1
|
Barsalote-Wei EM, Nichols D, Tegg RS, Eyles A, Wilson AJC, Wilson CR. Rhizosphere bacteria degrade a key root exudate metabolite critical for pathogen germination and root infection. J Appl Microbiol 2025; 136:lxaf090. [PMID: 40240295 DOI: 10.1093/jambio/lxaf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
AIMS Glutamine (Gln), present within potato root exudates, stimulates germination of resting spores and chemotactic attraction of zoospores of the plasmodiophorid pathogen, Spongospora subterranea. We hypothesized that rhizosphere bacteria could alter the rhizosphere metabolome by diminishing the occurrence of Gln with the eventual aim of reducing pathogen activation, attraction and infection. This study aimed to isolate and characterize bacteria capable of substantially degrading Gln within the potato rhizosphere. METHODS AND RESULTS Eleven bacteria were isolated from potato rhizosphere samples using Gln as a sole carbon source. Of these, Pantoea sp. (RR15) and Rhodococcus sp. (RR09) showed superior Gln degradation potential. Both isolates established within the potato rhizosphere and reduced Gln concentrations in situ. Further analysis of the rhizosphere metabolome showed significant treatment effects for a range of other organic compounds, including some known to stimulate or inhibit Spongospora subterranea germination and/or taxis. CONCLUSIONS We demonstrate that establishing selected bacteria in the rhizosphere of potatoes can successfully modify the root rhizosphere metabolome.
Collapse
Affiliation(s)
- Eda Marie Barsalote-Wei
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, TAS 7001, Australia
| | - Robert Steven Tegg
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia
| | - Alieta Eyles
- Tasmanian Institute of Agriculture, School of Agricultural Science, University of Tasmania, Private Bag 98, Hobart, TAS 7001, Australia
| | - Annabel Jun-Chn Wilson
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia
| | - Calum Rae Wilson
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS 7008, Australia
| |
Collapse
|
2
|
Subramanian H, Santhaseelan H, Dinakaran VT, Devendiran V, Rathinam AJ, Mahalingam A, Ramachandran SK, Muthukumarasamy A, Muthukumar K, Mathimani T. Hydrothermal synthesis of spindle structure copper ferrite-graphene oxide nanocomposites for enhanced photocatalytic dye degradation and in-vitro antibacterial activity. ENVIRONMENTAL RESEARCH 2023; 231:116095. [PMID: 37182825 DOI: 10.1016/j.envres.2023.116095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
In this study, a one-step hydrothermal approach was used to make pure magnetic copper ferrite (CuFe2O4) and copper ferrite-graphene oxide (CuFe2O4-rGO) nanocomposites (NCs) and spinel structure CuFe2O4 with a single phase of tetragonal CuFe2O4-rGO-NCs was confirmed by the XRD. Then, characterization of CuFe2O4-rGO-NCs was done using ng Raman spectroscopy, FT-IR, TGA-DTA, EDS, SEM, and TEM. The synthesized NCs was exposed to UV light to evaluate its photocatalytic activity for the degradation of methylene blue (MB) and rhodamine B (RhB) with CuFe2O4 and CuFe2O4-rGO-NCs, respectively. The catalyst CuFe2O4-rGO-NCs provided higher degradation of MB (94%) than for RhB (86%) under UV light irradiation compared to CuFe2O4. Further, the antibacterial activities of CuFe2O4-NPs and CuFe2O4-rGO-NCs were tested against Gram-negative and -positive bacterial pathogens such as Vibrio cholera (V. cholera); Escherichia coli (E. coli); Pseudomonas aeruginosa (P. aeruginosa); Bacillus subtilis (B. subtilis); Staphylococcus aureus (S. aureus); and Staphylococcus epidermidis (S. epidermidis) by well diffusion method. At 100 μg/mL concentrations of CuFe2O4-rGO-NCs, maximal growth inhibition was shown against E. coli (18 mm) and minimum growth inhibition against S. epidermidis (12 mm). This study suggests that CuFe2O4-rGO-NCs as a high-efficacy antibacterial material and plays an important role in exhibiting higher sensitivity depending on concentrations. The results encourage that the synthesized CuFe2O4-rGO-NCs can be used as a promising material for the antibacterial activity and also for dye degradation in the water/wastewater treatment plants.
