1
|
Zhang W, Liu P, Song M, Li X, Zhao X, Song Y, Tian D, Zhang C, Zhang Y, Ren Y, Liu C, Liu J, Feng Y, Mu Y. Emission fluxes of nitrous acid (HONO) from livestock and poultry wastes. J Environ Sci (China) 2025; 156:466-473. [PMID: 40412947 DOI: 10.1016/j.jes.2024.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 05/27/2025]
Abstract
Gaseous nitrous acid (HONO) is a critical contributor to daytime hydroxyl radical in the troposphere. Livestock farming has been recognized as an overlooked HONO source, but the lack of detailed flux measurements from livestock and poultry wastes would cause uncertainties in modeling its environmental impacts. Here, based on field flux measurements and laboratory experiments, we observed substantial HONO emissions from the composting of swine feces and chicken manure in the warm season, which might be mainly attributed to nitrification process in livestock and poultry wastes. The HONO emission from chicken manure was found to be much higher than that from swine feces, and the higher NH3 emission but lower N2O and NO emissions from chicken manure were also observed. Considering that the interaction among these nitrogen species during nitrification process, the obviously lower HONO emission from swine feces was likely to be explained by the lack of the total ammonia nitrogen and H+ donors in swine feces. Temperature is also a key factor that influences the HONO emission from livestock wastes. In addition, the total HONO emission from swine feces in China was estimated to be approximately 107.7 Gg-N/yr according to the national swine amounts, which is comparable to the national soil HONO emissions, underscoring its non-negligible contribution to regional air quality. Therefore, effective emission control of HONO from livestock and poultry wastes should be carried out to further improve air quality in China.
Collapse
Affiliation(s)
- Wenjin Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pengfei Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Min Song
- Resources and Environment Innovation Research Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Ji'nan 250101, China
| | - Xuran Li
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xiaoxi Zhao
- Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yifei Song
- Sinopec, Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Di Tian
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Chenglong Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangang Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengtang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junfeng Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhao S, Krichels AH, Stephens EZ, Calma AD, Aronson EL, Jenerette GD, Spasojevic MJ, Schimel JP, Hanan EJ, Homyak PM. Nitrogen Availability and Changes in Precipitation Alter Microbially Mediated NO and N 2O Emissions From a Pinyon-Juniper Dryland. GLOBAL CHANGE BIOLOGY 2025; 31:e70159. [PMID: 40145597 PMCID: PMC11948459 DOI: 10.1111/gcb.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
Climate change is altering precipitation regimes that control nitrogen (N) cycling in terrestrial ecosystems. In ecosystems exposed to frequent drought, N can accumulate in soils as they dry, stimulating the emission of both nitric oxide (NO; an air pollutant at high concentrations) and nitrous oxide (N2O; a powerful greenhouse gas) when the dry soils wet up. Because changes in both N availability and soil moisture can alter the capacity of nitrifying organisms such as ammonia-oxidizing bacteria (AOB) and archaea (AOA) to process N and emit N gases, predicting whether shifts in precipitation may alter NO and N2O emissions requires understanding how both AOA and AOB may respond. Thus, we ask: How does altering summer and winter precipitation affect nitrifier-derived N trace gas emissions in a dryland ecosystem? To answer this question, we manipulated summer and winter precipitation and measured AOA- and AOB-derived N trace gas emissions, AOA and AOB abundance, and soil N concentrations. We found that excluding summer precipitation increased AOB-derived NO emissions, consistent with the increase in soil N availability, and that increasing summer precipitation amount promoted AOB activity. Excluding precipitation in the winter (the most extreme water limitation we imposed) did not alter nitrifier-derived NO emissions despite N accumulating in soils. Instead, nitrate that accumulated under drought correlated with high N2O emission via denitrification upon wetting dry soils. Increases in the timing and intensity of precipitation that are forecasted under climate change may, therefore, influence the emission of N gases according to the magnitude and season during which the changes occur.
Collapse
Affiliation(s)
- Sharon Zhao
- Department of Environmental SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| | - Alexander H. Krichels
- Department of Environmental SciencesUniversity of CaliforniaRiversideCaliforniaUSA
- USDA Forest ServiceRocky Mountain Research StationAlbuquerqueNew MexicoUSA
| | - Elizah Z. Stephens
- Department of Environmental SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| | - Anthony D. Calma
- Department of Environmental SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| | - Emma L. Aronson
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - G. Darrel Jenerette
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCaliforniaUSA
- Center for Conservation BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Marko J. Spasojevic
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
- Environmental Dynamics and GeoEcology InstituteUniversity of California RiversideRiversideCaliforniaUSA
| | - Joshua P. Schimel
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Erin J. Hanan
- Department of Natural Resources & Environmental ScienceUniversity of NevadaRenoNevadaUSA
| | - Peter M. Homyak
- Department of Environmental SciencesUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
3
|
Wei J, Zhou Z, Ma X, Yu L, Wen T, Zhang J, Yuan W. A Novel Approach for Real-Time Determination of 15N-Enriched Hydroxylamine. Anal Chem 2024; 96:16505-16509. [PMID: 39382262 DOI: 10.1021/acs.analchem.4c04280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Hydroxylamine (NH2OH) is a critical precursor of nitrous oxide (N2O) and key intermediate in the nitrogen cycle. However, the conversion of NH2OH is very fast, and the lack of real-time 15N analytical methods for NH2OH hinders the on-time capture of its biochemical signals in the N cycle. To bridge this gap, we developed a novel approach for real-time determination of 15N-enriched NH2OH. In this approach, an automated sample inlet unit was coupled to a membrane-inlet mass spectrometer, and NH2OH was converted to N2O by sodium hypochlorite for analysis. The interference of carbon dioxide was successfully removed by an ascarite trap, and the N2O signal showed good linearity over the targeted NH2OH concentrations. The limit of detection and limit of quantification of this approach were 0.38 and 1.28 μM, respectively, and 15N enrichment can be accurately detected when the 15N enrichment is higher than 5 atom %. This approach provides a first online analytical tool to capture real-time NH2OH transforming signals using the 15N tracing technique, which will advance mechanism studies of the N cycle.
