg C, von Volkmann HL, Hanevik K, Ellinghaus E, Jørgensen SF, Ersland KM, Pham KDC, Gilja OH, Hovdenak N, Hausken T, Vatn MH, Franke A, Knappskog PM, Le Hellard S, Karlsen TH, Fiskerstrand T. Genetic and transcriptional analysis of inflammatory bowel disease-associated pathways in patients with GUCY2C-linked familial diarrhea. Scand J Gastroenterol 2019; 53:1264-1273. [PMID: 30353760 DOI: 10.1080/00365521.2018.1521867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Activating mutations in the GUCY2C gene, which encodes the epithelial receptor guanylate cyclase C, cause diarrhea due to increased loss of sodium chloride to the intestinal lumen. Patients with familial GUCY2C diarrhea syndrome (FGDS) are predisposed to inflammatory bowel disease (IBD). We investigated whether genes in the guanylate cyclase C pathway are enriched for association with IBD and reversely whether genetic or transcriptional changes associated with IBD are found in FGDS patients. METHODS (1) A set of 27 genes from the guanylate cyclase C pathway was tested for enrichment of association with IBD by Gene Set Enrichment Analysis, using genome-wide association summary statistics from 12,882 IBD patients and 21,770 controls. (2) We genotyped 163 known IBD risk loci and sequenced NOD2 in 22 patients with FGDS. Eight of them had concomitant Crohn's disease. (3) Global gene expression analysis was performed in ileal tissue from patients with FGDS, Crohn's disease and healthy individuals. RESULTS The guanylate cyclase C gene set showed a significant enrichment of association in IBD genome-wide association data. Risk variants in NOD2 were found in 7/8 FGDS patients with concomitant Crohn's disease and in 2/14 FDGS patients without Crohn's disease. In ileal tissue, downregulation of metallothioneins characterized FGDS patients compared to healthy controls. CONCLUSIONS Our results support a role of guanylate cyclase C signaling and disturbed electrolyte homeostasis in development of IBD. Furthermore, downregulation of metallothioneins in the ileal mucosa of FGDS patients may contribute to IBD development, possibly alongside effects from NOD2 risk variants.
Collapse
Affiliation(s)
- Rune R Tronstad
- a Department of Clinical Science , University of Bergen , Bergen , Norway.,b Department of Paediatrics , Haukeland University Hospital , Bergen , Norway
| | - Tatiana Polushina
- c NORMENT- K.G. Jebsen Center for Psychosis Research, Department of Clinical Science , University of Bergen , Bergen , Norway.,d Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics , Haukeland University Hospital , Bergen , Norway
| | - Hans-Richard Brattbakk
- c NORMENT- K.G. Jebsen Center for Psychosis Research, Department of Clinical Science , University of Bergen , Bergen , Norway.,d Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics , Haukeland University Hospital , Bergen , Norway
| | - Christine Stansberg
- c NORMENT- K.G. Jebsen Center for Psychosis Research, Department of Clinical Science , University of Bergen , Bergen , Norway.,d Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics , Haukeland University Hospital , Bergen , Norway
| | - Hilde Løland von Volkmann
- e Department of Clinical Medicine , University of Bergen , Bergen , Norway.,f Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Kurt Hanevik
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Eva Ellinghaus
- g Institute of Clinical Molecular Biology , Christian Albrechts University of Kiel , Kiel , Germany.,h K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine , University of Oslo , Oslo , Norway
| | - Silje Fjellgård Jørgensen
- h K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine , University of Oslo , Oslo , Norway.,i Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases , Oslo University Hospital , Rikshospitalet , Oslo , Norway
| | - Kari Merete Ersland
- c NORMENT- K.G. Jebsen Center for Psychosis Research, Department of Clinical Science , University of Bergen , Bergen , Norway.,d Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics , Haukeland University Hospital , Bergen , Norway
| | - Khanh D-C Pham
- f Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Odd Helge Gilja
- e Department of Clinical Medicine , University of Bergen , Bergen , Norway.,j National Centre for Ultrasound in Gastroenterology , Haukeland University Hospital , Bergen , Norway
| | - Nils Hovdenak
- f Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Trygve Hausken
- e Department of Clinical Medicine , University of Bergen , Bergen , Norway.,f Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Morten H Vatn
- k Department of Clinical Molecular Biology and Laboratory Sciences (EpiGen), Division of Medicine , Akershus University Hospital and.,l Medical Clinic , Oslo University Hospital Rikshospitalet Oslo , Oslo , Norway
| | - Andre Franke
- g Institute of Clinical Molecular Biology , Christian Albrechts University of Kiel , Kiel , Germany
| | - Per Morten Knappskog
- a Department of Clinical Science , University of Bergen , Bergen , Norway.,m Department of Medical Genetics , Haukeland University Hospital , Bergen , Norway
| | - Stephanie Le Hellard
- c NORMENT- K.G. Jebsen Center for Psychosis Research, Department of Clinical Science , University of Bergen , Bergen , Norway.,d Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics , Haukeland University Hospital , Bergen , Norway