Collapse
Affiliation(s)
- Harinee Subramanian
- Department of Physics, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Henciya Santhaseelan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | | | - Velmurugan Devendiran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arthur James Rathinam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Ashok Mahalingam
- Department of Physics, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Sathish Kumar Ramachandran
- Department of Biomaterials, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, Tamil Nadu, India
| | - Arulmozhi Muthukumarasamy
- Department of Petrochemical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Krishnan Muthukumar
- Department of Petrochemical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India.
| |
Collapse
|
3
|
Kalasariya HS, Patel NB, Gacem A, Alsufyani T, Reece LM, Yadav VK, Awwad NS, Ibrahium HA, Ahn Y, Yadav KK, Jeon BH. Marine Alga Ulva fasciata-Derived Molecules for the Potential Treatment of SARS-CoV-2: An In Silico Approach. Mar Drugs 2022; 20:586. [PMID: 36135775 PMCID: PMC9506351 DOI: 10.3390/md20090586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 is the causative agent of the COVID-19 pandemic. This in silico study aimed to elucidate therapeutic efficacies against SARS-CoV-2 of phyco-compounds from the seaweed, Ulva fasciata. Twelve phyco-compounds were isolated and toxicity was analyzed by VEGA QSAR. Five compounds were found to be nonmutagenic, noncarcinogenic and nontoxic. Moreover, antiviral activity was evaluated by PASS. Binding affinities of five of these therapeutic compounds were predicted to possess probable biological activity. Fifteen SARS-CoV-2 target proteins were analyzed by the AutoDock Vina program for molecular docking binding energy analysis and the 6Y84 protein was determined to possess optimal binding affinities. The Desmond program from Schrödinger's suite was used to study high performance molecular dynamic simulation properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol-6Y84 for better drug evaluation. The ligand with 6Y84 had stronger binding affinities (-5.9 kcal/mol) over two standard drugs, Chloroquine (-5.6 kcal/mol) and Interferon α-2b (-3.8 kcal/mol). Swiss ADME calculated physicochemical/lipophilicity/water solubility/pharmacokinetic properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, showing that this therapeutic agent may be effective against SARS-CoV-2.
Collapse
Affiliation(s)
- Haresh S. Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Nikunj B. Patel
- Microbiology Department, Sankalchand Patel University, Visnagar 384315, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda 21000, Algeria
| | - Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Lisa M. Reece
- Reece Life Science Consulting Agency, 819 N Amburn Rd, Texas City, TX 77591, USA
| | - Virendra Kumar Yadav
- Department of Biosciences, School of Liberal Arts & Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar 332311, India
| | - Nasser S. Awwad
- Department of Chemistry, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority, El Maadi, P.O. Box 530, Cairo 11381, Egypt
| | - Yongtae Ahn
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
4
|
Xu Y, Shu Y, Wang Y, Ren X, Shu X, Zhang X, Song H, Zhou H, Dai L, Wang Z, Yuan X, Zhao H. Reduction-Magnetic Separation of Pickling Sludge by Biomass Pyrolysis Reducing Gas. ACS OMEGA 2022; 7:17963-17975. [PMID: 35664575 PMCID: PMC9161396 DOI: 10.1021/acsomega.2c01122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The neutralization process of carbon steel pickling wastewater produces a large amount of steel hydrochloric acid pickling sludge (SHPS), and improper treatment of this sludge poses a serious threat to the environment. Considering that SHPS contains a large amount of iron oxide and given the huge demand for iron concentrate in China's ironmaking industry, refining iron oxide in SHPS into iron concentrate will have great environmental and economic benefits. This paper proposes a new method that uses biomass (corncob) to replace conventional coal-based reductants for the recovery of iron components in SHPS to simultaneously utilize two kinds of solid waste resources. Factors that affect the iron recovery rate and iron grade of SHPS, such as the reaction temperature, corncob dosage, residence time, and magnetic field strength, were studied using a fixed bed and a magnetic separator. These studies were combined with thermodynamic analysis, thermogravimetric analysis, X-ray diffraction, inductively coupled plasma-mass spectrometry, gas chromatography, etc. The results showed that when the reaction temperature was 680 °C, the corncob dosage was 5%, the residence time was 20 min, and the magnetic field strength was 200 mT, the recovery rate of iron reached 91.83%, and the iron grade of the recovered products was 67.72%, meeting the level I requirements in GB/T 32545-2016. Based on this result, a process involving SHPS reduction roasting with corncob pyrolysis reducing gas-magnetic separation was established to recover iron from SHPS. This process not only effectively utilizes the iron oxide in SHPS by converting it into iron concentrate powder for the ironmaking industry but also proves that the pyrolysis gas of corncob has good reduction ability.
