1
|
Li J, Xiao F, Lin B, Huang Z, Wu M, Ma H, Dou R, Song X, Wang Z, Cai C, Guan X, Xu J, Xiang FL. Ferrostatin-1 improves acute sepsis-induced cardiomyopathy via inhibiting neutrophil infiltration through impaired chemokine axis. Front Cell Dev Biol 2024; 12:1510232. [PMID: 39726718 PMCID: PMC11669711 DOI: 10.3389/fcell.2024.1510232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Sepsis-induced cardiomyopathy is a common complication of sepsis and is associated with higher mortality. To date, effective diagnostic and management strategies are still lacking. Recent studies suggest that ferroptosis plays a critical role in sepsis-induced cardiomyopathy and ferroptosis inhibitor Ferrostatin-1 (Fer-1) improved cardiac dysfunction and survival in lipopolysaccharide (LPS) induced endotoxemia. However, the effects of Fer-1 in cardiac dysfunction in the early stages of cecal ligation and puncture (CLP) induced sepsis remains unclear. Our study aims to elucidate the role of Fer-1 in the acute phase of peritonitis sepsis induced cardiac injury. Methods and Results CLP was used to induce peritonitis sepsis in mice. Pretreatment of ferroptosis inhibitor ferrostatin-1 (Fer-1) was used in the in vivo models. Survival was monitored for 48h. Cardiac function and histology were analyzed 6h after surgery. We found that ejection fraction (EF) remained normal at 6h after CLP, but the contractility detected by cardiac muscle strain analysis was significantly reduced, along with increased immune cell infiltration. Pretreating the CLP mice with 5 mg/kg Fer-1 significantly reduced mortality. At 6h after CLP, ferroptosis key regulator Gpx4, cardiac iron and malonaldehyde (MDA) did not change, but ferroptosis marker gene expression increased. Fer-1 treatment showed beneficial effects in cardiac function, less myocardial inflammatory cytokine expression and significantly inhibited immune cells, especially neutrophil infiltration in the heart. Consistently, expression of neutrophil associated chemokines (Ccrl2, Cxcl2, Cxcl3 and Cxcl5) as well as extracellular matrix (ECM) degradation enzymes (Adamts1, Adamts4, Adamts9 and Mmp8) significantly decreased in Fer-1 pre-treated CLP heart. Conclusion and Discussion Our findings suggest that Fer-1 inhibits neutrophil infiltration in early sepsis by disrupting the chemokine axis, highlighting its potential as a therapeutic option to manage acute immune overactivation in early stages of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Jialin Li
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fang Xiao
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingsen Lin
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Anesthesia, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhilei Huang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingyue Wu
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huan Ma
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruoxu Dou
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Song
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongxing Wang
- Department of Anesthesia, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changjie Cai
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Xu
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Fu-Li Xiang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Li J, Wang L, Yu B, Su J, Dong S. IL7R, GZMA and CD8A serve as potential molecular biomarkers for sepsis based on bioinformatics analysis. Front Immunol 2024; 15:1445858. [PMID: 39654893 PMCID: PMC11625646 DOI: 10.3389/fimmu.2024.1445858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose Sepsis is an unusual systemic reaction to what is sometimes an otherwise ordinary infection, and it probably represents a pattern of response by the immune system to injury. However, the relationship between biomarkers and sepsis remains unclear. This study aimed to find potential molecular biomarkers, which could do some help to patients with sepsis. Methods The sepsis dataset GSE28750, GSE57065 was downloaded from the GEO database, and ten patients with or without sepsis from our hospital were admitted for RNA-seq and the differentially expressed genes (DEGs) were screened. The Metascape database was used for functional enrichment analysis and was used to found the differential gene list. Protein-protein interaction network was used and further analyzed by using Cytoscape and STRING. Logistic regression and Correlation analysis were used to find the potential molecular biomarkers. Results Taking the intersection of the three datasets yielded 287 differential genes. The enrichment results included Neutrophil degranulation, leukocyte activation, immune effectors process, positive regulation of immune response, regulation of leukocyte activation. The top 10 key genes of PPI connectivity were screened using cytoHubba plugin, which were KLRK1, KLRB1, IL7R, GZMA, CD27, PRF1, CD8A, CD2, IL2RB, and GZMB. All of the hub genes are higher expressed in health group of different databases. Logistic regression showed that IL7R, GZMA and CD8A proteins were analyzed and all of them were statistically significant. Correlation analysis showed that there was a statistically significant correlation between IL7R, GZMA and CD8A. Conclusion KLRK1, KLRB1, IL7R, GZMA, CD27, PRF1, CD8A, CD2, IL2RB, GZMB are key genes in sepsis, which associated with the development of sepsis. However, IL7R, GZMA and CD8A may serve as the attractively potential molecular biomarkers for sepsis.