Collapse
Affiliation(s)
- Jing Wei
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China
| | - Zheyan Zhou
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiao Ma
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Longfei Yu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Teng Wen
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Wenping Yuan
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100091, China
| |
Collapse
|
4
|
Zhao Z, Qin W, Li L, Zhao H, Ju F. Discovery of Candidatus Nitrosomaritimum as a New Genus of Ammonia-Oxidizing Archaea Widespread in Anoxic Saltmarsh Intertidal Aquifers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16040-16054. [PMID: 39115222 DOI: 10.1021/acs.est.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Ammonia-oxidizing archaea (AOA) are widely distributed in marine and terrestrial habitats, contributing significantly to global nitrogen and carbon cycles. However, their genomic diversity, ecological niches, and metabolic potentials in the anoxic intertidal aquifers remain poorly understood. Here, we discovered and named a novel AOA genus, Candidatus Nitrosomaritimum, from the intertidal aquifers of Yancheng Wetland, showing close metagenomic abundance to the previously acknowledged dominant Nitrosopumilus AOA. Further construction of ammonia monooxygenase-based phylogeny demonstrated the widespread distribution of Nitrosomaritimum AOA in global estuarine-coastal niches and marine sediment. Niche differentiation among sublineages of this new genus in anoxic intertidal aquifers is driven by salinity and dissolved oxygen gradients. Comparative genomics revealed that Candidatus Nitrosomaritimum has the genetic capacity to utilize urea and possesses high-affinity phosphate transporter systems (phnCDE) for surviving phosphorus-limited conditions. Additionally, it contains putative nosZ genes encoding nitrous-oxide (N2O) reductase for reducing N2O to nitrogen gas. Furthermore, we gained first genomic insights into the archaeal phylum Hydrothermarchaeota populations residing in intertidal aquifers and revealed their potential hydroxylamine-detoxification mutualism with AOA through utilizing the AOA-released extracellular hydroxylamine using hydroxylamine oxidoreductase. Together, this study unravels the overlooked role of priorly unknown but abundant AOA lineages of the newly discovered genus Candidatus Nitrosomaritimum in biological nitrogen transformation and their potential for nitrogen pollution mitigation in coastal environments.
Collapse
Affiliation(s)
- Ze Zhao
- College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Wei Qin
- School of Biological Sciences and Institute for Environmental Genomes, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ling Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Heping Zhao
- College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
5
|
Gan C, Li B, Dong J, Li Y, Zhao Y, Wang T, Yang Y, Liao H. Atmospheric HONO emissions in China: Unraveling the spatiotemporal patterns and their key influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123228. [PMID: 38147951 DOI: 10.1016/j.envpol.2023.123228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
Nitrous acid (HONO) can be photolyzed to produce hydroxyl radicals (OH) in the atmosphere. OH plays a critical role in the formation of secondary pollutants like ozone (O3) and secondary organic aerosols (SOA) via various oxidation reactions. Despite the abundance of recent HONO studies, research on national HONO emissions in China remains relatively limited. Therefore, this study employed a "wetting-drying" model and bottom-up approach to develop a high-resolution gridded inventory of HONO emissions for mainland China using multiple data. We used the Monte Carlo method to estimate the uncertainty in HONO emissions. In addition, the primary sources of HONO emissions were identified and their spatiotemporal distribution and main influencing factors were studied. The results indicated that the total HONO emissions in mainland China in 2016 were 0.77 Tg N (R50: 0.28-1.42 Tg N), with soil (0.42 Tg N) and fertilization (0.26 Tg N) as the primary sources, jointly contributing to over 87% of the total. Notably, the North China Plain (NCP) had the highest HONO emission density (3.51 kg N/ha/yr). Seasonal HONO emissions followed the order: summer (0.38 kg N/ha) > spring (0.19 kg N/ha) > autumn (0.17 kg N/ha) > winter (0.06 kg N/ha). Moreover, HONO emissions were strongly correlated with fertilization, cropland, temperature, and precipitation. This study provides vital scientific groundwork for the atmospheric nitrogen cycle and the formation of secondary pollutants.
Collapse
Affiliation(s)
- Cong Gan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Baojie Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Jinyan Dong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yan Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yongqi Zhao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Teng Wang
- College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Yang Yang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hong Liao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
6
|
Krichels AH, Jenerette GD, Shulman H, Piper S, Greene AC, Andrews HM, Botthoff J, Sickman JO, Aronson EL, Homyak PM. Bacterial denitrification drives elevated N 2O emissions in arid southern California drylands. SCIENCE ADVANCES 2023; 9:eadj1989. [PMID: 38055826 DOI: 10.1126/sciadv.adj1989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Soils are the largest source of atmospheric nitrous oxide (N2O), a powerful greenhouse gas. Dry soils rarely harbor anoxic conditions to favor denitrification, the predominant N2O-producing process, yet, among the largest N2O emissions have been measured after wetting summer-dry desert soils, raising the question: Can denitrifiers endure extreme drought and produce N2O immediately after rainfall? Using isotopic and molecular approaches in a California desert, we found that denitrifiers produced N2O within 15 minutes of wetting dry soils (site preference = 12.8 ± 3.92 per mil, δ15Nbulk = 18.6 ± 11.1 per mil). Consistent with this finding, we detected nitrate-reducing transcripts in dry soils and found that inhibiting microbial activity decreased N2O emissions by 59%. Our results suggest that despite extreme environmental conditions-months without precipitation, soil temperatures of ≥40°C, and gravimetric soil water content of <1%-bacterial denitrifiers can account for most of the N2O emitted when dry soils are wetted.
Collapse
Affiliation(s)
- Alexander H Krichels
- Environmental Sciences, University of California, Riverside, CA, USA
- Center for Conservation Biology, University of California, Riverside, CA, USA
- USDA Rocky Mountain Research Station, Albuquerque, NM, USA
| | - G Darrel Jenerette
- Center for Conservation Biology, University of California, Riverside, CA, USA
- Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Hannah Shulman
- Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
- Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Stephanie Piper
- Botany and Plant Sciences, University of California, Riverside, CA, USA
- Houston Advanced Research Center, The Woodlands, TX, USA
| | - Aral C Greene
- Environmental Sciences, University of California, Riverside, CA, USA
| | - Holly M Andrews
- Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Geography, Development and Environment, University of Arizona, Tucson, AZ, USA
| | - Jon Botthoff
- Center for Conservation Biology, University of California, Riverside, CA, USA
| | - James O Sickman
- Environmental Sciences, University of California, Riverside, CA, USA
| | - Emma L Aronson
- Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Peter M Homyak
- Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
7
|
Song Y, Wu D, Ju X, Dörsch P, Wang M, Wang R, Song X, Deng L, Wang R, Gao Z, Haider H, Hou L, Liu M, Yu Y. Nitrite stimulates HONO and NO x but not N 2O emissions in Chinese agricultural soils during nitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166451. [PMID: 37611720 DOI: 10.1016/j.scitotenv.2023.166451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
The long-lived greenhouse gas nitrous oxide (N2O) and short-lived reactive nitrogen (Nr) gases such as ammonia (NH3), nitrous acid (HONO), and nitrogen oxides (NOx) are produced and emitted from fertilized soils and play a critical role for climate warming and air quality. However, only few studies have quantified the production and emission potentials for long- and short-lived gaseous nitrogen (N) species simultaneously in agricultural soils. To link the gaseous N species to intermediate N compounds [ammonium (NH4+), hydroxylamine (NH2OH), and nitrite (NO2-)] and estimate their temperature change potential, ex-situ dry-out experiments were conducted with three Chinese agricultural soils. We found that HONO and NOx (NO + NO2) emissions mainly depend on NO2-, while NH3 and N2O emissions are stimulated by NH4+ and NH2OH, respectively. Addition of 3,4-dimethylpyrazole phosphate (DMPP) and acetylene significantly reduced HONO and NOx emissions, while NH3 emissions were significantly enhanced in an alkaline Fluvo-aquic soil. These results suggested that ammonia-oxidizing bacteria (AOB) and complete ammonia-oxidizing bacteria (comammox Nitrospira) dominate HONO and NOx emissions in the alkaline Fluvo-aquic soil, while ammonia-oxidizing archaea (AOA) are dominant in the acidic Mollisol. DMPP effectively mitigated the warming effect in the Fluvo-aquic soil and the Ultisol. In conclusion, our findings highlight NO2- significantly stimulates HONO and NOx emissions from dryland agricultural soils, dominated by nitrification. In addition, subtle differences of soil NH3, N2O, HONO, and NOx emissions indicated different N turnover processes, and should be considered in biogeochemical and atmospheric chemistry models.