Collapse
Affiliation(s)
- Yane Xu
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Yuanfeng Shu
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Yichao Wang
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Xiaoling Ren
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Xinqian Shu
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Xize Zhang
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Huiyun Song
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Huixin Zhou
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Lingwen Dai
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Zhipu Wang
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Xiang Yuan
- Hunan
Eijing Drainage Solution Co.Ltd, Changsha 430100, China
| | - Hongyu Zhao
- Key
Laboratory of Coal Processing and Efficient Utilization (Ministry
of Education), China University of Mining
& Technology, Xuzhou 221116, Jiangsu, China
- School
of civil and resource engineering, University
of Science & Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Xu Y, Zhang Y, Shu Y, Song H, Shu X, Ma Y, Hao L, Zhang X, Ren X, Wang Z, Zhang X. Composition and Leaching Toxicity of Hydrochloric Acid Pickling Sludge Generated from the Hot-Dip Galvanized Steel Industry. ACS OMEGA 2022; 7:13826-13840. [PMID: 35559134 PMCID: PMC9088911 DOI: 10.1021/acsomega.2c00121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Steel hydrochloric acid pickling sludge (SHPS), containing the heavy metals Fe, Zn, and Ni and a high chloride salt content, is considered a type of hazardous solid waste because of its potential harm to human health and the environment. In addition, the SHPS yield is large, but the main treatment currently used is only safe for landfills. Although studying the composition and leaching toxicity of SHPS is of great importance, only a small amount of related literature is available. This paper can help compensate for this deficiency. SHPS is analyzed from the aspects of its formation mechanism, pH, moisture content, elemental concentration, phase composition, microstructure, and leaching toxicity. The results show that its pH ranges from 2.25 to 11.11, and the moisture content ranges from 45.47% to 83.34%. Additionally, the concentration of Fe is the highest, with values from 29.80% to 50.65%, while other alkali metal elements, namely, Ca, K, and Na, have values of 0.36% to 23.07%, 0.02% to 19.82%, and 0.38% to 3.31%, respectively. Heavy metal elements, namely, Zn, Ni, Mn, Cr, and Pb, have values of 0.02% to 14.88%, 0.001% to 0.05%, 0.03% to 0.38%, 0.01% to 0.09%, and 0.02% to 0.19%, respectively. Anions, namely, SO4 2-, Cl-, F-, and NO3 -, have contents of 0.09% to 0.34%, 0.54% to 5.73%, 0.001% to 0.04%, and 0.01% to 0.15%, respectively. X-ray diffraction (XRD) analysis shows that Fe and Zn are mainly present in oxides, Ca is present as CaO and CaCO3, and chlorine is present in NaCl. Moreover, scanning electron microscopy (SEM) analysis shows that the microscopic structure consists mainly of bright and fluffy irregular spheres; stripes; flakes; and dark, very small irregular particles. The leaching toxicity test based on HJ/T 299-2007 (China) was performed, where SHPS samples were treated with a mixed solution of sulfuric acid, nitric acid, and pure water (pH = 3.20 ± 0.05) at a liquid-to-solid ratio of 10:1 for a period of 18 h. The leachate was filtered and analyzed for Cr, Ni, Mn, Zn, etc. The leaching results indicate that Zn and Ni are the main elements that cause SHPS to be hazardous to the environment. These research results can provide a reference for later researchers studying the effective treatment of SHPS, such as more effective treatments for reducing toxicity and resource utilization.