Collapse
Affiliation(s)
- Jin Li
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lantao Wang
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Yu
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jie Su
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shimin Dong
- Department of Emergency, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Armstrong A, Tang Y, Mukherjee N, Zhang N, Huang G. Into the storm: the imbalance in the yin-yang immune response as the commonality of cytokine storm syndromes. Front Immunol 2024; 15:1448201. [PMID: 39318634 PMCID: PMC11420043 DOI: 10.3389/fimmu.2024.1448201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
There is a continuous cycle of activation and contraction in the immune response against pathogens and other threats to human health in life. This intrinsic yin-yang of the immune response ensures that inflammatory processes can be appropriately controlled once that threat has been resolved, preventing unnecessary tissue and organ damage. Various factors may contribute to a state of perpetual immune activation, leading to a failure to undergo immune contraction and development of cytokine storm syndromes. A literature review was performed to consider how the trajectory of the immune response in certain individuals leads to cytokine storm, hyperinflammation, and multiorgan damage seen in cytokine storm syndromes. The goal of this review is to evaluate how underlying factors contribute to cytokine storm syndromes, as well as the symptomatology, pathology, and long-term implications of these conditions. Although the recognition of cytokine storm syndromes allows for universal treatment with steroids, this therapy shows limitations for symptom resolution and survival. By identifying cytokine storm syndromes as a continuum of disease, this will allow for a thorough evaluation of disease pathogenesis, consideration of targeted therapies, and eventual restoration of the balance in the yin-yang immune response.
Collapse
Affiliation(s)
- Amy Armstrong
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yuting Tang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Neelam Mukherjee
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Urology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nu Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Gang Huang
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Pathology & Laboratory Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
4
|
Buchheim JI, Feuerecker M, Balsamo M, Vukich M, Van Walleghem M, Tabury K, Quintens R, Vermeesen R, Baselet B, Baatout S, Rattenbacher B, Antunes I, Ngo-Anh TJ, Crucian B, Choukér A. Monitoring functional immune responses with a cytokine release assay: ISS flight hardware design and experimental protocol for whole blood cultures executed under microgravity conditions. Front Physiol 2024; 14:1322852. [PMID: 38288353 PMCID: PMC10823428 DOI: 10.3389/fphys.2023.1322852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/19/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction: Long-term space missions trigger a prolonged neuroendocrine stress response leading to immune system dysregulation evidenced by susceptibility to infections, viral reactivation, and skin irritations. However, due to existing technical constraints, real-time functional immune assessments are not currently available to crew inflight. The in vitro cytokine release assay (CRA) has been effectively employed to study the stimulated cytokine response of immune cells in whole blood albeit limited to pre- and post-flight sessions. A novel two-valve reaction tube (RT) has been developed to enable the execution of the CRA on the International Space Station (ISS). Methods: In a comprehensive test campaign, we assessed the suitability of three materials (silicone, C-Flex, and PVC) for the RT design in terms of biochemical compatibility, chemical stability, and final data quality analysis. Furthermore, we thoroughly examined additional quality criteria such as safety, handling, and the frozen storage of antigens within the RTs. The validation of the proposed crew procedure was conducted during a parabolic flight campaign. Results: The selected material and procedure proved to be both feasible and secure yielding consistent and dependable data outcomes. This new hardware allows for the stimulation of blood samples on board the ISS, with subsequent analysis still conducted on the ground. Discussion: The resultant data promises to offer a more accurate understanding of the stress-induced neuroendocrine modulation of immunity during space travel providing valuable insights for the scientific community. Furthermore, the versatile nature of the RT suggests its potential utility as a testing platform for various other assays or sample types.
Collapse
Affiliation(s)
- Judith-Irina Buchheim
- Laboratory of Translational Research “Stress and Immunity”, Department of Anesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Matthias Feuerecker
- Laboratory of Translational Research “Stress and Immunity”, Department of Anesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Marco Vukich
- Kayser Italia S.r.l, Livorno, Italy
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, Netherlands
| | - Merel Van Walleghem
- European Astronaut Center (EAC), European Space Agency (ESA), Cologne, Germany
- Belgian Nuclear Research Centre (SCK CEN), Radiobiology Unit, Nuclear Medical Application Institute, Mol, Belgium
| | - Kevin Tabury
- Belgian Nuclear Research Centre (SCK CEN), Radiobiology Unit, Nuclear Medical Application Institute, Mol, Belgium
| | - Roel Quintens
- Belgian Nuclear Research Centre (SCK CEN), Radiobiology Unit, Nuclear Medical Application Institute, Mol, Belgium
| | - Randy Vermeesen
- Belgian Nuclear Research Centre (SCK CEN), Radiobiology Unit, Nuclear Medical Application Institute, Mol, Belgium
| | - Bjorn Baselet
- Belgian Nuclear Research Centre (SCK CEN), Radiobiology Unit, Nuclear Medical Application Institute, Mol, Belgium
