1
|
Zhou B, Chen Y, Li L, Liu J, Wang Y, Huang Z, Hu Z, Tian R, Li Z. Purification and functional validation of LtCas12a protein. STAR Protoc 2023; 4:102600. [PMID: 37768827 PMCID: PMC10550837 DOI: 10.1016/j.xpro.2023.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Here, we present a protocol for generating LtCas12a protein recognizing distinct TTNA (N represented A, T, C, G) protospacer adjacent motif sequence. We describe steps for transforming and harvesting bacterial cells and protein purification including nickel affinity chromatography and dialysis. We then detail procedures for verification of LtCas12a with cis- and trans-cleavage activities. For complete details on the use and execution of this protocol, please refer to Chen et al. (2023).1.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430062, Hubei, China; Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan 430062, Hubei, China
| | - Ye Chen
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Lifang Li
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jiashuo Liu
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yuyan Wang
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zheying Huang
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zheng Hu
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430062, Hubei, China; Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan 430062, Hubei, China.
| | - Rui Tian
- Generulor Company Bio-X Lab, Zhuhai 519000, Guangdong, China.
| | - Zhen Li
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430062, Hubei, China; Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan 430062, Hubei, China.
| |
Collapse
|
2
|
Zhang Y, Shen J, Cheng W, Roy B, Zhao R, Chai T, Sheng Y, Zhang Z, Chen X, Liang W, Hu W, Liao Q, Pan S, Zhuang W, Zhang Y, Chen R, Mei J, Wei H, Fang X. Microbiota-mediated shaping of mouse spleen structure and immune function characterized by scRNA-seq and Stereo-seq. J Genet Genomics 2023; 50:688-701. [PMID: 37156441 DOI: 10.1016/j.jgg.2023.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Gut microbes exhibit complex interactions with their hosts and shape an organism's immune system throughout its lifespan. As the largest secondary lymphoid organ, the spleen has a wide range of immunological functions. To explore the role of microbiota in regulating and shaping the spleen, we employ scRNA-seq and Stereo-seq technologies based on germ-free (GF) mice to detect differences in tissue size, anatomical structure, cell types, functions, and spatial molecular characteristics. We identify 18 cell types, 9 subtypes of T cells, and 7 subtypes of B cells. Gene differential expression analysis reveals that the absence of microorganisms results in alterations in erythropoiesis within the red pulp region and congenital immune deficiency in the white pulp region. Stereo-seq results demonstrate a clear hierarchy of immune cells in the spleen, including marginal zone (MZ) macrophages, MZ B cells, follicular B cells and T cells, distributed in a well-defined pattern from outside to inside. However, this hierarchical structure is disturbed in GF mice. Ccr7 and Cxcl13 chemokines are specifically expressed in the spatial locations of T cells and B cells, respectively. We speculate that the microbiota may mediate the structural composition or partitioning of spleen immune cells by modulating the expression levels of chemokines.
Collapse
Affiliation(s)
- Yin Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Juan Shen
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bhaskar Roy
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Ruizhen Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Tailiang Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yifei Sheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Zhao Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Xueting Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | | | - Weining Hu
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Qijun Liao
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Shanshan Pan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Wen Zhuang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Yangrui Zhang
- BGI-Sanya, BGI-Shenzhen, Sanya, Hainan 572025, China
| | - Rouxi Chen
- BGI-Sanya, BGI-Shenzhen, Sanya, Hainan 572025, China
| | - Junpu Mei
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; BGI-Sanya, BGI-Shenzhen, Sanya, Hainan 572025, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Xiaodong Fang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; BGI-Sanya, BGI-Shenzhen, Sanya, Hainan 572025, China.
