1
|
Aubert L, Bastien E, Renoult O, Guilbaud C, Özkan K, Brusa D, Bouzin C, Richiardone E, Richard C, Boidot R, Léonard D, Corbet C, Feron O. Tumor acidosis-induced DNA damage response and tetraploidy enhance sensitivity to ATM and ATR inhibitors. EMBO Rep 2024; 25:1469-1489. [PMID: 38366255 PMCID: PMC10933359 DOI: 10.1038/s44319-024-00089-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
Tumor acidosis is associated with increased invasiveness and drug resistance. Here, we take an unbiased approach to identify vulnerabilities of acid-exposed cancer cells by combining pH-dependent flow cytometry cell sorting from 3D colorectal tumor spheroids and transcriptomic profiling. Besides metabolic rewiring, we identify an increase in tetraploid cell frequency and DNA damage response as consistent hallmarks of acid-exposed cancer cells, supported by the activation of ATM and ATR signaling pathways. We find that regardless of the cell replication error status, both ATM and ATR inhibitors exert preferential growth inhibitory effects on acid-exposed cancer cells. The efficacy of a combination of these drugs with 5-FU is further documented in 3D spheroids as well as in patient-derived colorectal tumor organoids. These data position tumor acidosis as a revelator of the therapeutic potential of DNA repair blockers and as an attractive clinical biomarker to predict the response to a combination with chemotherapy.
Collapse
Affiliation(s)
- Léo Aubert
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200, Brussels, Belgium.
| | - Estelle Bastien
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200, Brussels, Belgium
| | - Ophélie Renoult
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200, Brussels, Belgium
| | - Céline Guilbaud
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200, Brussels, Belgium
| | - Kübra Özkan
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200, Brussels, Belgium
| | - Davide Brusa
- CytoFlux-Flow Cytometry and Cell Sorting Platform, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200, Brussels, Belgium
| | - Caroline Bouzin
- Imaging Platform 2IP, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200, Brussels, Belgium
| | - Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200, Brussels, Belgium
| | - Corentin Richard
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges‑François Leclerc Cancer Center‑UNICANCER, 21079, Dijon, France
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges‑François Leclerc Cancer Center‑UNICANCER, 21079, Dijon, France
| | - Daniel Léonard
- Institut Roi Albert II, Department of Digestive Surgery, Cliniques Universitaires St-Luc, and Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200, Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200, Brussels, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, B-1300, Wavre, Belgium.
| |
Collapse
|
2
|
Meng X, Dang HQ, Kapler GM. Developmentally Programmed Switches in DNA Replication: Gene Amplification and Genome-Wide Endoreplication in Tetrahymena. Microorganisms 2023; 11:microorganisms11020491. [PMID: 36838456 PMCID: PMC9967165 DOI: 10.3390/microorganisms11020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Locus-specific gene amplification and genome-wide endoreplication generate the elevated copy number of ribosomal DNA (rDNA, 9000 C) and non-rDNA (90 C) chromosomes in the developing macronucleus of Tetrahymena thermophila. Subsequently, all macronuclear chromosomes replicate once per cell cycle during vegetative growth. Here, we describe an unanticipated, programmed switch in the regulation of replication initiation in the rDNA minichromosome. Early in development, the 21 kb rDNA minichromosome is preferentially amplified from 2 C to ~800 C from well-defined origins, concurrent with genome-wide endoreplication (2 C to 8-16 C) in starved mating Tetrahymena (endoreplication (ER) Phase 1). Upon refeeding, rDNA and non-rDNA chromosomes achieve their final copy number through resumption of just the endoreplication program (ER Phase 2). Unconventional rDNA replication intermediates are generated primarily during ER phase 2, consistent with delocalized replication initiation and possible formation of persistent RNA-DNA hybrids. Origin usage and replication fork elongation are affected in non-rDNA chromosomes as well. Despite the developmentally programmed 10-fold reduction in the ubiquitous eukaryotic initiator, the Origin Recognition Complex (ORC), active initiation sites are more closely spaced in ER phases 1 and 2 compared to vegetative growing cells. We propose that initiation site selection is relaxed in endoreplicating macronuclear chromosomes and may be less dependent on ORC.