Collapse
Affiliation(s)
- Yane Xu
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Yichen Zhang
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Yuanfeng Shu
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Huiyun Song
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Xinqian Shu
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Yuanxin Ma
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Lulu Hao
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Xize Zhang
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Xiaoling Ren
- School
of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing 100083, China
| | - Zhipu Wang
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Xiaolei Zhang
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| |
Collapse
|
6
|
Subramanian H, Krishnan M, Mahalingam A. Photocatalytic dye degradation and photoexcited anti-microbial activities of green zinc oxide nanoparticles synthesized via Sargassum muticum extracts. RSC Adv 2021; 12:985-997. [PMID: 35425145 PMCID: PMC8978881 DOI: 10.1039/d1ra08196a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022] Open
Abstract
Drug-resistant superbugs (DRS) were isolated from hospital sewage waste and confirmed by a 16S rDNA molecular technique as B. filamentosus, B. flexus, P. stutzeri, and A. baumannii. Green nanotechnologies provide a new promising alternative pathway that was found to be much safer, eco-friendly, and has economic benefits over physical/chemical methods. Sargassum muticum (SM) mediated zinc oxide nanoparticles (ZnO-NPs) were proved to be photocatalytic and anti-microbial agents. Anti-microbial action was demonstrated by a maximal growth inhibition activity of 18 mm against A. baumannii and a minimal of 12 mm against B. flexus at 80 μg mL-1 concentrations. The anti-microbial mechanism of SMZnO-NPs employed a biphasic phenomenon persuaded by an osmotic shock that can attack the DRS bacterial cells directly and lead to death. In addition, photocatalytic activity was investigated by SMZnO-NPs for the degradation of methylene blue (MB) dye under different light conditions. Natural sunlight irradiation shows effective enhancement with the highest efficiencies of 96% being achieved within 60 min compared to UV-light and visible-light. The reusability of SMZnO-NPs provides up to 6 consecutive cycles towards MB decolorization for environmental water cleansing.
Collapse
Affiliation(s)
- Harinee Subramanian
- Department of Physics, National Institute of Technology (NIT) Tiruchirappalli - 620 015 Tamil Nadu India +91-431-2500133 +91-431-2503610
| | - Muthukumar Krishnan
- Department of Physics, National Institute of Technology (NIT) Tiruchirappalli - 620 015 Tamil Nadu India +91-431-2500133 +91-431-2503610
| | - Ashok Mahalingam
- Department of Physics, National Institute of Technology (NIT) Tiruchirappalli - 620 015 Tamil Nadu India +91-431-2500133 +91-431-2503610
| |
Collapse
|
7
|
Kokilaramani S, Rajasekar A, AlSalhi MS, Devanesan S. Characterization of methanolic extract of seaweeds as environmentally benign corrosion inhibitors for mild steel corrosion in sodium chloride environment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Deepa MJ, Arunima SR, Elias L, Shibli SMA. Development of Antibacterial V/TiO 2-Based Galvanic Coatings for Combating Biocorrosion. ACS APPLIED BIO MATERIALS 2021; 4:3332-3349. [PMID: 35014419 DOI: 10.1021/acsabm.0c01652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, TiO2 crystals have been modified by transition-metal dopants with different physicochemical structures to attain distinguished properties. Considering the similar ionic sizes of V4+ (0.058 nm) and Ti4+ (0.061 nm), vanadium in the +4 state can be effectively incorporated into the crystal lattice of TiO2 to tune the band gap energy by creating an impurity energy level (V5+/V4+) below the conduction band (2.1 eV) and retaining the anatase phase. In vanadium-incorporated TiO2 (V/TiO2), V4+ is a good dopant candidate as it can increase the lifetime of the charge carrier and reduce the electron-hole recombination rate, which results in high antibacterial activity under visible light irradiation. The present study explores the V/TiO2-based hot-dip zinc coating with enhanced electrochemical properties and long-term stability for combating biocorrosion. All the composites and the coatings are characterized by different techniques, including X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive X-ray analysis, confocal laser scanning microscopy, optical surface profilometry, and X-ray photoelectron spectroscopy. The biofilm formation assay and the cell viability assay reveal that the tuned composition of the V/TiO2-based hot-dip zinc coating effectively kills the adherent bacteria and inhibits biofilm formation on the surface. The high-charge-transfer resistance (225.67, 223.63, and 242.35 Ω cm2) and the high-inhibition efficiency (92.24, 92.30, and 92.02%) of the tuned composition of the V/TiO2-based hot-dip zinc coating confirm its efficient and sustainable antibiocorrosion performance and long-term stability even after an exposure period of 21 days in different bacterial environments. With the inherent antibacterial properties and antibiocorrosion performance of the developed V/TiO2-based hot-dip zinc coating, the mild steel substrates can find potential application in different fields, including aquatic and marine environments.