Collapse
Affiliation(s)
- Yaqi Song
- College of Ecology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Dianming Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| | - Xiaotang Ju
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Peter Dörsch
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Mengdi Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Ruhai Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaotong Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingling Deng
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Rui Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Zhiwei Gao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Haroon Haider
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Yuanchun Yu
- College of Ecology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Zhang Q, Liu P, Wang Y, George C, Chen T, Ma S, Ren Y, Mu Y, Song M, Herrmann H, Mellouki A, Chen J, Yue Y, Zhao X, Wang S, Zeng Y. Unveiling the underestimated direct emissions of nitrous acid (HONO). Proc Natl Acad Sci U S A 2023; 120:e2302048120. [PMID: 37603738 PMCID: PMC10468620 DOI: 10.1073/pnas.2302048120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023] Open
Abstract
Gaseous nitrous acid (HONO) is a critical source of hydroxyl radicals (OH) in the troposphere. While both direct and secondary sources contribute to atmospheric HONO, direct emissions have traditionally been considered minor contributors. In this study, we developed δ15N and δ18O isotopic fingerprints to identify six direct HONO emission sources and conducted a 1-y case study on the isotopic composition of atmospheric HONO at rural and urban sites. Interestingly, we identified that livestock farming is a previously overlooked direct source of HONO and determined its HONO to ammonia (NH3) emission ratio. Additionally, our results revealed that spatial and temporal variations in atmospheric HONO isotopic composition can be partially attributed to direct emissions. Through a detailed HONO budget analysis incorporating agricultural sources, we found that direct HONO emissions accounted for 39~45% of HONO production in rural areas across different seasons. The findings were further confirmed by chemistry transport model simulations, highlighting the significance of direct HONO emissions and their impact on air quality in the North China Plain. These findings provide compelling evidence that direct HONO emissions play a more substantial role in contributing to atmospheric HONO than previously believed. Moreover, the δ15N and δ18O isotopic fingerprints developed in this study may serve as a valuable tool for further research on the atmospheric chemistry of reactive nitrogen gases.
Collapse
Affiliation(s)
- Qian Zhang
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne69626, France
| | - Pengfei Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yan Wang
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne69626, France
| | - Tianshu Chen
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Shuyi Ma
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Yangang Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Min Song
- Shandong University Chamber Laboratory, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Hartmut Herrmann
- Shandong University Chamber Laboratory, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
- Atmospheric Chemistry Department, Leibniz-Institute for Tropospheric Research, Leipzig04318, Germany
| | - Abdelwahid Mellouki
- Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS, Orléans45071, France
- College of Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Rehamna43150, Morocco
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai200438, China
| | - Yang Yue
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Xiaoxi Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Shuguang Wang
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| | - Yang Zeng
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao266237, China
| |
Collapse
|
9
|
Pugliese G, Ingrisch J, Meredith LK, Pfannerstill EY, Klüpfel T, Meeran K, Byron J, Purser G, Gil-Loaiza J, van Haren J, Dontsova K, Kreuzwieser J, Ladd SN, Werner C, Williams J. Effects of drought and recovery on soil volatile organic compound fluxes in an experimental rainforest. Nat Commun 2023; 14:5064. [PMID: 37604817 PMCID: PMC10442410 DOI: 10.1038/s41467-023-40661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Drought can affect the capacity of soils to emit and consume biogenic volatile organic compounds (VOCs). Here we show the impact of prolonged drought followed by rewetting and recovery on soil VOC fluxes in an experimental rainforest. Under wet conditions the rainforest soil acts as a net VOC sink, in particular for isoprenoids, carbonyls and alcohols. The sink capacity progressively decreases during drought, and at soil moistures below ~19%, the soil becomes a source of several VOCs. Position specific 13C-pyruvate labeling experiments reveal that soil microbes are responsible for the emissions and that the VOC production is higher during drought. Soil rewetting induces a rapid and short abiotic emission peak of carbonyl compounds, and a slow and long biotic emission peak of sulfur-containing compounds. Results show that, the extended drought periods predicted for tropical rainforest regions will strongly affect soil VOC fluxes thereby impacting atmospheric chemistry and climate.
Collapse
Affiliation(s)
- Giovanni Pugliese
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany.