| | - Tom Hemming Karlsen
- h K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine , University of Oslo , Oslo , Norway.,n Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,o Norwegian PSC Research Centre at the Department of Transplantation Medicine, Division of Cancer medicine, Surgery and Transplantation , Oslo University Hospital , Oslo , Norway
| | - Torunn Fiskerstrand
- a Department of Clinical Science , University of Bergen , Bergen , Norway.,m Department of Medical Genetics , Haukeland University Hospital , Bergen , Norway
| |
Collapse
|
12
|
Yuan Z, Yan J, Wen H, Deng X, Li X, Su S. Feeding intolerance alters the gut microbiota of preterm infants. PLoS One 2019; 14:e0210609. [PMID: 30668607 PMCID: PMC6342312 DOI: 10.1371/journal.pone.0210609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/30/2018] [Indexed: 12/27/2022] Open
Abstract
Feeding intolerance (FI) is a common disease in preterm infants, often causing a delay in individual development. Gut microbiota play an important role in nutrient absorption and metabolism of preterm infants. To date, few studies have focused on the community composition of gut microbiota of preterm infants with feeding intolerance. In this study, we collected fecal samples from 41 preterm infants diagnosed with feeding intolerance and 29 preterm infants without feeding intolerance, at three specific times during the development and prevalence of feeding intolerance (after birth, when feeding intolerance was diagnosed, after feeding intolerance was gone), from different hospitals for 16S rRNA gene sequencing. The gut microbiota community composition of preterm infants diagnosed with feeding intolerance was significantly different from that of preterm infants without feeding intolerance. At the time when feeding intolerance was diagnosed, the relative abundance of Klebsiella in preterm infants with feeding intolerance increased significantly, and was significantly higher than that of the preterm infants without feeding intolerance. After feeding intolerance was cured, the relative abundance of Klebsiella significantly decreased in the infants diagnosed with feeding intolerance, while the relative abundance of Klebsiella in preterm infants without feeding intolerance was not significantly altered during the development and prevalence of feeding intolerance. Furthermore, we verified that Klebsiella was effective in the diagnosis of feeding intolerance (AUC = 1) in preterm infants, suggesting that Klebsiella is a potential diagnostic biomarker for feeding intolerance.
Collapse
Affiliation(s)
- Zhenya Yuan
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Junmei Yan
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Hongyu Wen
- School of Life Science, Jiangsu Normal University, Xuzhou, China
- * E-mail:
| | - Xiaoyi Deng
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Xianbin Li
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Siting Su
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
13
|
Rappaport JA, Waldman SA. The Guanylate Cyclase C-cGMP Signaling Axis Opposes Intestinal Epithelial Injury and Neoplasia. Front Oncol 2018; 8:299. [PMID: 30131940 PMCID: PMC6091576 DOI: 10.3389/fonc.2018.00299] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
Guanylate cyclase C (GUCY2C) is a transmembrane receptor expressed on the luminal aspect of the intestinal epithelium. Its ligands include bacterial heat-stable enterotoxins responsible for traveler's diarrhea, the endogenous peptide hormones uroguanylin and guanylin, and the synthetic agents, linaclotide, plecanatide, and dolcanatide. Ligand-activated GUCY2C catalyzes the synthesis of intracellular cyclic GMP (cGMP), initiating signaling cascades underlying homeostasis of the intestinal epithelium. Mouse models of GUCY2C ablation, and recently, human populations harboring GUCY2C mutations, have revealed the diverse contributions of this signaling axis to epithelial health, including regulating fluid secretion, microbiome composition, intestinal barrier integrity, epithelial renewal, cell cycle progression, responses to DNA damage, epithelial-mesenchymal cross-talk, cell migration, and cellular metabolic status. Because of these wide-ranging roles, dysregulation of the GUCY2C-cGMP signaling axis has been implicated in the pathogenesis of bowel transit disorders, inflammatory bowel disease, and colorectal cancer. This review explores the current understanding of cGMP signaling in the intestinal epithelium and mechanisms by which it opposes intestinal injury. Particular focus will be applied to its emerging role in tumor suppression. In colorectal tumors, endogenous GUCY2C ligand expression is lost by a yet undefined mechanism conserved in mice and humans. Further, reconstitution of GUCY2C signaling through genetic or oral ligand replacement opposes tumorigenesis in mice. Taken together, these findings suggest an intriguing hypothesis that colorectal cancer arises in a microenvironment of functional GUCY2C inactivation, which can be repaired by oral ligand replacement. Hence, the GUCY2C signaling axis represents a novel therapeutic target for preventing colorectal cancer.
Collapse
Affiliation(s)
- Jeffrey A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|