Collapse
Affiliation(s)
- Mohandas Jaya Deepa
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Sasidharan Radhabai Arunima
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Liju Elias
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | | |
Collapse
|
9
|
Edoziuno FO, Adediran AA, Odoni BU, Oki M, Ikubanni PP, Omodara O. Performance of Methyl-5-Benzoyl-2-Benzimidazole Carbamate (Mebendazole) as Corrosion Inhibitor for Mild Steel in Dilute Sulphuric Acid. ScientificWorldJournal 2020; 2020:2756734. [PMID: 32669981 PMCID: PMC7333062 DOI: 10.1155/2020/2756734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/22/2020] [Accepted: 05/02/2020] [Indexed: 11/17/2022] Open
Abstract
The inhibitive effect of mebendazole (MBZ) on the corrosion of low-carbon steel in H2SO4 was investigated by gravimetric and electrochemical techniques as well as examination of specimens in the scanning electron microscope with attached energy dispersive X-ray spectrometer (EDS). From gravimetric analysis, the highest inhibition efficiency of about 96.6% was obtained for 1.0 g of inhibitor in H2SO4 solution at 24 h, while with longer exposure times of between 72 to 120 h, the efficiencies averaged between 92 and 95%. Tafel extrapolations from the polarization curves showed that 1.0 g MBZ gave a maximum inhibition efficiency of approximately 99% for the investigation conducted at 30°C, whereas 1.5 g of MBZ gave a maximum inhibition efficiency of about 85% at 60°C. Inhibition efficiency increased with increasing concentrations of MBZ and decreased at elevated temperatures. The inhibitive action was attributed to physical adsorption of MBZ species on the mild steel surface which followed the Langmuir adsorption isotherm. MBZ performed as a mixed-type inhibitor on mild steel in dilute H2SO4.
Collapse
Affiliation(s)
- F. O. Edoziuno
- Department of Metallurgical Engineering, Delta State Polytechnic, Ogwashi-Uku, Ozoro, Nigeria
| | - A. A. Adediran
- Department of Mechanical Engineering, Landmark University, PMB 1001, Omu-Aran, Kwara, Nigeria
| | - B. U. Odoni
- Department of Metallurgical Engineering, Delta State Polytechnic, Ogwashi-Uku, Ozoro, Nigeria
| | - M. Oki
- Department of Mechanical Engineering, Landmark University, PMB 1001, Omu-Aran, Kwara, Nigeria
| | - P. P. Ikubanni
- Department of Mechanical Engineering, Landmark University, PMB 1001, Omu-Aran, Kwara, Nigeria
| | - O. Omodara
- Department of Metallurgical and Materials Engineering, Federal University of Technology Akure, PMB 704, Akure, Ondo, Nigeria
| |
Collapse
|
10
|
Helen Selvi M, Vanga PR, Harinee S, Ashok M. Synthesis of bulk g-C3N4/Bi2WO6 nanocomposite for effective photocatalytic reaction and for antimicrobial activity by hydrothermal method. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04026-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Sreelekshmy BR, Vijayan A, Basheer R, Arunima SR, Ameen Sha M, Riyas AH, Bhagya TC, Manu MN, Shibli SMA. Zn Wetted CeO 2 Based Composite Galvanization: An Effective Route To Combat Biofouling. ACS APPLIED BIO MATERIALS 2019; 2:3774-3789. [PMID: 35021351 DOI: 10.1021/acsabm.9b00404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present paper reports for the first time the development and application of novel Zn wetted CeO2 (Zn/CeO2) composite galvanic zinc coating to combat microbial induced corrosion (MIC). Zinc metal-metal interaction causes the effective incorporation of composite into the galvanic coating and accordingly increases the active sites for antibiofouling activity. The developed coatings are explored for their anticorrosion/antibiofouling characteristics toward MIC induced by cultured seawater consortia. Enhanced antibiofouling activity of the composite galvanic coating is achieved due to the tuned content of 28 wt % Zn and 34 wt % of Ce. High charge transfer resistance as high as 4.0 × 1014 Ω cm2 and low double layer capacitance as low as 3.99 × 10-8 F are achieved by tuning the structure and composition of the coating. The synergistic effect of Zn and Ce ensures the stability and corrosion resistance of the coatings in a corrosive bacterial environment. Evident decreases in the bacterial attachment and biofilm formation are illustrated using antibiofouling assay. The antibiofouling activity is attributed to the effective reduction of Ce4+ to Ce3+ and the shuttling characteristics of oxidation state of CeO2. This impairs the cellular respiration and results in bacterial death. Thus, it can be used as an effective coating to protect the steel based equipment in corrosive marine environments to combat marine microorganisms and their interactions. The present study also paves the scope for exploration of similar effective protective systems.