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
| | - Johannes Ingrisch
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- Universität Innsbruck, Department of Ecology, Innsbruck, Austria
| | - Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
- Biosphere 2, University of Arizona, Oracle, AZ, USA
| | - Eva Y Pfannerstill
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA, USA
| | - Thomas Klüpfel
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Joseph Byron
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Gemma Purser
- UK Centre for Ecology & Hydrology, Penicuik, Edinburgh, UK
- School of Chemistry, The University of Edinburgh, Edinburgh, UK
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Joost van Haren
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
- Biosphere 2, University of Arizona, Oracle, AZ, USA
| | - Katerina Dontsova
- Biosphere 2, University of Arizona, Oracle, AZ, USA
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Jürgen Kreuzwieser
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - S Nemiah Ladd
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Jonathan Williams
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
| |
Collapse
|
10
|
Wang Y, Fu X, Wang T, Ma J, Gao H, Wang X, Pu W. Large Contribution of Nitrous Acid to Soil-Emitted Reactive Oxidized Nitrogen and Its Effect on Air Quality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3516-3526. [PMID: 36802547 DOI: 10.1021/acs.est.2c07793] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Soil emissions have long been recognized as an important source of nitric oxide (NO), which regulates atmospheric oxidative capacity and the production of air pollutants. Recent research has also indicated that nitrous acid (HONO) can be emitted in significant quantities from soil microbial activities. However, only a few studies have quantified emissions of HONO along with NO from a wide range of soil types. In this study, we measured emissions of HONO and NO from soil samples collected from 48 sites across China and found much higher emissions of HONO than of NO, especially for samples from northern China. We performed a meta-analysis of 52 field studies in China, which revealed that long-term fertilization increased the abundance of nitrite-producing genes much more than the abundance of NO-producing genes. This promotion effect was greater in northern China than in southern China. In simulations using a chemistry transport model with laboratory-derived parametrization, we found that HONO emissions had a greater effect than NO emissions on air quality. Moreover, we determined that with projected continuous reductions in anthropogenic emissions, the contribution from soils to maximum 1 h concentrations of hydroxyl radicals and ozone and daily average concentrations of particulate nitrate in the Northeast Plain will increase to 17%, 4.6%, and 14%, respectively. Our findings highlight the need to consider HONO in the assessment of the loss of reactive oxidized nitrogen from soils to the atmosphere and its effect on air quality.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077 Hong Kong, China
| | - Xiao Fu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055 Shenzhen, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077 Hong Kong, China
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, 730000 Lanzhou, China
| | - Xin Wang
- School of Earth System Science, Tianjin University, Tianjin 300072, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wei Pu
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Plant microbiomes harbor potential to promote nutrient turnover in impoverished substrates of a Brazilian biodiversity hotspot. THE ISME JOURNAL 2023; 17:354-370. [PMID: 36536072 PMCID: PMC9938248 DOI: 10.1038/s41396-022-01345-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
The substrates of the Brazilian campos rupestres, a grassland ecosystem, have extremely low concentrations of phosphorus and nitrogen, imposing restrictions to plant growth. Despite that, this ecosystem harbors almost 15% of the Brazilian plant diversity, raising the question of how plants acquire nutrients in such a harsh environment. Here, we set out to uncover the taxonomic profile, the compositional and functional differences and similarities, and the nutrient turnover potential of microbial communities associated with two plant species of the campos rupestres-dominant family Velloziaceae that grow over distinct substrates (soil and rock). Using amplicon sequencing data, we show that, despite the pronounced composition differentiation, the plant-associated soil and rock communities share a core of highly efficient colonizers that tend to be highly abundant and is enriched in 21 bacterial families. Functional investigation of metagenomes and 522 metagenome-assembled genomes revealed that the microorganisms found associated to plant roots are enriched in genes involved in organic compound intake, and phosphorus and nitrogen turnover. We show that potential for phosphorus transport, mineralization, and solubilization are mostly found within bacterial families of the shared microbiome, such as Xanthobacteraceae and Bryobacteraceae. We also detected the full repertoire of nitrogen cycle-related genes and discovered a lineage of Isosphaeraceae that acquired nitrogen-fixing potential via horizontal gene transfer and might be also involved in nitrification via a metabolic handoff association with Binataceae. We highlight that plant-associated microbial populations in the campos rupestres harbor a genetic repertoire with potential to increase nutrient availability and that the microbiomes of biodiversity hotspots can reveal novel mechanisms of nutrient turnover.
Collapse
|
12
|
Payne ZC, Dalton EZ, Gandolfo A, Raff JD. HONO Measurement by Catalytic Conversion to NO on Nafion Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:85-95. [PMID: 36533654 DOI: 10.1021/acs.est.2c05944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A selective catalytic converter has been developed to quantify nitrous acid (HONO), a photochemical precursor to NO and OH radicals that drives the formation of ozone and other pollutants in the troposphere. The converter is made from a sulfonated tetrafluoroethylene-based fluoropolymer-copolymer (Nafion) that was found to convert HONO to NO with unity yield under specific conditions. When coupled to a commercially available NOx (=NO + NO2) chemiluminescence (CL) analyzer, the system measures HONO with a limit of detection as low as 64 parts-per-trillion (ppt) (1 min average) in addition to NOx. The converter is selective for HONO when tested against other common gas-phase reactive nitrogen species, although loss of O3 on Nafion is a potential interference. The sensitivity and selectivity of this method allow for accurate measurement of atmospherically relevant concentrations of HONO. This was demonstrated by good agreement between HONO measurements made with the Nafion-CL method and those made with chemical ionization mass spectrometry in a simulation chamber and in indoor air. The observed reactivity of HONO on Nafion also has significant implications for the accuracy of CL NOx analyzers that use Nafion to remove water from sampling lines.
Collapse
Affiliation(s)
- Zachary C Payne
- Department of Chemistry, Indiana University, Bloomington, Indiana47405, United States
| | - Evan Z Dalton
- Department of Chemistry, Indiana University, Bloomington, Indiana47405, United States
| | - Adrien Gandolfo
- Paul H. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana47405, United States
| | - Jonathan D Raff
- Department of Chemistry, Indiana University, Bloomington, Indiana47405, United States
- Paul H. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana47405, United States
| |
Collapse
|
13
|
Metabolism Interactions Promote the Overall Functioning of the Episymbiotic Chemosynthetic Community of Shinkaia crosnieri of Cold Seeps. mSystems 2022; 7:e0032022. [PMID: 35938718 PMCID: PMC9426478 DOI: 10.1128/msystems.00320-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Remarkably diverse bacteria have been observed as biofilm aggregates on the surface of deep-sea invertebrates that support the growth of hosts through chemosynthetic carbon fixation. Growing evidence also indicates that community-wide interactions, and especially cooperation among symbionts, contribute to overall community productivity. Here, metagenome-guided metatranscriptomic and metabolic analyses were conducted to investigate the taxonomic composition, functions, and potential interactions of symbionts dwelling on the seta of Shinkaia crosnieri lobsters in a methane cold seep. Methylococcales and Thiotrichales dominated the community, followed by the Campylobacteriales, Nitrosococcales, Flavobacteriales, and Chitinophagales Metabolic interactions may be common among the episymbionts since many separate taxon genomes encoded complementary genes within metabolic pathways. Specifically, Thiotrichales could contribute to detoxification of hydroxylamine that is a metabolic by-product of Methylococcales. Further, Nitrosococcales may rely on methanol leaked from Methylococcales cells that efficiently oxidize methane. Elemental sulfur may also serve as a community good that enhances sulfur utilization that benefits the overall community, as evidenced by confocal Raman microscopy. Stable intermediates may connect symbiont metabolic activities in cyclical oxic-hypoxic fluctuating environments, which then enhance overall community functioning. This hypothesis was partially confirmed via in situ experiments. These results highlight the importance of microbe-microbe interactions in symbiosis and deep-sea adaptation. IMPORTANCE Symbioses between chemosynthetic bacteria and marine invertebrates are common in deep-sea chemosynthetic ecosystems and are considered critical foundations for deep-sea colonization. Episymbiotic microorganisms tend to form condensed biofilms that may facilitate metabolite sharing among biofilm populations. However, the prevalence of metabolic interactions among deep-sea episymbionts and their contributions to deep-sea adaptations are not well understood due to sampling and cultivation difficulties associated with deep-sea environments. Here, we investigated metabolic interactions among the episymbionts of Shinkaia crosnieri, a dominant chemosynthetic ecosystem lobster species in the Northwest Pacific Ocean. Meta-omics characterizations were conducted alongside in situ experiments to validate interaction hypotheses. Furthermore, imaging analysis was conducted, including electron microscopy, fluorescent in situ hybridization (FISH), and confocal Raman microscopy (CRM), to provide direct evidence of metabolic interactions. The results support the Black Queen Hypothesis, wherein leaked public goods are shared among cohabitating microorganisms to enhance the overall adaptability of the community via cooperation.
