1
|
Camacho-Morales A, Noriega LG, Sánchez-García A, Torre-Villalvazo I, Vázquez-Manjarrez N, Maldonado-Ruiz R, Cárdenas-Tueme M, Villegas-Romero M, Alamilla-Martínez I, Rodriguez-Rocha H, Garcia-Garcia A, Corona JC, Tovar AR, Saville J, Fuller M, Gonzalez-Gonzalez JG, Rivas-Estilla AM. Plasma C24:0 ceramide impairs adipose tissue remodeling and promotes liver steatosis and glucose imbalance in offspring of rats. Heliyon 2024; 10:e39206. [PMID: 39640709 PMCID: PMC11620212 DOI: 10.1016/j.heliyon.2024.e39206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Fetal programming by exposure to high-energy diets increases the susceptibility to type 2 diabetes mellitus (T2DM2) in the offspring. Glucose imbalance during fetal programming might be associated to still unknown selective lipid species and their characterization might be beneficial for T2DM diagnosis and treatment. We aim to characterize the effect of the lipid specie, C24:0 ceramide, on glucose imbalance and metabolic impairment in cellular and murine models. A lipidomic analysis identified accumulation of C24:0 ceramide in plasma of offspring rats exposed to high-energy diets during fetal programing, as well as in obese-T2DM subjects. In vitro experiments in 3T3L-1, hMSC and HUH7 cells and in in vivo models of Wistar rats and C57BL/6 mice demonstrated that C24:0 ceramide disrupted glucose balance, and differentiation and lipid accumulation in adipocytes, whereas promoted liver steatosis. Mechanistically, C24:0 ceramide impaired mitochondrial fatty acid oxidation in adipocytes and hepatic cells, tentatively by favoring reactive oxygen species accumulation and calcium overload in the mitochondria; and also, activates endoplasmic reticulum (ER) stress in hepatocytes. We propose that C24:0 ceramide accumulation in the offspring followed a prenatal diet exposure, impair lipid allocation into adipocytes and enhances liver steatosis associated to mitochondrial dysfunction and ER stress, leading to glucose imbalance.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Lilia G. Noriega
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Adriana Sánchez-García
- University Hospital "Dr. Jose E. Gonzalez, Endocrinology Division. Department of Internal Medicine. Autonomous University of Nuevo Leon Monterrey, Mexico
| | - Ivan Torre-Villalvazo
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Natalia Vázquez-Manjarrez
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Roger Maldonado-Ruiz
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Marcela Cárdenas-Tueme
- Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Mariana Villegas-Romero
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Itzayana Alamilla-Martínez
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Humberto Rodriguez-Rocha
- Histology Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Aracely Garcia-Garcia
- Histology Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Juan Carlos Corona
- Neuroscience Laboratory, Hospital Infantil de México, Federico Gómez, México City, Mexico
| | - Armando R. Tovar
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Jennifer Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, University of Adelaide, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, University of Adelaide, Australia
| | - José Gerardo Gonzalez-Gonzalez
- University Hospital "Dr. Jose E. Gonzalez, Endocrinology Division. Department of Internal Medicine. Autonomous University of Nuevo Leon Monterrey, Mexico
| | - Ana María Rivas-Estilla
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
2
|
Zhou F, Yang L, Yang L, Wang X, Guo N, Sun W, Ma H. Trpc5-regulated AMPKα/mTOR autophagy pathway is associated with glucose metabolism disorders in low birth weight mice under overnutrition. Biochem Biophys Res Commun 2022; 630:1-7. [PMID: 36122525 DOI: 10.1016/j.bbrc.2022.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that low birth weight (LBW) individuals are at higher risk of glucose metabolism disorders compared with normal birth weight (NBW) individuals under overnutrition conditions, but the mechanism remains unclear. To explore the underlying mechanism of glucose metabolism disorders induced by LBW under overnutrition in adulthood, the prenatal malnutrition method was applied to ICR mice to establish the LBW mice model and high-fat diets were used to mimic overnutrition conditions. Then the mechanism was further explored on Hepg2 cells treated with nutritional deprivation plus palmitic acid. The results showed that LBW plus high-fat interventions will cause glucose metabolism disorders and inhibit autophagy flux in adulthood. Moreover, the expression of TRPC5-regulated AMPK/mTOR autophagy pathway was downregulated by LBW with high-fat interventions. Collectively, LBW plus high-fat intervention increased the risk of glucose metabolism disorders, which may be related to the alteration of TRPC5 expression level and its regulation of the AMPKα/mTOR autophagy pathway. This study may provide a fundamental basis for the molecular mechanism of glucose metabolism disorders induced by LBW with high-fat diets in adulthood and a new target for the treatment of metabolic diseases in LBW individuals.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Linlin Yang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Linquan Yang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xing Wang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Na Guo