| |
Collapse
|
3
|
Hillman T. A Predictive Model for Identifying the Most Effective Anti-CCR5 Monoclonal Antibody. ARCHIVES OF PHARMACY PRACTICE 2023. [DOI: 10.51847/d9m2zufqr4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
4
|
Secchi M, Vangelista L. Rational Engineering of a Sub-Picomolar HIV-1 Blocker. Viruses 2022; 14:v14112415. [PMID: 36366513 PMCID: PMC9695723 DOI: 10.3390/v14112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
With the aim of rationally devising a refined and potent HIV-1 blocker, the cDNA of CCL5 5p12 5m, an extremely potent CCR5 antagonist, was fused to that of C37, a gp41-targeted fusion inhibitor. The resulting CCL5 5p12 5m-C37 fusion protein was expressed in E. coli and proved to be capable of inhibiting R5 HIV-1 strains with low to sub-picomolar IC50, maintaining its antagonism toward CCR5. In addition, CCL5 5p12 5m-C37 inhibits R5/X4 and X4 HIV-1 strains in the picomolar concentration range. The combination of CCL5 5p12 5m-C37 with tenofovir (TDF) exhibited a synergic effect, promoting this antiviral cocktail. Interestingly, a CCR5-targeted combination of maraviroc (MVC) with CCL5 5p12 5m-C37 led to a synergic effect that could be explained by an extensive engagement of different CCR5 conformational populations. Within the mechanism of HIV-1 entry, the CCL5 5p12 5m-C37 chimera may fit as a powerful blocker in several instances. In its possible consideration for systemic therapy or pre-exposure prophylaxis, this protein design represents an interesting lead in the combat of HIV-1 infection.
Collapse
Affiliation(s)
- Massimiliano Secchi
- Protein Engineering and Therapeutics Group, Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- DNA Enzymology and Molecular Virology Unit, Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Luca Vangelista
- Protein Engineering and Therapeutics Group, Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Correspondence:
| |
Collapse
|
5
|
Mukanova S, Borissenko A, Kim A, Bolatbek A, Abdrakhmanova A, Vangelista L, Sonnenberg-Riethmacher E, Riethmacher D. Role of periostin in inflammatory bowel disease development and synergistic effects mediated by the CCL5–CCR5 axis. Front Immunol 2022; 13:956691. [PMID: 36341422 PMCID: PMC9632729 DOI: 10.3389/fimmu.2022.956691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/23/2022] [Indexed: 01/08/2023] Open
Abstract
Inflammatory bowel disease (IBD), comprising mainly Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disease of the gastrointestinal tract. In recent years, a wealth of data has been accumulated demonstrating the complex interplay of many different factors in the pathogenesis of IBD. Among these are factors impacting the epithelial barrier function, including vessel and extracellular matrix (ECM) formation, the gut microbiome (e.g., bacterial antigens), and, most importantly, the production of cytokines (pro- and anti-inflammatory) directly shaping the immune response. Patients failing to resolve the acute intestinal inflammation develop chronic inflammation. It has been shown that the expression of the matricellular protein periostin is enhanced during IBD and is one of the drivers of this disease. The C-C chemokine receptor 5 (CCR5) is engaged by the chemotactic mediators CCL3/MIP-1α, CCL4/MIP-1β, and CCL5/RANTES. CCR5 blockade has been reported to ameliorate inflammation in a murine IBD model. Thus, both periostin and CCR5 are involved in the development of IBD. In this study, we investigated the potential crosstalk between the two signaling systems and tested a highly potent CCL5 derivative acting as a CCR5 antagonist in a murine model of IBD. We observed that the absence of periostin influences the CCR5-expressing cell population of the gut. Our data further support the notion that targeted modulation of the periostin and CCR5 signaling systems bears therapeutic potential for IBD.
Collapse
Affiliation(s)
- Saida Mukanova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Anton Borissenko
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Alexey Kim
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Aigerim Bolatbek
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | | | - Luca Vangelista
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Eva Sonnenberg-Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
- *Correspondence: Dieter Riethmacher, ; Eva Sonnenberg-Riethmacher,
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
- Department of Human Development and Health, School of Medicine, University of Southampton, Southampton, United Kingdom
- *Correspondence: Dieter Riethmacher, ; Eva Sonnenberg-Riethmacher,
| |
Collapse
|
6
|
Inderbitzin A, Loosli T, Opitz L, Rusert P, Metzner KJ. Transcriptome profiles of latently- and reactivated HIV-1 infected primary CD4+ T cells: A pooled data-analysis. Front Immunol 2022; 13:915805. [PMID: 36090997 PMCID: PMC9459035 DOI: 10.3389/fimmu.2022.915805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