Collapse
Affiliation(s)
- Xiangzhou Meng
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hung Quang Dang
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Alstem Bioscience, Richmond, CA 94806, USA
| | - Geoffrey M. Kapler
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Correspondence: ; Tel.: +1-979-574-3901
| |
Collapse
|
3
|
Baudoin NC, Bloomfield M. Karyotype Aberrations in Action: The Evolution of Cancer Genomes and the Tumor Microenvironment. Genes (Basel) 2021; 12:558. [PMID: 33921421 PMCID: PMC8068843 DOI: 10.3390/genes12040558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a disease of cellular evolution. For this cellular evolution to take place, a population of cells must contain functional heterogeneity and an assessment of this heterogeneity in the form of natural selection. Cancer cells from advanced malignancies are genomically and functionally very different compared to the healthy cells from which they evolved. Genomic alterations include aneuploidy (numerical and structural changes in chromosome content) and polyploidy (e.g., whole genome doubling), which can have considerable effects on cell physiology and phenotype. Likewise, conditions in the tumor microenvironment are spatially heterogeneous and vastly different than in healthy tissues, resulting in a number of environmental niches that play important roles in driving the evolution of tumor cells. While a number of studies have documented abnormal conditions of the tumor microenvironment and the cellular consequences of aneuploidy and polyploidy, a thorough overview of the interplay between karyotypically abnormal cells and the tissue and tumor microenvironments is not available. Here, we examine the evidence for how this interaction may unfold during tumor evolution. We describe a bidirectional interplay in which aneuploid and polyploid cells alter and shape the microenvironment in which they and their progeny reside; in turn, this microenvironment modulates the rate of genesis for new karyotype aberrations and selects for cells that are most fit under a given condition. We conclude by discussing the importance of this interaction for tumor evolution and the possibility of leveraging our understanding of this interplay for cancer therapy.
Collapse
Affiliation(s)
- Nicolaas C. Baudoin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Azawi S, Rincic M, Liehr T. Cytogenomic characteristics of murine breast cancer cell line JC. Mol Cytogenet 2021; 14:7. [PMID: 33526060 PMCID: PMC7852212 DOI: 10.1186/s13039-020-00524-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022] Open
Abstract
Background Breast cancer (BC), one of the most frequent human tumors, is genetically and histologically heterogeneous. Treatment options can be adapted according to BC subtype. Still, research is necessary to characterize BC biology better and to study potential new treatment options. Murine BC-cell lines can be used as model systems in this respect. Results Here for the first time murine BC-cell line JC was cytogenomically characterized as being complex rearranged and near-tetraploid. Multicolor banding and array comparative genomic hybridization were applied and the result was in silico translated to the human genome. Conclusions Even though being commercially available, cell line JC was yet not much included in BC-research, most likely due to a lack of cytogenomic data. Thus, here comprehensive data is provided on chromosomal aberrations, genomic imbalances and involved breakpoints of JC cell line. Also JC could be characterized as a model for BC of luminal B type, basal-like tumor rather than for luminal A type. Supplementary information The online version of this article (10.1186/s13039-020-00524-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shaymaa Azawi
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Martina Rincic
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Salata 12, 10000, Zagreb, Croatia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
5
|
Balukoff NC, Ho JJD, Theodoridis PR, Wang M, Bokros M, Llanio LM, Krieger JR, Schatz JH, Lee S. A translational program that suppresses metabolism to shield the genome. Nat Commun 2020; 11:5755. [PMID: 33188200 PMCID: PMC7666154 DOI: 10.1038/s41467-020-19602-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Translatome reprogramming is a primary determinant of protein levels during stimuli adaptation. This raises the question: what are the translatome remodelers that reprogram protein output to activate biochemical adaptations. Here, we identify a translational pathway that represses metabolism to safeguard genome integrity. A system-wide MATRIX survey identified the ancient eIF5A as a pH-regulated translation factor that responds to fermentation-induced acidosis. TMT-pulse-SILAC analysis identified several pH-dependent proteins, including the mTORC1 suppressor Tsc2 and the longevity regulator Sirt1. Sirt1 operates as a pH-sensor that deacetylates nuclear eIF5A during anaerobiosis, enabling the cytoplasmic export of eIF5A/Tsc2 mRNA complexes for translational engagement. Tsc2 induction inhibits mTORC1 to suppress cellular metabolism and prevent acidosis-induced DNA damage. Depletion of eIF5A or Tsc2 leads to metabolic re-initiation and proliferation, but at the expense of incurring substantial DNA damage. We suggest that eIF5A operates as a translatome remodeler that suppresses metabolism to shield the genome.