| | - Sarah Baatout
- Belgian Nuclear Research Centre (SCK CEN), Radiobiology Unit, Nuclear Medical Application Institute, Mol, Belgium
| | - Bernd Rattenbacher
- Biotechnology Space Support Center (Biotesc), Lucerne University of Applied Sciences and Arts (HSLU), Luzerne, Switzerland
| | - Inês Antunes
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, Netherlands
| | - Thu Jennifer Ngo-Anh
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, Netherlands
| | - Brian Crucian
- Immunology Lab, NASA Johnsons Space Center, Houston, TX, United States
| | - Alexander Choukér
- Laboratory of Translational Research “Stress and Immunity”, Department of Anesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Moisa E, Dutu M, Corneci D, Grintescu IM, Negoita S. Hematological Parameters and Procalcitonin as Discriminants between Bacterial Pneumonia-Induced Sepsis and Viral Sepsis Secondary to COVID-19: A Retrospective Single-Center Analysis. Int J Mol Sci 2023; 24:ijms24065146. [PMID: 36982221 PMCID: PMC10049727 DOI: 10.3390/ijms24065146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Bacterial and viral sepsis induce alterations of all hematological parameters and procalcitonin is used as a biomarker of infection and disease severity. Our aim was to study the hematological patterns associated with pulmonary sepsis triggered by bacteria and Severe Acute Respiratory Syndrome-Coronavirus-type-2 (SARS-CoV-2) and to identify the discriminants between them. We performed a retrospective, observational study including 124 patients with bacterial sepsis and 138 patients with viral sepsis. Discriminative ability of hematological parameters and procalcitonin between sepsis types was tested using receiver operating characteristic (ROC) analysis. Sensitivity (Sn%), specificity (Sp%), positive and negative likelihood ratios were calculated for the identified cut-off values. Patients with bacterial sepsis were older than patients with viral sepsis (p < 0.001), with no differences regarding gender. Subsequently to ROC analysis, procalcitonin had excellent discriminative ability for bacterial sepsis diagnosis with an area under the curve (AUC) of 0.92 (cut-off value of >1.49 ng/mL; Sn = 76.6%, Sp = 94.2%), followed by RDW% with an AUC = 0.87 (cut-off value >14.8%; Sn = 80.7%, Sp = 85.5%). Leukocytes, monocytes and neutrophils had good discriminative ability with AUCs between 0.76-0.78 (p < 0.001), while other hematological parameters had fair or no discriminative ability. Lastly, procalcitonin value was strongly correlated with disease severity in both types of sepsis (p < 0.001). Procalcitonin and RDW% had the best discriminative ability between bacterial and viral sepsis, followed by leukocytes, monocytes and neutrophils. Procalcitonin is a marker of disease severity regardless of sepsis type.
Collapse
Affiliation(s)
- Emanuel Moisa
- Department of Anaesthesia and Intensive Care Medicine, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinic of Anaesthesia and Intensive Care Medicine, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Madalina Dutu
- Department of Anaesthesia and Intensive Care Medicine, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinic of Anaesthesia and Intensive Care Medicine, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Dan Corneci
- Department of Anaesthesia and Intensive Care Medicine, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinic of Anaesthesia and Intensive Care Medicine, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Ioana Marina Grintescu
- Department of Anaesthesia and Intensive Care Medicine, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinic of Anaesthesia and Intensive Care Medicine, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Silvius Negoita
- Department of Anaesthesia and Intensive Care Medicine, Faculty of Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinic of Anaesthesia and Intensive Care Medicine, Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
6
|
SARS-CoV-2 pneumonia and bacterial pneumonia patients differ in a second hit immune response model. Sci Rep 2022; 12:15485. [PMID: 36109525 PMCID: PMC9476429 DOI: 10.1038/s41598-022-17368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Secondary infections have been shown to complicate the clinical course and worsen the outcome of critically ill patients. Severe Coronavirus Disease 2019 (COVID-19) may be accompanied by a pronounced cytokine release, and immune competence of these patients towards most pathogenic antigens remains uncompromised early in the disease. Patients with bacterial sepsis also exhibit excessive cytokine release with systemic hyper-inflammation, however, typically followed by an anti-inflammatory phase, causing immune paralysis. In a second hit immune response model, leukocyte activation capacity of severely ill patients with pneumonia caused by SARS-CoV-2 or by bacteria were compared upon ICU admission and at days 4 and 7 of the ICU stay. Blood cell count and release of the pro-inflammatory cytokines IL-2, IFNγ and TNF were assessed after whole-blood incubation with the potent immune stimulus pokeweed mitogen (PWM). For comparison, patients with bacterial sepsis not originating from pneumonia, and healthy volunteers were included. Lymphopenia and granulocytosis were less pronounced in COVID-19 patients compared to bacterial sepsis patients. After PWM stimulation, COVID-19 patients showed a reduced release of IFNγ, while IL-2 levels were found similar and TNF levels were increased compared to healthy controls. Interestingly, concentrations of all three cytokines were significantly higher in samples from COVID-19 patients compared to samples from patients with bacterial infection. This fundamental difference in immune competence during a second hit between COVID-19 and sepsis patients may have implications for the selection of immune suppressive or enhancing therapies in personalized medicine.