The main obstacle to cure HIV-1 is the latent reservoir. Antiretroviral therapy effectively controls viral replication, however, it does not eradicate the latent reservoir. Latent CD4+ T cells are extremely rare in HIV-1 infected patients, making primary CD4+ T cell models of HIV-1 latency key to understanding latency and thus finding a cure. In recent years several primary CD4+ T cell models of HIV-1 latency were developed to study the underlying mechanism of establishing, maintaining and reversing HIV-1 latency. In the search of biomarkers, primary CD4+ T cell models of HIV-1 latency were used for bulk and single-cell transcriptomics. A wealth of information was generated from transcriptome analyses of different primary CD4+ T cell models of HIV-1 latency using latently- and reactivated HIV-1 infected primary CD4+ T cells. Here, we performed a pooled data-analysis comparing the transcriptome profiles of latently- and reactivated HIV-1 infected cells of 5 in vitro primary CD4+ T cell models of HIV-1 latency and 2 ex vivo studies of reactivated HIV-1 infected primary CD4+ T cells from HIV-1 infected individuals. Identifying genes that are differentially expressed between latently- and reactivated HIV-1 infected primary CD4+ T cells could be a more successful strategy to better understand and characterize HIV-1 latency and reactivation. We observed that natural ligands and coreceptors were predominantly downregulated in latently HIV-1 infected primary CD4+ T cells, whereas genes associated with apoptosis, cell cycle and HLA class II were upregulated in reactivated HIV-1 infected primary CD4+ T cells. In addition, we observed 5 differentially expressed genes that co-occurred in latently- and reactivated HIV-1 infected primary CD4+ T cells, one of which, MSRB2, was found to be differentially expressed between latently- and reactivated HIV-1 infected cells. Investigation of primary CD4+ T cell models of HIV-1 latency that mimic the in vivo state remains essential for the study of HIV-1 latency and thus providing the opportunity to compare the transcriptome profile of latently- and reactivated HIV-1 infected cells to gain insights into differentially expressed genes, which might contribute to HIV-1 latency.
Collapse
Affiliation(s)
- Anne Inderbitzin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Tom Loosli
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, Eidgenössische Technische Hochschule (ETH) Zürich/University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Karin J. Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- *Correspondence: Karin J. Metzner,
| |
Collapse
|
7
|
Monroe MK, Wang H, Anderson CF, Jia H, Flexner C, Cui H. Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections. J Control Release 2022; 348:1028-1049. [PMID: 35752254 PMCID: PMC11022941 DOI: 10.1016/j.jconrel.2022.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
Peptides and peptide-based materials have an increasing role in the treatment of viral infections through their use as active pharmaceutical ingredients, targeting moieties, excipients, carriers, or structural components in drug delivery systems. The discovery of peptide-based therapeutic compounds, coupled with the development of new stabilization and formulation strategies, has led to a resurgence of antiviral peptide therapeutics over the past two decades. The ability of peptides to bind cell receptors and to facilitate membrane penetration and subsequent intracellular trafficking enables their use in various antiviral systems for improved targeting efficiency and treatment efficacy. Importantly, the self-assembly of peptides into well-defined nanostructures provides a vast library of discrete constructs and supramolecular biomaterials for systemic and local delivery of antiviral agents. We review here the recent progress in exploiting the therapeutic, biological, and self-assembling potential of peptides, peptide conjugates, and their supramolecular assemblies in treating human viral infections, with an emphasis on the treatment strategies for Human Immunodeficiency Virus (HIV).
Collapse
Affiliation(s)
- Maya K Monroe
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America
| | - Hongpeng Jia
- Department of Surgery, The Johns Hopkins University School of Medicine, United States of America
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, The Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21205, United States of America.
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, United States of America; Deptartment of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America; Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, United States of America.
| |
Collapse
|
8
|
Amerzhanova Y, Vangelista L. Filling the Gaps in Antagonist CCR5 Binding, a Retrospective and Perspective Analysis. Front Immunol 2022; 13:826418. [PMID: 35126399 PMCID: PMC8807524 DOI: 10.3389/fimmu.2022.826418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
The large number of pathologies that position CCR5 as a central molecular determinant substantiates the studies aimed at understanding receptor-ligand interactions, as well as the development of compounds that efficiently block this receptor. This perspective focuses on CCR5 antagonism as the preferred landscape for therapeutic intervention, thus the receptor active site occupancy by known antagonists of different origins is overviewed. CCL5 is a natural agonist ligand for CCR5 and an extensively studied scaffold for CCR5 antagonists production through chemokine N-terminus modification. A retrospective 3D modeling analysis on recently developed CCL5 mutants and their contribution to enhanced anti-HIV-1 activity is reported here. These results allow us to prospect the development of conceptually novel amino acid substitutions outside the CCL5 N-terminus hotspot. CCR5 interaction improvement in regions distal to the chemokine N-terminus, as well as the stabilization of the chemokine hydrophobic core are strategies that influence binding affinity and stability beyond the agonist/antagonist dualism. Furthermore, the development of allosteric antagonists topologically remote from the orthosteric site (e.g., intracellular or membrane-embedded) is an intriguing new avenue in GPCR druggability and thus a conceivable novel direction for CCR5 blockade. Ultimately, the three-dimensional structure elucidation of the interaction between various ligands and CCR5 helps illuminate the active site occupancy and mechanism of action.