Collapse
|
14
|
Wu D, Deng L, Sun Y, Wang R, Zhang L, Wang R, Song Y, Gao Z, Haider H, Wang Y, Hou L, Liu M. Climate warming, but not Spartina alterniflora invasion, enhances wetland soil HONO and NO x emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153710. [PMID: 35149064 DOI: 10.1016/j.scitotenv.2022.153710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Climate warming and invasive plant growth (plant invasion) may aggravate air pollution by affecting soil nitrogen (N) cycling and the emissions of reactive N gases, such as nitrous acid (HONO) and nitrogen oxides (NOx). However, little is known about the response of soil NOy (HONO + NOx) emissions and microbial functional genes to the interaction of climate warming and plant invasion. Here, we found that experimental warming (approximately 1.5 °C), but not Spartina alterniflora invasion, increased NOy emissions (0-140 ng N m-2 s-1) of treated wetland soils by 4-10 fold. Warming also decreased soil archaeal and fungal richness and diversity, shifted their community structure (e.g., decreased the archaeal classes Thermoplasmata and Iainarchaeia, and increased the archaeal genus Candidatus Nitrosoarchaeum, and the fungal classes Saccharomycetes and Tritirachiomycetes), and decreased the overall abundance of soil N cycling genes. Structural equation modeling revealed that warming-associated changes in edaphic factors and the microbial N cycling potential are responsible for the observed increase in soil NOy emissions. Collectively, the results showed that climate warming accelerates soil N cycling by stimulating large soil HONO and NOx emissions, and influences air quality by contributing to atmospheric reactive N and ozone cycling.
Collapse
Affiliation(s)
- Dianming Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 202162 Shanghai, China.
| | - Lingling Deng
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China
| | - Yihua Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060 Shenzhen, China
| | - Ruhai Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of soil Sciences, Chinese Academy of Sciences, 210008 Nanjing, China
| | - Li Zhang
- School of Resources and Environment, Anhui Agricultural University, 230036 Hefei, China
| | - Rui Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China
| | - Yaqi Song
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China; College of Biology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, 210037 Nanjing, China
| | - Zhiwei Gao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China
| | - Haroon Haider
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China
| | - Yue Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241 Shanghai, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 202162 Shanghai, China
| |
Collapse
|
15
|
Water-driven microbial nitrogen transformations in biological soil crusts causing atmospheric nitrous acid and nitric oxide emissions. THE ISME JOURNAL 2022; 16:1012-1024. [PMID: 34764454 PMCID: PMC8941053 DOI: 10.1038/s41396-021-01127-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023]
Abstract
Biological soil crusts (biocrusts) release the reactive nitrogen gases (Nr) nitrous acid (HONO) and nitric oxide (NO) into the atmosphere, but the underlying microbial process controls have not yet been resolved. In this study, we analyzed the activity of microbial consortia relevant in Nr emissions during desiccation using transcriptome and proteome profiling and fluorescence in situ hybridization. We observed that < 30 min after wetting, genes encoding for all relevant nitrogen (N) cycling processes were expressed. The most abundant transcriptionally active N-transforming microorganisms in the investigated biocrusts were affiliated with Rhodobacteraceae, Enterobacteriaceae, and Pseudomonadaceae within the Alpha- and Gammaproteobacteria. Upon desiccation, the nitrite (NO2-) content of the biocrusts increased significantly, which was not the case when microbial activity was inhibited. Our results confirm that NO2- is the key precursor for biocrust emissions of HONO and NO. This NO2- accumulation likely involves two processes related to the transition from oxygen-limited to oxic conditions in the course of desiccation: (i) a differential regulation of the expression of denitrification genes; and (ii) a physiological response of ammonia-oxidizing organisms to changing oxygen conditions. Thus, our findings suggest that the activity of N-cycling microorganisms determines the process rates and overall quantity of Nr emissions.
Collapse
|
16
|
Wei J, Zhang X, Xia L, Yuan W, Zhou Z, Brüggmann N. Role of chemical reactions in the nitrogenous trace gas emissions and nitrogen retention: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152141. [PMID: 34871694 DOI: 10.1016/j.scitotenv.2021.152141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/07/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Increasing evidence has been found that chemical reactions affect significantly the terrestrial nitrogen (N) cycle, which was previously assumed to be mainly dominated by biological processes. Due to the limitation of knowledge and analytical techniques, it is currently challenging to discern the contribution of biotic and abiotic processes to the terrestrial N cycle for geobiologists and biogeochemists alike. To better understand the role of abiotic reactions in the terrestrial N cycle, it is necessary to comprehend the chemical controls on nitrogenous trace gas emissions and N retention in soil under various environmental conditions. In this manuscript, we assess the role of abiotic reactions in nitrous oxide (N2O) and nitric oxide (NO) emissions as well as N retention through a meta-analysis using all related peer-reviewed publications before August 2020. Results show that abiotic reactions contributed 29.3-37.7% and 44.0-57.0% to the total N2O emission and N retention, representing 3.7-4.7 and 4.0-6.0 Tg year-1 of global terrestrial N2O emission and N retention, respectively. Much higher NO production was observed in sterilized soils than that in unsterilized treatments indicating the major contribution of chemical reactions to NO emission and rapid microbial reduction of NO to N2O and N2. Chemical hydroxylamine oxidation accounts for the largest abiotic contribution to N2O emission, while chemical nitrite reduction and fixation represent for the largest contribution to abiotic NO production and soil N retention, respectively. Factors influencing the abiotic processes include pH, total organic carbon (TOC), total nitrogen (TN), the ratio of carbon to nitrogen (C/N), and transition metals. These results broadened our knowledge about the mechanisms involved in chemical N reactions and provided a simplified estimation about their contribution to nitrogenous trace gas emission and N retention, which is meaningful to further study interactions of biologically and chemically mediated reactions in biogeochemical N cycle.