Collapse
|
7
|
Alfaro S, Acuña V, Ceriani R, Cavieres MF, Weinstein-Oppenheimer CR, Campos-Estrada C. Involvement of Inflammation and Its Resolution in Disease and Therapeutics. Int J Mol Sci 2022; 23:ijms231810719. [PMID: 36142625 PMCID: PMC9505300 DOI: 10.3390/ijms231810719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022] Open
Abstract
Inflammation plays a critical role in the response to and survival from injuries and/or infections. It occurs in two phases: initiation and resolution; however, when these events do not resolve and persist over time, the inflammatory response becomes chronic, prompting diseases that affect several systems and organs, such as the vasculature and the skin. Here, we reviewed inflammation that occurs in selected infectious and sterile pathologies. Thus, the immune processes induced by bacterial sepsis as well as T. cruzi and SARS-CoV-2 infections are shown. In addition, vaccine adjuvants as well as atherosclerosis are revised as examples of sterile-mediated inflammation. An example of the consequences of a lack of inflammation resolution is given through the revision of wound healing and chronic wounds. Then, we revised the resolution of the latter through advanced therapies represented by cell therapy and tissue engineering approaches, showing how they contribute to control chronic inflammation and therefore wound healing. Finally, new pharmacological insights into the management of chronic inflammation addressing the resolution of inflammation based on pro-resolving mediators, such as lipoxin, maresin, and resolvins, examining their biosynthesis, biological properties, and pharmacokinetic and pharmaceuticals limitations, are given. We conclude that resolution pharmacology and advanced therapies are promising tools to restore the inflammation homeostasis.
Collapse
Affiliation(s)
- Sebastián Alfaro
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
| | - Vania Acuña
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
| | - Ricardo Ceriani
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
| | - María Fernanda Cavieres
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
| | - Caroline Ruth Weinstein-Oppenheimer
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Santa Marta 183, Valparaíso 1093, Chile
- Correspondence: (C.R.W.-O.); (C.C.-E.); Tel.: +56-32-2508419 (C.R.W.-O.); +56-32-2508140 (C.C.-E.)
| | - Carolina Campos-Estrada
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Santa Marta 183, Valparaíso 1093, Chile
- Correspondence: (C.R.W.-O.); (C.C.-E.); Tel.: +56-32-2508419 (C.R.W.-O.); +56-32-2508140 (C.C.-E.)
| |
Collapse
|
8
|
Bick A, Buys W, Engler A, Madel R, Atia M, Faro F, Westendorf AM, Limmer A, Buer J, Herbstreit F, Kirschning CJ, Peters J. Immune hyporeactivity to bacteria and multiple TLR-ligands, yet no response to checkpoint inhibition in patients just after meeting Sepsis-3 criteria. PLoS One 2022; 17:e0273247. [PMID: 35981050 PMCID: PMC9387870 DOI: 10.1371/journal.pone.0273247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Rationale
The immune profile of sepsis patients is incompletely understood and hyperinflammation and hypoinflammation may occur concurrently or sequentially. Immune checkpoint inhibition (ICI) may counter hypoinflammation but effects are uncertain. We tested the reactivity of septic whole blood to bacteria, Toll-like receptor (TLR) ligands and to ICI.
Methods
Whole blood assays of 61 patients’ samples within 24h of meeting sepsis-3 criteria and 12 age and sex-matched healthy volunteers. Measurements included pattern/danger-associated molecular pattern (P/DAMP), cytokine concentrations at baseline and in response to TLR 2, 4, and 7/8 ligands, heat-inactivated Staphylococcus aureus or Escherichia coli, E.coli lipopolysaccharide (LPS), concentration of soluble and cellular immune checkpoint molecules, and cytokine concentrations in response to ICI directed against programmed-death receptor 1 (PD1), PD1-ligand 1, or cytotoxic T-lymphocyte antigen 4, both in the absence and presence of LPS.
Main results
In sepsis, concentrations of P/DAMPs and inflammatory cytokines were increased and the latter increased further upon incubation ex vivo. However, cytokine responses to TLR 2, 4, and 7/8 ligands, heat-inactivated S. aureus or E. coli, and E. coli LPS were all depressed. Depression of the response to LPS was associated with increased in-hospital mortality. Despite increased PD-1 expression on monocytes and T-cells, and monocyte CTLA-4 expression, however, addition of corresponding checkpoint inhibitors to assays failed to increase inflammatory cytokine concentrations in the absence and presence of LPS.