Collapse
|
12
|
Corrosion Inhibition Mechanism of Mild Steel by Amylose-Acetate/Carboxymethyl Chitosan Composites in Acidic Media. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1155/2019/8514132] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This article details an investigation on the mechanism of corrosion inhibition of mild steel using amylose-acetate-blended carboxymethyl chitosan (AA-CMCh) in acidic media in the context of kinetic and thermodynamic parameters. The surface of mild steel was exposed to test solutions and evaluated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The activation energy (Ea), free energy of adsorption (ΔG), enthalpy of activation (ΔHads), and entropy of activation (ΔSads) were determined in order to elucidate the mechanism of corrosion inhibition. The results confirmed that AA could be improved using CMCh as a corrosion inhibitor. The corrosion rate decreased from 1109.00 to 229.70 mdd (79.29%), while corrosion inhibition increased from 35.13 to 89.72%. Sulfate acid (H2SO4) of 0.25 M also helped in decreasing the corrosion rate from 2664.4 to 1041.67 mdd (60.9%) while also in increasing corrosion inhibition from 56.94 to 68.31%. The calculated values for ΔG, ΔHads, and ΔSads were −33.22 kJ·mol−1, −48.56 kJ·mol−1, and 0.0495 kJ·mol−1·K−1, respectively. The mechanism of corrosion inhibition of mild steel in the acidic condition is dominated and precipitated by the formation of the Fe-chelate compound, which was confirmed by the SEM/EDS spectrum. The reactions were spontaneous, exothermic, and irregular and takes place on the surface of mild steel.
Collapse
|
13
|
Silva ER, Ferreira O, Ramalho PA, Azevedo NF, Bayón R, Igartua A, Bordado JC, Calhorda MJ. Eco-friendly non-biocide-release coatings for marine biofouling prevention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2499-2511. [PMID: 30293004 DOI: 10.1016/j.scitotenv.2018.10.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 05/22/2023]
Abstract
Environmental concerns have been changing the way of looking for solutions to problems. The hydrosphere, together with its biosphere, has been feeling the impact of many pollutants, used for instance in the marine industry for economic reasons or lack of knowledge of their effects. In particular biocides, applied as coatings in paints, are released into the waters becoming toxic and persistent extending their action to an area far beyond the initial coated surface they should protect. In order to minimize these side effects, two biocides, Irgarol (I) and Econea (E), were covalently attached to polyurethane (PU) and foul-release silicone based (PDMS) marine paints through an isocyanate linker. Their antifouling bioactivity was better in PDMS coatings, both for single (Econea) and combined biocides (E/I ratio = 1.5) with contents lower than 0.6 wt%. The treated samples remained almost clean after more than one year immersion in the Portuguese shore of the Atlantic Ocean, and after about 24 weeks under the tropical conditions of Singapore (Fouling rate < 1%). Complementary biofilm adhesion susceptibility tests against Pseudoalteromonas tunicata D2 showed adhesion reduction higher than 90% for PU formulations containing single biocides and close to 100% for PDMS with combined biocides. The eco-toxicity assessment evidenced a low environmental impact, in accordance with the European standards. In addition, shipping field trial tests showed the best antifouling performance for the Econea-based PDMS formulations (E = 0.6 wt%), which remained clean for about nine months in open seawaters, proving the efficacy of this non-release strategy, when applied under dynamic conditions.
Collapse
Affiliation(s)
- E R Silva
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1740-016 Lisboa, Portugal; BioISI, Biosystems & Integrative Sciences Institute Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Superior Técnico, CERENA, UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - O Ferreira
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1740-016 Lisboa, Portugal; BioISI, Biosystems & Integrative Sciences Institute Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Superior Técnico, CERENA, UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - P A Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, DEQ, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - N F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, DEQ, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - R Bayón
- Fundación TEKNIKER, IK4-TEKNIKER, C/Ignacio Goenaga, 5, 20600 Eibar, Guipuzcoa, Spain
| | - A Igartua
- Fundación TEKNIKER, IK4-TEKNIKER, C/Ignacio Goenaga, 5, 20600 Eibar, Guipuzcoa, Spain
| | - J C Bordado
- Instituto Superior Técnico, CERENA, UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - M J Calhorda
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1740-016 Lisboa, Portugal; BioISI, Biosystems & Integrative Sciences Institute Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|