Collapse
Affiliation(s)
- Jing Wei
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China; Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China.
| | - Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Longlong Xia
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
| | - Wenping Yuan
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China; Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| | - Zhanyan Zhou
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Nicolas Brüggmann
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| |
Collapse
|
17
|
Wang Y, Fu X, Wu D, Wang M, Lu K, Mu Y, Liu Z, Zhang Y, Wang T. Agricultural Fertilization Aggravates Air Pollution by Stimulating Soil Nitrous Acid Emissions at High Soil Moisture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14556-14566. [PMID: 34658233 DOI: 10.1021/acs.est.1c04134] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitrogen lost from fertilized soil is a potentially large source of atmospheric nitrous acid (HONO), a major precursor of the hydroxyl radical. Yet, the impacts of fertilizer types and other influencing factors on HONO emissions are unknown. As a result, the current state-of-the-art models lack an appropriate parameterization scheme to quantify the HONO impact on air quality after fertilization. Here, we report laboratory measurements of high HONO emissions from soils at a 75-95% water-holding capacity after applying three common fertilizers, which contrasts with previous lower predictions at high soil moisture. Urea use leads to the largest release of HONO compared to the other two commonly used fertilizers (ammonium bicarbonate and ammonium nitrate). The significant promotion effect of fertilization lasted up to 1 week. Implementation of the lab-derived parametrization in a chemistry transport model (CMAQ) significantly improved postfertilization HONO predictions at a rural site in the agriculture-intensive North China Plain and increased the regionally averaged daytime OH, O3, and daily fine particulate nitrate concentrations by 41, 8, and 47%, respectively. The results of our study underscore the necessity to include this large postfertilization HONO source in modeling air quality and atmospheric chemistry. Fertilizer structure adjustments may reduce HONO emissions and improve the air quality in polluted regions with intense agriculture.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077 Hong Kong, China
| | - Xiao Fu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077 Hong Kong, China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055 Shenzhen, China
| | - Dianming Wu
- Key Laboratory of Geographic Information Sciences (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Mengdi Wang
- Key Laboratory of Geographic Information Sciences (Ministry of Education), School of Geographical Sciences, East China Normal University, 200241 Shanghai, China
| | - Keding Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871 Beijing, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhiguo Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871 Beijing, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077 Hong Kong, China
| |
Collapse
|
18
|
Han P, Wu D, Sun D, Zhao M, Wang M, Wen T, Zhang J, Hou L, Liu M, Klümper U, Zheng Y, Dong HP, Liang X, Yin G. N 2O and NO y production by the comammox bacterium Nitrospira inopinata in comparison with canonical ammonia oxidizers. WATER RESEARCH 2021; 190:116728. [PMID: 33326897 DOI: 10.1016/j.watres.2020.116728] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Nitrous oxide (N2O) and NOy (nitrous acid (HONO) + nitric oxide (NO) + nitrogen dioxide (NO2)) are released as byproducts or obligate intermediates during aerobic ammonia oxidation, and further influence global warming and atmospheric chemistry. The ammonia oxidation process is catalyzed by groups of globally distributed ammonia-oxidizing microorganisms, which are playing a major role in atmospheric N2O and NOy emissions. Yet, little is known about HONO and NO2 production by the recently discovered, widely distributed complete ammonia oxidizers (comammox), able to individually perform the oxidation of ammonia to nitrate via nitrite. Here, we examined the N2O and NOy production patterns by comammox bacterium Nitrospira inopinata during aerobic ammonia oxidation, in comparison to its canonical ammonia-converting counterparts, representatives of the ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Our findings, i) show low yield NOy production by the comammox bacterium compared to AOB; ii) highlight the role of the NO reductase in the biological formation of N2O based on results from NH2OH inhibition assays and its stimulation during archaeal and bacterial ammonia oxidations; iii) postulate that the lack of hydroxylamine (NH2OH) and NO transformation enzymatic activities may lead to a buildup of NH2OH/NO which can abiotically react to N2O ; iv) collectively confirm restrained N2O and NOy emission by comammox bacteria, an unneglectable consortium of microbes in global atmospheric emission of reactive nitrogen gases.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| | - Dianming Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Dongyao Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Mengyue Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Mengdi Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Teng Wen
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lijun Hou
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Uli Klümper
- Institute for Hydrobiology, Technische Universität Dresden, Dresden, 01062, Germany
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Hong-Po Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
19
|
Gil J, Kim J, Lee M, Lee G, An J, Lee D, Jung J, Cho S, Whitehill A, Szykman J, Lee J. Characteristics of HONO and its impact on O 3 formation in the Seoul Metropolitan Area during the Korea-US Air Quality Study. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2021; 247:10.1016/j.atmosenv.2020.118182. [PMID: 33746556 PMCID: PMC7970509 DOI: 10.1016/j.atmosenv.2020.118182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photolysis of nitrous acid (HONO) is recognized as an early-morning source of OH radicals in the urban air. During the Korea-US air quality (KORUS-AQ) campaign, HONO was measured using quantum cascade - tunable infrared laser differential absorption spectrometer (QC-TILDAS) at Olympic Park in Seoul from 17 May, 2016 to 14 June, 2016. The HONO concentration was in the range of 0.07-3.46 ppbv, with an average of 0.93 ppbv. Moreover, it remained high from 00:00-05:00 LST. During this time, the mean concentration was higher during the high-O3 episodes (1.82 ppbv) than the non-episodes (1.20 ppbv). In the morning, the OH radicals that were produced from HONO photolysis were 50% higher (0.95 pptv) during the high-O3 episodes than the non-episodes. Diurnal variations in HOx and O3 concentrations were simulated by the F0AM model, which revealed a difference of ~20 ppbv in the daily maximum O3 concentrations between the high-O3 episodes and non-episodes. Furthermore, the HONO concentration increased with an increase in relative humidity (RH) up to 80%; the highest HONO was associated with the top 10% NO2 in each RH group, confirming that NO2 is one of the main precursors of HONO. At night, the conversion ratio of NO2 to HONO was estimated to be 0.88×10-2 h-1; this ratio was found to increase with an increase in RH. The Aitken mode particles (30-120 nm), which act as catalyst surfaces, exhibited a similar tendency with a conversion ratio that increased along with RH, indicating the coupling of surfaces with HONO conversion. Using an artificial neural network (ANN) model, HONO concentrations were successfully simulated with measured variables (r2 = 0.66 as an average of five models). Among these variables, NOx, aerosol surface area, and RH were found to be the main factors affecting the ambient HONO concentrations. The results reveal that RH facilitates the conversion of NO2 to HONO by constraining the availability of aerosol surfaces. This study demonstrates the coupling of HONO with the HOx-O3 cycle in the Seoul Metropolitan Area (SMA) and provides practical evidence of the heterogeneous formation of HONO by employing the ANN model.