Conclusion
Patients first meeting Sepsis-3 criteria reveal 1) depressed responses to multiple TLR-ligands, bacteria, and bacterial LPS, despite concomitant inflammation, but 2) no response to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Alexandra Bick
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Willem Buys
- Universität Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Andrea Engler
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | | | - Mazen Atia
- Universität Duisburg-Essen, Essen, Germany
| | | | - Astrid M. Westendorf
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Andreas Limmer
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Jan Buer
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Frank Herbstreit
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Carsten J. Kirschning
- Institut für Medizinische Mikrobiologie, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg Essen & Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
9
|
Saillard C, Legal PH, Furst S, Bisbal M, Servan L, Sannini A, Gonzalez F, Faucher M, Vey N, Blaise D, Chow-Chine L, Mokart D. Feasibility of Cyclosporine Prophylaxis Withdrawal in Critically Ill Allogenic Hematopoietic Stem Cell Transplant Patients Admitted to the Intensive Care Unit With No GVHD. Transplant Cell Ther 2022; 28:783.e1-783.e10. [DOI: 10.1016/j.jtct.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
|
10
|
Yao RQ, Ren C, Zheng LY, Xia ZF, Yao YM. Advances in Immune Monitoring Approaches for Sepsis-Induced Immunosuppression. Front Immunol 2022; 13:891024. [PMID: 35619710 PMCID: PMC9127053 DOI: 10.3389/fimmu.2022.891024] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis represents a life-threatening organ dysfunction due to an aberrant host response. Of note is that majority of patients have experienced a severe immune depression during and after sepsis, which is significantly correlated with the occurrence of nosocomial infection and higher risk of in-hospital death. Nevertheless, the clinical sign of sepsis-induced immune paralysis remains highly indetectable and ambiguous. Given that, specific yet robust biomarkers for monitoring the immune functional status of septic patients are of prominent significance in clinical practice. In turn, the stratification of a subgroup of septic patients with an immunosuppressive state will greatly contribute to the implementation of personalized adjuvant immunotherapy. In this review, we comprehensively summarize the mechanism of sepsis-associated immunosuppression at the cellular level and highlight the recent advances in immune monitoring approaches targeting the functional status of both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chao Ren
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhao-Fan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
11
|
Tang XD, Ji TT, Dong JR, Feng H, Chen FQ, Chen X, Zhao HY, Chen DK, Ma WT. Pathogenesis and Treatment of Cytokine Storm Induced by Infectious Diseases. Int J Mol Sci 2021; 22:13009. [PMID: 34884813 PMCID: PMC8658039 DOI: 10.3390/ijms222313009] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokine storm is a phenomenon characterized by strong elevated circulating cytokines that most often occur after an overreactive immune system is activated by an acute systemic infection. A variety of cells participate in cytokine storm induction and progression, with profiles of cytokines released during cytokine storm varying from disease to disease. This review focuses on pathophysiological mechanisms underlying cytokine storm induction and progression induced by pathogenic invasive infectious diseases. Strategies for targeted treatment of various types of infection-induced cytokine storms are described from both host and pathogen perspectives. In summary, current studies indicate that cytokine storm-targeted therapies can effectively alleviate tissue damage while promoting the clearance of invading pathogens. Based on this premise, "multi-omics" immune system profiling should facilitate the development of more effective therapeutic strategies to alleviate cytokine storms caused by various diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - De-Kun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (X.-D.T.); (T.-T.J.); (J.-R.D.); (H.F.); (F.-Q.C.); (X.C.); (H.-Y.Z.)
| | - Wen-Tao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (X.-D.T.); (T.-T.J.); (J.-R.D.); (H.F.); (F.-Q.C.); (X.C.); (H.-Y.Z.)
| |
Collapse
|
12
|
Greco M, Mazzei A, Suppressa S, Palumbo C, Verri T, Lobreglio G. Human Leukocyte Antigen-DR Isotype Expression in Monocytes and T Cells Interferon-Gamma Release Assay in Septic Patients and Correlation With Clinical Outcome. J Clin Med Res 2021; 13:293-303. [PMID: 34104281 PMCID: PMC8166289 DOI: 10.14740/jocmr4474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 01/26/2023] Open
Abstract
Background Sepsis is a life-threatening dysregulated host response to infection responsible of multiple organs dysfunction (Sepsis-3 International Consensus Definition), during which clinical outcome is a balance between inflammation and immune suppression. Monocytes and lymphocytes may play an important role in immune paralysis, and their impaired functional activity can decrease overall immune system efficiency. We evaluated sepsis-induced changes in monocytes human leukocyte antigen-DR isotype (HLA-DR) expression and T cell capacity of interferon (IFN)-γ production in relation with patient’s clinical outcome. Methods Analysis of HLA-DR expression on blood monocytes (mHLA-DR) was performed in 55 patients with high procalcitonin (hPCT, > 0.5 ng/mL,) and suspected/confirmed sepsis, and 20 controls. HLA-DR absolute quantification and IFN-γ release assay were monitored in 16 septic patients for 4 weeks following sepsis confirmation. Results Cytofluorimetric analysis revealed a significant decrease of mHLA-DR percentage in septic patients with adverse outcome compared to patients with better clinical outcome (88.4% vs. 98.6% with P < 0.05), in combination with a significant decrease of absolute number of HLA-DR molecules per monocyte (P < 0.05, starting at 1 week of follow-up). Lymphocytes stimulation with phytohemagglutinin (PHA), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) showed a severe declining of IFN-γ release related to fatal clinical outcome of patients. Conclusions This immunologic anergy of innate and adaptative immunity showed an early immune paralysis during sepsis which appears correlated with the impairment of clinical outcome.