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wenwen Sun
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Zelnik ID, Kim JL, Futerman AH. The Complex Tail of Circulating Sphingolipids in Atherosclerosis and Cardiovascular Disease. J Lipid Atheroscler 2021; 10:268-281. [PMID: 34621698 PMCID: PMC8473959 DOI: 10.12997/jla.2021.10.3.268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Sphingolipids (SLs) are critical players in a number of cellular processes and have recently been implicated in a large number of human diseases, including atherosclerosis and cardiovascular disease (CVD). SLs are generated intracellularly in a stepwise manner, starting with the generation of the sphingoid long chain base (LCB), followed by N-acylation of the LCB to form ceramide, which can be subsequently metabolized to sphingomyelin and glycosphingolipids. Fatty acids, which are taken up by cells prior to their activation to fatty acyl-CoAs, are used in 2 of these enzymatic steps, including by ceramide synthases, which use fatty acyl-CoAs of different chain lengths to generate ceramides with different N-acyl chain lengths. Recently, alterations in plasma ceramides with specific N-acyl chain lengths and degrees of saturation have emerged as novel biomarkers for the prediction of atherosclerosis and overall cardiovascular risk in the general population. We briefly review the sources of plasma SLs in atherosclerosis, the roles of SLs in CVD, and the possible use of the "ceramide score" as a prognostic marker for CVD.
Collapse
Affiliation(s)
- Iris D Zelnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jiyoon L Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Gillberg L, Rönn T, Jørgensen SW, Perfilyev A, Hjort L, Nilsson E, Brøns C, Vaag A, Ling C. Fasting unmasks differential fat and muscle transcriptional regulation of metabolic gene sets in low versus normal birth weight men. EBioMedicine 2019; 47:341-351. [PMID: 31439477 PMCID: PMC6796584 DOI: 10.1016/j.ebiom.2019.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Background Individuals born with low birth weight (LBW) have an increased risk of metabolic diseases when exposed to diets rich in calories and fat but may respond to fasting in a metabolically preferential manner. We hypothesized that impaired foetal growth is associated with differential regulation of gene expression and epigenetics in metabolic tissues in response to fasting in young adulthood. Methods Genome-wide expression and DNA methylation were analysed in subcutaneous adipose tissue (SAT) and skeletal muscle from LBW and normal birth weight (NBW) men after 36 h fasting and after an isocaloric control study using microarrays. Findings Transcriptome analyses revealed that expression of genes involved in oxidative phosphorylation (OXPHOS) and other key metabolic pathways were lower in SAT from LBW vs NBW men after the control study, but paradoxically higher in LBW vs NBW men after 36 h fasting. Thus, fasting was associated with downregulated OXPHOS and metabolic gene sets in NBW men only. Likewise, in skeletal muscle only NBW men downregulated OXPHOS genes with fasting. Few epigenetic changes were observed in SAT and muscle between the groups. Interpretation Our results provide insights into the molecular mechanisms in muscle and adipose tissue governing a differential metabolic response in subjects with impaired foetal growth when exposed to fasting in adulthood. The results support the concept of developmental programming of metabolic diseases including type 2 diabetes. Fund The Swedish Research Council, the Danish Council for Strategic Research, the Novo Nordisk foundation, the Swedish Foundation for Strategic Research, The European Foundation for the Study of Diabetes, The EU 6th Framework EXGENESIS grant and Rigshospitalet.
Collapse
Affiliation(s)
- Linn Gillberg
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Tina Rönn
- Department of Clinical Sciences, Epigenetics and Diabetes Unit, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | | | - Alexander Perfilyev
- Department of Clinical Sciences, Epigenetics and Diabetes Unit, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Line Hjort
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Emma Nilsson
- Department of Clinical Sciences, Epigenetics and Diabetes Unit, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Charlotte Brøns
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Allan Vaag
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Cardiovascular, Renal and Metabolism (CVRM), Translational Medical Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes Unit, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|