Collapse
Affiliation(s)
- Junsu Gil
- Department of Earth and Environmental Science, Korea University, Seoul, South Korea
| | - Jeonghwan Kim
- Department of Environmental Science, Hankuk University of Foreign Studies, Yongin, South Korea
| | - Meehye Lee
- Department of Earth and Environmental Science, Korea University, Seoul, South Korea
| | - Gangwoong Lee
- Department of Environmental Science, Hankuk University of Foreign Studies, Yongin, South Korea
| | - Joonyeong An
- National Institute of Environmental Research (NIER), Incheon, South Korea
| | - Dongsoo Lee
- Department of Chemistry, Yonsei University, Seoul, South Korea
| | - Jinsang Jung
- Korea Research Institute of Standards and Science (KRISS), Daejeon, South Korea
| | - Seogju Cho
- Seoul Research Institute of Public Health and Environment, Seoul, South Korea
| | - Andrew Whitehill
- U.S. Environmental Protection Agency, Research Triangle Park, Durham, USA
| | - James Szykman
- U.S. Environmental Protection Agency, Research Triangle Park, Durham, USA
| | - Jeonghoon Lee
- School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, South Korea
| |
Collapse
|
20
|
Tang K, Qin M, Fang W, Duan J, Meng F, Ye K, Zhang H, Xie P, Liu J, Liu W, Feng Y, Huang Y, Ni T. An automated dynamic chamber system for exchange flux measurement of reactive nitrogen oxides (HONO and NO X) in farmland ecosystems of the Huaihe River Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140867. [PMID: 32738680 DOI: 10.1016/j.scitotenv.2020.140867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
An automated dynamic chamber system was first developed to simultaneously measure the HONO flux and NOx flux. The new dynamic chamber system was applied to field observation, and the HONO and NOX exchange flux of farmland in the Huaihe River Basin was obtained for the first time. The performance of the dynamic chamber system was verified in the field. In the field observation, the diurnal variations of the HONO fluxes and NO fluxes before and after a rainfall event exhibited two different trends. Before the rainfall and in the latter stage after the rainfall, the maxima of the HONO fluxes and NO fluxes occurred in the morning, then decreased gradually. However, during the early stage after the rainfall, the HONO fluxes and NO fluxes gradually increased in the morning and reached their maximum values in the afternoon. During the measurement period, the maximum HONO flux was 7.69 ng N m-2 s-1 and the maximum NO flux was 34.52 ng N m-2 s-1. There was no significant correlation between HONO flux and temperature before the rainfall and in the latter stage after the rainfall period, although the correlation coefficient (R) between HONO flux and temperature reached 0.78 in the early stage after the rainfall period, and the R between NO flux and HONO flux reached more than 0.6 before and after rainfall periods. The HONO flux of fresh soil samples were the same order of magnitude as that of field observations. The field results indicate that soil emissions are an important source of atmospheric HONO during the crop growth stage. Negative NO2 fluxes were found in most observation periods, and there were significant negative linear correlations between NO2 fluxes and atmospheric NO2 concentrations. The R between ambient NO2 concentration and NO2 flux was 0.79, and the compensation point of NO2 was 5 ppbv.
Collapse
Affiliation(s)
- Ke Tang
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230027, China
| | - Min Qin
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Wu Fang
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Jun Duan
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Fanhao Meng
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230027, China
| | - Kaidi Ye
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230027, China
| | - Helu Zhang
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230027, China
| | - Pinhua Xie
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230027, China; CAS Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jianguo Liu
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230027, China; CAS Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenqing Liu
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230027, China; CAS Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan Feng
- Anhui Institute of Meteorological Sciences, Anhui Province Key Laboratory of Atmospheric Science and Satellite Remote Sensing, Hefei 230031, China; Shouxian National Climatology Observatory, Huaihe River Basin Typical Farm Eco-meteorological Experiment Field of CMA, Shouxian 232200, China
| | - Yong Huang
- Anhui Institute of Meteorological Sciences, Anhui Province Key Laboratory of Atmospheric Science and Satellite Remote Sensing, Hefei 230031, China; Shouxian National Climatology Observatory, Huaihe River Basin Typical Farm Eco-meteorological Experiment Field of CMA, Shouxian 232200, China
| | - Ting Ni
- Anhui Institute of Meteorological Sciences, Anhui Province Key Laboratory of Atmospheric Science and Satellite Remote Sensing, Hefei 230031, China; Shouxian National Climatology Observatory, Huaihe River Basin Typical Farm Eco-meteorological Experiment Field of CMA, Shouxian 232200, China
| |
Collapse
|
21
|
Abstract
The role of archaeal ammonia oxidizers often exceeds that of bacterial ammonia oxidizers in marine and terrestrial environments but has been understudied in permafrost, where thawing has the potential to release ammonia. Here, three thaumarchaea genomes were assembled and annotated from metagenomic data sets from carbon-poor Canadian High Arctic active-layer cryosols. The role of archaeal ammonia oxidizers often exceeds that of bacterial ammonia oxidizers in marine and terrestrial environments but has been understudied in permafrost, where thawing has the potential to release ammonia. Here, three thaumarchaea genomes were assembled and annotated from metagenomic data sets from carbon-poor Canadian High Arctic active-layer cryosols.