Collapse
Affiliation(s)
- Marilena Greco
- Clinical Pathology and Microbiology, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy
| | - Aurora Mazzei
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, Lecce, Italy
| | - Salvatore Suppressa
- Clinical Pathology and Microbiology, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy
| | - Claudio Palumbo
- Clinical Pathology and Microbiology, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, Lecce, Italy
| | - Giambattista Lobreglio
- Clinical Pathology and Microbiology, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy
| |
Collapse
|
13
|
Delta-Procalcitonin and Vitamin D Can Predict Mortality of Internal Medicine Patients with Microbiological Identified Sepsis. ACTA ACUST UNITED AC 2021; 57:medicina57040331. [PMID: 33915819 PMCID: PMC8066199 DOI: 10.3390/medicina57040331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022]
Abstract
Background: The management of septic patients hospitalized in Internal Medicine wards represents a challenge due to their complexity and heterogeneity, and a high mortality rate. Among the available prognostic tools, procalcitonin (PCT) is considered a marker of bacterial infection. Furthermore, an association between vitamin D deficiency and poor sepsis-related outcomes has been described. Objectives: To evaluate the prognostic accuracy of two consecutive PCT determinations (Delta-PCT) and of vitamin D levels in predicting mortality in a population of patients with microbiological identified sepsis admitted to Internal Medicine wards. Methods: This is a sub-analysis of a previous prospective study. A total of 80 patients had at least two available consecutive PCT determinations, while 63 had also vitamin D. Delta-PCT was defined as a reduction of PCT > 50% after 48 h, >75% after 72 h, and >85% after 96 h. Mortality rate at 28- and 90-days were considered as main outcome. Results: Mortality rate was 18.7% at 28-days and 30.0% at 90-days. Baseline PCT levels did not differ between survived and deceased patients (28-days: p = 0.525; 90-days: p = 0.088). A significantly higher proportion of survived patients showed Delta-PCT (28-days: p = 0.002; 90-days: p < 0.001). Delta-PCT was associated with a lower 28-days (p = 0.007; OR = 0.12, 95%CI 0.02–0.46) and 90-days mortality (p = 0.001; OR = 0.17, 95%CI 0.06–0.48). A significantly higher proportion of deceased patients showed severe vitamin D deficiency (28-days: p = 0.047; 90-days: p = 0.049). Severe vitamin D deficiency was associated with a higher 28-days (p = 0.058; OR = 3.95, 95%CI 1.04–19.43) and 90-days mortality (p = 0.054; OR = 2.94, 95%CI 1.00–9.23). Conclusions: Delta-PCT and vitamin D represent two useful tests for predicting prognosis of septic patients admitted to Internal Medicine wards.
Collapse
|
14
|
Galbraith NJ, Gardner SA, Walker SP, Trainor P, Carter JV, Bishop C, Sarojini H, O'Brien SJ, Bhatnagar A, Polk HC, Galandiuk S. The role and function of IκKα/β in monocyte impairment. Sci Rep 2020; 10:12222. [PMID: 32699255 PMCID: PMC7376008 DOI: 10.1038/s41598-020-68018-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/27/2020] [Indexed: 11/16/2022] Open
Abstract
Following major trauma, sepsis or surgery, some patients exhibit an impaired monocyte inflammatory response that is characterized by a decreased response to a subsequent bacterial challenge. To investigate this poorly understood phenomenon, we adopted an in-vitro model of endotoxin tolerance utilising primary human CD14 + monocytes to focus on the effect of impairment on IκKα/β, a critical part of the NFκB pathway. Impaired monocytes had decreased IκKα mRNA and protein expression and decreased phosphorylation of the IκKα/β complex. The impaired monocyte secretome demonstrated a distinct cytokine/chemokine footprint from the naïve monocyte, and that TNF-α was the most sensitive cytokine or chemokine in this setting of impairment. Inhibition of IκKα/β with a novel selective inhibitor reproduced the impaired monocyte phenotype with decreased production of TNF-α, IL-6, IL-12p70, IL-10, GM-CSF, VEGF, MIP-1β, TNF-β, IFN-α2 and IL-7 in response to an LPS challenge. Surgical patients with infection also exhibited an impaired monocyte phenotype and had decreased SITPEC, TAK1 and MEKK gene expression, which are important for IκKα/β activation. Our results emphasize that impaired monocyte function is, at least in part, related to dysregulated IκKα/β activation, and that IκKα/β is likely involved in mounting a sufficient monocyte inflammatory response. Future studies may wish to focus on adjuvant therapies that augment IκKα/β function to restore monocyte function in this clinically important problem.
Collapse
Affiliation(s)
- Norman J Galbraith
- Price Institute of Surgical Research, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Sarah A Gardner
- Price Institute of Surgical Research, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Samuel P Walker
- Price Institute of Surgical Research, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Patrick Trainor
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jane V Carter
- Price Institute of Surgical Research, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Campbell Bishop
- Price Institute of Surgical Research, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Harshini Sarojini
- Price Institute of Surgical Research, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Stephen J O'Brien
- Price Institute of Surgical Research, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Hiram C Polk
- Price Institute of Surgical Research, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| | - Susan Galandiuk
- Price Institute of Surgical Research, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| |
Collapse
|
15
|
Tao L, Wang Y, Xu J, Su J, Yang Q, Deng W, Zou B, Tan Y, Ding Z, Li X. IL-10-producing regulatory B cells exhibit functional defects and play a protective role in severe endotoxic shock. Pharmacol Res 2019; 148:104457. [PMID: 31536782 DOI: 10.1016/j.phrs.2019.104457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/20/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
Abstract
Dysregulated host immune homeostasis in sepsis is life-threatening even after a successfully treated bacterial infection. Lipopolysaccharide (LPS) is an endotoxin that is a major contributor to the aberrant immune responses and endotoxic shock in gram-negative bacterial sepsis. However, the current knowledge of the role of B cells in endotoxic shock is limited. Here, we report that CD1d expression in B cells and the percentage of CD5+CD1dhi regulatory B (Breg) cells decreased in a mouse model of endotoxic shock. Interestingly, IL-10 but not FasL expression in CD5+CD1dhi Breg cells in response to endotoxin was dramatically reduced in severe septic shock mice, and the regulatory function of CD5+CD1dhi Breg cells in vitro to control the Th1 response was also diminished. Adoptive transfer of CD5+CD1dhi Breg cells from healthy WT mice but not IL-10 deficient mice downregulated the IFN-γ secretion in CD4+ T cells and conferred protection against severe endotoxic shock in vivo. Our findings demonstrate the change and notable therapeutic potential of IL-10-producing Breg cells in endotoxic shock.