Collapse
|
9
|
Poddighe D, Vangelista L. Staphylococcus aureus Infection and Persistence in Chronic Rhinosinusitis: Focus on Leukocidin ED. Toxins (Basel) 2020; 12:678. [PMID: 33126405 PMCID: PMC7692112 DOI: 10.3390/toxins12110678] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is thought to be a multifactorial disease that includes a direct involvement of bacteria that trigger inflammation and contribute to CRS pathogenesis. Staphylococcus aureus infection and persistence is associated with chronic rhinosinusitis (CRS), and it may be particularly relevant in the form with nasal polyps (CRSwNP). The large array of exotoxins deployed by S. aureus is instrumental for the bacterium to warrant its infection and dissemination in different human body districts. Here, we analyze the common Th2 environment in CRSwNP and prospect a possible dynamic role played by S. aureus leukocidins in promoting this chronic inflammation, considering leukocidin ED (LukED) as a strong prototype candidate worth of therapeutic investigation. CCR5 is an essential target for LukED to exert its cytotoxicity towards T cells, macrophages and dendritic cells. Therefore, CCR5 blockade might be an interesting therapeutic option for CRS and, more specifically, persistent and relapsing CRSwNP. In this perspective, the arsenal of CCR5 antagonists being developed to inhibit HIV-1 entry (CCR5 being the major HIV-1 co-receptor) could be easily repurposed for CRS therapeutic investigation. Finally, direct targeting of LukED by neutralizing antibodies could represent an important additional solution to S. aureus infection.
Collapse
Affiliation(s)
- Dimitri Poddighe
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan;
- Department of Pediatrics, National Research Center for Maternal and Child Health, Nur-Sultan 010000, Kazakhstan
| | - Luca Vangelista
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
10
|
Janahi EMA, Haque S, Akhter N, Wahid M, Jawed A, Mandal RK, Lohani M, Areeshi MY, Almalki S, Das S, Dar SA. Bioengineered intravaginal isolate of Lactobacillus plantarum expresses algal lectin scytovirin demonstrating anti-HIV-1 activity. Microb Pathog 2018; 122:1-6. [PMID: 29870744 DOI: 10.1016/j.micpath.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/26/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Efforts to develop preventatives against HIV infection through sexual route have identified, among many, algal lectins as the potent molecules for scaffolding HIV entry inhibition. Algal lectin scytovirin (SVN) from Scytonema varium, a cyanobacterium, has anti-HIV effects with the potential for use in sculpting HIV neutralization. We created a recombinant strain of human vaginal L. plantarum for extracellular expression of recombinant (r)SVN. The rSVN protein containing culture supernatant was analyzed for its binding with HIV-1 gp160, and for inhibiting infection with primary R5 and X4 HIV-1 strains in TZM-bl cells. The rSVN protein extant in recombinant L. plantarum culture supernatant binds to HIV-1 gp160 and reduces the HIV-induced cytopathic effect to nearly 56.67% and 86.47% in R5 and X4 HIV-1 infected TZM-bl cells, respectively. The fortified L. plantarum may be explored for its use as a live virucide in vaginal mucosa of high risk women to prevent HIV entry.
Collapse
Affiliation(s)
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, University of Jazan, Jazan, Saudi Arabia
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, University of Jazan, Jazan, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, University of Jazan, Jazan, Saudi Arabia
| | - Raju Kumar Mandal
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, University of Jazan, Jazan, Saudi Arabia
| | - Mohtashim Lohani
- Department of EMS, College of Applied Medical Sciences, University of Jazan, Jazan, Saudi Arabia
| | - Mohammed Yahya Areeshi
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, University of Jazan, Jazan, Saudi Arabia
| | - Shaia Almalki
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi, India
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, University of Jazan, Jazan, Saudi Arabia; Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi, India.
| |
Collapse
|