Collapse
|
22
|
Zhang J, Chen J, Xue C, Chen H, Zhang Q, Liu X, Mu Y, Guo Y, Wang D, Chen Y, Li J, Qu Y, An J. Impacts of six potential HONO sources on HO x budgets and SOA formation during a wintertime heavy haze period in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:110-123. [PMID: 31102812 DOI: 10.1016/j.scitotenv.2019.05.100] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
The Weather Research and Forecasting/Chemistry (WRF-Chem) model updated with six potential HONO sources (i.e., traffic, soil, biomass burning and indoor emissions, and heterogeneous reactions on aerosol and ground surfaces) was used to quantify the impact of the six potential HONO sources on the production and loss rates of OH and HO2 radicals and the concentrations of secondary organic aerosol (SOA) in the Beijing-Tianjin-Heibei (BTH) region of China during a winter heavy haze period of Nov. 29-Dec. 3, 2017. The updated WRF-Chem model well simulated the observed HONO concentrations at the Wangdu site, especially in the daytime, and well reproduced the observed diurnal variations of regional-mean O3 in the BTH region. The traffic emission source was an important HONO source during nighttime but not significant during daytime, heterogeneous reactions on ground/aerosol surfaces were important during nighttime and daytime. We found that the six potential HONO sources led to a significant enhancement in the dominant production and loss rates of HOx on the wintertime heavy haze and nonhaze days (particularly on the heavy haze day), an enhancement of 5-25 μg m-3 (75-200%) in the ground SOA in the studied heavy haze event, and an enhancement of 2-15 μg m-3 in the meridional-mean SOA on the heavy haze day, demonstrating that the six potential HONO sources accelerate the HOx cycles and aggravate haze events. HONO was the key precursor of primary OH in the BTH region in the studied wintertime period, and the photolysis of HONO produced a daytime mean OH production rate of 2.59 ppb h-1 on the heavy haze day, much higher than that of 0.58 ppb h-1 on the nonhaze day. Anthropogenic SOA dominated in the BTH region in the studied wintertime period, and its main precursors were xylenes (42%), BIGENE (31%) and toluene (21%).
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmin Chen
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Chaoyang Xue
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui Chen
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China; Collaborative Innovation Center for Regional Environmental Quality, Beijing, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yujing Mu
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 36102, China
| | - Yitian Guo
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danyun Wang
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China
| | - Yong Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Jialin Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China.
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 36102, China.
| |
Collapse
|
23
|
Xue C, Ye C, Zhang Y, Ma Z, Liu P, Zhang C, Zhao X, Liu J, Mu Y. Development and application of a twin open-top chambers method to measure soil HONO emission in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:621-631. [PMID: 31096391 DOI: 10.1016/j.scitotenv.2018.12.245] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
HONO (nitrous acid) is a crucial precursor for tropospheric OH radicals, and its sources are not well understood. In the past decade, soil was proven to be a potential source for HONO. However, more field measurements of soil HONO emission flux are needed to explore the mechanism and its impact on regional air quality. Here, we developed a system based on twin open-top chambers (OTCs) and wet chemical methods to measure HONO emission flux from agricultural soil in the North China Plain (NCP). The performance of the OTC system was tested under laboratory and field measurement conditions. The results showed that the system could reflect the strength (>90%) and variation of gas emission with an average residence time of 4-5 min. The greenhouse effect and chemical reaction interference in the chamber was proven to have no significant influence on the HONO flux measurement. Field measurement revealed that agricultural soil before fertilization was an important source of HONO. The emission flux showed radiation-dependent or temperature-dependent variation, with a peak of 3.21 ng m-2 s-1 at noontime that could account for approximately 67 pptv h-1 of the missing HONO source under an assumed mixing layer height of 300 m. Fertilization substantially accelerated HONO emission, which was rationally attributed to biological processes including nitrification. Considering the high fertilization rate in the NCP and other similar regions in China, HONO emission from agricultural soil likely has enormous impact on regional photochemistry and air quality, suggesting that more research should be conducted on this aspect.
Collapse
Affiliation(s)
- Chaoyang Xue
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Ye
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuobiao Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Soil HONO emissions at high moisture content are driven by microbial nitrate reduction to nitrite: tackling the HONO puzzle. ISME JOURNAL 2019; 13:1688-1699. [PMID: 30833686 DOI: 10.1038/s41396-019-0379-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/08/2019] [Indexed: 11/08/2022]
Abstract
Nitrous acid (HONO) is a precursor of the hydroxyl radical (OH), a key oxidant in the degradation of most air pollutants. Field measurements indicate a large unknown source of HONO during the day time. Release of nitrous acid (HONO) from soil has been suggested as a major source of atmospheric HONO. We hypothesize that nitrite produced by biological nitrate reduction in oxygen-limited microzones in wet soils is a source of such HONO. Indeed, we found that various contrasting soil samples emitted HONO at high water-holding capacity (75-140%), demonstrating this to be a widespread phenomenon. Supplemental nitrate stimulated HONO emissions, whereas ethanol (70% v/v) treatment to minimize microbial activities reduced HONO emissions by 80%, suggesting that nitrate-dependent biotic processes are the sources of HONO. High-throughput Illumina sequencing of 16S rRNA as well as functional gene transcripts associated with nitrate and nitrite reduction indicated that HONO emissions from soil samples were associated with nitrate reduction activities of diverse Proteobacteria. Incubation of pure cultures of bacterial nitrate reducers and gene-expression analyses, as well as the analyses of mutant strains deficient in nitrite reductases, showed positive correlations of HONO emissions with the capability of microbes to reduce nitrate to nitrite. Thus, we suggest biological nitrate reduction in oxygen-limited microzones as a hitherto unknown source of atmospheric HONO, affecting biogeochemical nitrogen cycling, atmospheric chemistry, and global modeling.
Collapse
|
25
|
Microbial mechanisms and ecosystem flux estimation for aerobic NO y emissions from deciduous forest soils. Proc Natl Acad Sci U S A 2019; 116:2138-2145. [PMID: 30659144 DOI: 10.1073/pnas.1814632116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Reactive nitrogen oxides (NOy; NOy = NO + NO2 + HONO) decrease air quality and impact radiative forcing, yet the factors responsible for their emission from nonpoint sources (i.e., soils) remain poorly understood. We investigated the factors that control the production of aerobic NOy in forest soils using molecular techniques, process-based assays, and inhibitor experiments. We subsequently used these data to identify hotspots for gas emissions across forests of the eastern United States. Here, we show that nitrogen oxide soil emissions are mediated by microbial community structure (e.g., ammonium oxidizer abundances), soil chemical characteristics (pH and C:N), and nitrogen (N) transformation rates (net nitrification). We find that, while nitrification rates are controlled primarily by chemoautotrophic ammonia-oxidizing archaea (AOA), the production of NOy is mediated in large part by chemoautotrophic ammonia-oxidizing bacteria (AOB). Variation in nitrification rates and nitrogen oxide emissions tracked variation in forest communities, as stands dominated by arbuscular mycorrhizal (AM) trees had greater N transformation rates and NOy fluxes than stands dominated by ectomycorrhizal (ECM) trees. Given mapped distributions of AM and ECM trees from 78,000 forest inventory plots, we estimate that broadleaf forests of the Midwest and the eastern United States as well as the Mississippi River corridor may be considered hotspots of biogenic NOy emissions. Together, our results greatly improve our understanding of NOy fluxes from forests, which should lead to improved predictions about the atmospheric consequences of tree species shifts owing to land management and climate change.
Collapse
|