Collapse
Affiliation(s)
- Lei Tao
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jialan Xu
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianbing Su
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qin Yang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wende Deng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Binhua Zou
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yanhui Tan
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zongbao Ding
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Moser D, Sun SJ, Li N, Biere K, Hoerl M, Matzel S, Feuerecker M, Buchheim JI, Strewe C, Thiel CS, Gao YX, Wang CZ, Ullrich O, Long M, Choukèr A. Cells´ Flow and Immune Cell Priming under alternating g-forces in Parabolic Flight. Sci Rep 2019; 9:11276. [PMID: 31375732 PMCID: PMC6677797 DOI: 10.1038/s41598-019-47655-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Abstract
Gravitational stress in general and microgravity (µg) in particular are regarded as major stress factors responsible for immune system dysfunction in space. To assess the effects of alternating µg and hypergravity (hyper-g) on immune cells, the attachment of peripheral blood mononuclear cells (PBMCs) to adhesion molecules under flow conditions and the antigen-induced immune activation in whole blood were investigated in parabolic flight (PF). In contrast to hyper-g (1.8 g) and control conditions (1 g), flow and rolling speed of PBMCs were moderately accelerated during µg-periods which were accompanied by a clear reduction in rolling rate. Whole blood analyses revealed a "primed" state of monocytes after PF with potentiated antigen-induced pro-inflammatory cytokine responses. At the same time, concentrations of anti-inflammatory cytokines were increased and monocytes displayed a surface molecule pattern that indicated immunosuppression. The results suggest an immunologic counterbalance to avoid disproportionate immune responses. Understanding the interrelation of immune system impairing and enhancing effects under different gravitational conditions may support the design of countermeasures to mitigate immune deficiencies in space.
Collapse
Affiliation(s)
- D Moser
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - S J Sun
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - N Li
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - K Biere
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - M Hoerl
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - S Matzel
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - M Feuerecker
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - J-I Buchheim
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - C Strewe
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - C S Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development (IMK), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Y X Gao
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - C Z Wang
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - O Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development (IMK), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - M Long
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China. .,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - A Choukèr
- Laboratory of Translational Research "Stress and Immunity", Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
17
|
Guo A, Srinath J, Feuerecker M, Crucian B, Briegel J, Boulesteix AL, Kaufmann I, Choukèr A. Immune function testing in sepsis patients receiving sodium selenite. J Crit Care 2019; 52:208-212. [PMID: 31102938 DOI: 10.1016/j.jcrc.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE We examined in a longitudinal study the role of sodium selenite in sepsis patients in strengthening the immune performance in whole blood samples using immune functional assays. MATERIALS AND METHODS This was a sub-study from a randomized, double blinded multicenter clinical trial (SISPCT) registered with www.clinicaltrials.gov (NCT00832039) and with data collected at our center. Full blood samples were incubated with various recall antigens and the supernatants were measured for their cytokine concentrations as markers for immune response. Data from days 0, 4, 7, 14, and 21 (from sepsis onset) were analyzed using a generalized least squares model in R to appropriately take the longitudinal structure and the missing values into account. RESULTS From the 76 patients enrolled in the study at our center, 40 were randomized to selenium therapy and 36 to placebo. The analyses of immune response assay data showed no statistical difference between the selenium and placebo groups at each of the time points. There was however an overall dampening of cytokine release, which tended to recover over time in both groups. CONCLUSION Selenium has long been an adjuvant therapy in treating sepsis. Recently, it was proven to not have beneficial effects on the mortality outcome. Using data from our center in this sub-cohort study, we identified no relative improvement in cytokine release of stimulated blood immune cells ex vivo from patients with selenium therapy over a three-week period. This offers a potential explanation for the lack of beneficial effects of selenium in sepsis patients.