Collapse
Affiliation(s)
- Nathan C Balukoff
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - J J David Ho
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Phaedra R Theodoridis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Michael Bokros
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Lis M Llanio
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jonathan R Krieger
- The SickKids Proteomics, Analytics, Robotics & Chemical Biology Centre (SPARC Biocentre), The Hospital for Sick Children, Toronto, ON, M5G 1×8, Canada
- Bioinformatics Solutions Inc., Waterloo, ON, N2L 6J2, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Cancer regeneration: Polyploid cells are the key drivers of tumor progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188408. [PMID: 32827584 DOI: 10.1016/j.bbcan.2020.188408] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
In spite of significant advancements of therapies for initial eradication of cancers, tumor relapse remains a major challenge. It is for a long time known that polyploid malignant cells are a main source of resistance against chemotherapy and irradiation. However, therapeutic approaches targeting these cells have not been appropriately pursued which could partly be due to the shortage of knowledge on the molecular biology of cell polyploidy. On the other hand, there is a rising trend to appreciate polyploid/ multinucleated cells as key players in tissue regeneration. In this review, we suggest an analogy between the functions of polyploid cells in normal and malignant tissues and discuss the idea that cell polyploidy is an evolutionary conserved source of tissue regeneration also exploited by cancers as a survival factor. In addition, polyploid cells are highlighted as a promising therapeutic target to overcome drug resistance and relapse.
Collapse
|
7
|
Azawi S, Liehr T, Rincic M, Manferrari M. Molecular Cytogenomic Characterization of the Murine Breast Cancer Cell Lines C-127I, EMT6/P and TA3 Hauschka. Int J Mol Sci 2020; 21:ijms21134716. [PMID: 32630352 PMCID: PMC7369978 DOI: 10.3390/ijms21134716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To test and introduce effective and less toxic breast cancer (BC) treatment strategies, animal models, including murine BC cell lines, are considered as perfect platforms. Strikingly, the knowledge on the genetic background of applied BC cell lines is often sparse though urgently necessary for their targeted and really justified application. METHODS In this study, we performed the first molecular cytogenetic characterization for three murine BC cell lines C-127I, EMT6/P and TA3 Hauschka. Besides fluorescence in situ hybridization-banding, array comparative genomic hybridization was also applied. Thus, overall, an in silico translation for the detected imbalances and chromosomal break events in the murine cell lines to the corresponding homologous imbalances in humans could be provided. The latter enabled a comparison of the murine cell line with human BC cytogenomics. RESULTS All three BC cell lines showed a rearranged karyotype at different stages of complexity, which can be interpreted carefully as reflectance of more or less advanced tumor stages. CONCLUSIONS Accordingly, the C-127I cell line would represent the late stage BC while the cell lines EMT6/P and TA3 Hauschka would be models for the premalignant or early BC stage and an early or benign BC, respectively. With this cytogenomic information provided, these cell lines now can be applied really adequately in future research studies.
Collapse
Affiliation(s)
- Shaymaa Azawi
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747 Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747 Jena, Germany
| | - Martina Rincic
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| | - Mattia Manferrari
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747 Jena, Germany
| |
Collapse
|