Collapse
Affiliation(s)
- Anne Guo
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Jyotsna Srinath
- Institute for Medical Information Processing, Biometry and Epidemiology, LMU Munich, Munich, Germany
| | - Matthias Feuerecker
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Brian Crucian
- Johnson Space Center (JSC), NASA, 1601 NASA Parkway, Houston, TX 77058, USA
| | - Josef Briegel
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Anne-Laure Boulesteix
- Institute for Medical Information Processing, Biometry and Epidemiology, LMU Munich, Munich, Germany
| | - Ines Kaufmann
- Department of Anaesthesiology, Munich-Neuperlach Hospital, Munich, Germany
| | - Alexander Choukèr
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
18
|
von Knethen A, Brüne B. Histone Deacetylation Inhibitors as Therapy Concept in Sepsis. Int J Mol Sci 2019; 20:ijms20020346. [PMID: 30654448 PMCID: PMC6359123 DOI: 10.3390/ijms20020346] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/15/2022] Open
Abstract
Sepsis is characterized by dysregulated gene expression, provoking a hyper-inflammatory response occurring in parallel to a hypo-inflammatory reaction. This is often associated with multi-organ failure, leading to the patient’s death. Therefore, reprogramming of these pro- and anti-inflammatory, as well as immune-response genes which are involved in acute systemic inflammation, is a therapy approach to prevent organ failure and to improve sepsis outcomes. Considering epigenetic, i.e., reversible, modifications of chromatin, not altering the DNA sequence as one tool to adapt the expression profile, inhibition of factors mediating these changes is important. Acetylation of histones by histone acetyltransferases (HATs) and initiating an open-chromatin structure leading to its active transcription is counteracted by histone deacetylases (HDACs). Histone deacetylation triggers a compact nucleosome structure preventing active transcription. Hence, inhibiting the activity of HDACs by specific inhibitors can be used to restore the expression profile of the cells. It can be assumed that HDAC inhibitors will reduce the expression of pro-, as well as anti-inflammatory mediators, which blocks sepsis progression. However, decreased cytokine expression might also be unfavorable, because it can be associated with decreased bacterial clearance.
Collapse
Affiliation(s)
- Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt/Main, 60590 Frankfurt, Germany.
- Fraunhofer⁻IME, Project Group Translational Medicine and Pharmacology (TMP), 60596 Frankfurt, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt/Main, 60590 Frankfurt, Germany.
- Fraunhofer⁻IME, Project Group Translational Medicine and Pharmacology (TMP), 60596 Frankfurt, Germany.
| |
Collapse
|
19
|
Rana M, Fei-Bloom Y, Son M, La Bella A, Ochani M, Levine YA, Chiu PY, Wang P, Chavan SS, Volpe BT, Sherry B, Diamond B. Constitutive Vagus Nerve Activation Modulates Immune Suppression in Sepsis Survivors. Front Immunol 2018; 9:2032. [PMID: 30237803 PMCID: PMC6135874 DOI: 10.3389/fimmu.2018.02032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/17/2018] [Indexed: 11/13/2022] Open
Abstract
Patients surviving a septic episode exhibit persistent immune impairment and increased mortality due to enhanced vulnerability to infections. In the present study, using the cecal ligation and puncture (CLP) model of polymicrobial sepsis, we addressed the hypothesis that altered vagus nerve activity contributes to immune impairment in sepsis survivors. CLP-surviving mice exhibited less TNFα in serum following administration of LPS, a surrogate for an infectious challenge, than control-operated (control) mice. To evaluate the role of the vagus nerve in the diminished response to LPS, mice were subjected to bilateral subdiaphragmatic vagotomy at 2 weeks post-CLP. CLP-surviving vagotomized mice exhibited increased serum and tissue TNFα levels in response to LPS-challenge compared to CLP-surviving, non-vagotomized mice. Moreover, vagus nerve stimulation in control mice diminished the LPS-induced TNFα responses while having no effect in CLP mice, suggesting constitutive activation of vagus nerve signaling in CLP-survivors. The percentage of splenic CD4+ ChAT-EGFP+ T cells that relay vagus signals to macrophages was increased in CLP-survivors compared to control mice, and vagotomy in CLP-survivors resulted in a reduced percentage of ChAT-EGFP+ cells. Moreover, CD4 knockout CLP-surviving mice exhibited an enhanced LPS-induced TNFα response compared to wild-type mice, supporting a functional role for CD4+ ChAT+ T cells in mediating inhibition of LPS-induced TNFα responses in CLP-survivors. Blockade of the cholinergic anti-inflammatory pathway with methyllcaconitine, an α7 nicotinic acetylcholine receptor antagonist, restored LPS-induced TNFα responses in CLP-survivors. Our study demonstrates that the vagus nerve is constitutively active in CLP-survivors and contributes to the immune impairment.
Collapse
Affiliation(s)
- Minakshi Rana
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Yurong Fei-Bloom
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Myoungsun Son
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Andrea La Bella
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Mahendar Ochani
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Yaakov A Levine
- SetPoint Medical Corporation, Valencia, CA, United States.,Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Pui Yan Chiu
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Sangeeta S Chavan
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Bruce T Volpe
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Barbara Sherry
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
20
|
The Emperor Has No Clothes? Searching for Dysregulation in Sepsis. J Clin Med 2018; 7:jcm7090247. [PMID: 30158480 PMCID: PMC6162833 DOI: 10.3390/jcm7090247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/14/2018] [Accepted: 08/25/2018] [Indexed: 12/31/2022] Open
Abstract
The core conception of sepsis—that it is a dysregulated state—is a powerful and durable idea that has inspired decades of research. But is it true that the body’s response to sepsis is dysregulated? To answer that question, this review surveyed the history of trials of experimental sepsis treatments targeting the host response. Sepsis survival is not improved by blocking one or many immune pathways. Similarly, sepsis is resistant to treatment by normalizing one or many physiologic parameters simultaneously. The vast majority of interventions are either ineffective or harmful. With this track record of failure, it is time to consider the alternative hypothesis—regulation instead of dysregulation—and the possibility that sepsis traits are often functional, and that some physiologic alterations in sepsis do more good than harm, while others are neutral. This review discusses the implications of this perspective for the future of sepsis research.
Collapse
|