1
|
Li Z, Wu YH, Guo YQ, Min XJ, Lin Y. Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2025; 29:191-204. [PMID: 39539173 PMCID: PMC11842298 DOI: 10.4196/kjpp.24.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024]
Abstract
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms. RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
Collapse
Affiliation(s)
- Zhao Li
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| | - Ya-Hong Wu
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| | - Ye-Qing Guo
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| | - Xiao-Jia Min
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| | - Ying Lin
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| |
Collapse
|
2
|
Bret C, Desmots-Loyer F, Moreaux J, Fest T. BHLHE41, a transcriptional repressor involved in physiological processes and tumor development. Cell Oncol (Dordr) 2025; 48:43-66. [PMID: 39254779 PMCID: PMC11850569 DOI: 10.1007/s13402-024-00973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 09/11/2024] Open
Abstract
BHLHE41 is a nuclear transcriptional repressor that belongs to the basic helix-loop-helix protein superfamily. BHLHE41 expression tends to be restricted to specific tissues and is regulated by environmental cues and biological events. BHLHE41 homodimerizes or heterodimerizes with various partners, influencing its transcription factor function. BHLHE41 is involved in the regulation of many physiological processes implicated in tissue/organ homeostasis, such as myogenesis, adipogenesis, circadian rhythms and DNA repair. At cellular level, BHLHE41 is involved in the regulation of mesenchymal stem cell properties, tissue-specific macrophage functions and lymphoid lineage physiology. In several cancer types, BHLHE41 modulates the expression of different transcriptional programs influencing cell cycle control, apoptosis, invasiveness, epithelial to mesenchymal transition and hypoxia response in the tumor environment. Depending on the cancer cell type, BHLHE41 can act as a tumor suppressor or an oncogene, and could be a target for innovative therapies. This review summarizes the available knowledge on BHLHE41 structure, biological functions, regulation and potential partners, as well as its role in physiological processes, and its implication in major cancer steps.
Collapse
Affiliation(s)
- Caroline Bret
- Department of Biological Hematology, CHU Montpellier, Montpellier, 34295, France.
- Faculty of Medicine of Montpellier and Nîmes, University of Montpellier, Montpellier, 34090, France.
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, 34396, France.
| | - Fabienne Desmots-Loyer
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.
- Pôle de Biologie, Rennes University Medical Center, Rennes, France.
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, 34295, France.
- Faculty of Medicine of Montpellier and Nîmes, University of Montpellier, Montpellier, 34090, France.
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, 34396, France.
- Institut Universitaire de France, Paris, France.
| | - Thierry Fest
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.
- Pôle de Biologie, Rennes University Medical Center, Rennes, France.
| |
Collapse
|
3
|
Feng Q, Hao S, Liu X, Yan Z, Sheng K, Li Y, Zhang P, Sheng X. HDAC7 promotes ovarian cancer malignancy via AKT/mTOR signalling pathway. J Cell Mol Med 2024; 28:e70120. [PMID: 39431349 PMCID: PMC11491867 DOI: 10.1111/jcmm.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Ovarian cancer is of the most lethal malignancy and causes serious threat to women health worldwide. A deep understanding of molecular mechanisms underlying ovarian cancer progression is critical for the development of promising therapeutic strategies. In this study, we aimed to employ immunohistochemistry to determine the protein level of HDAC7 in patient tissues, our data showed HDAC7 levels are upregulated in tumour tissues. In addition, we also performed Kaplan-Meier survival analysis to investigate the association between HDAC7 expression and clinical prognosis, and found that HDAC7 expression was associated with poor prognosis in ovarian cancer patients. Inhibition of HDAC7 cells resulted in lower cell proliferation, invasion and colony formation. Furthermore, we also found that HDAC7 inhibition suppressed PI3K/AKT/mTOR pathway. In contrast, exogenous HDAC7 expression activated the PI3K/AKT/mTOR pathway in HDAC7 knockout cells and rescued the cell proliferation, invasion and colony formation. However, inhibition of p-AKT induced lower cell proliferation, metastasis and colony formation abilities. In murine model, HDAC7 KO significantly decreased the tumour burden. These data indicate that HDAC7 is involved in regulation of PI3K/AKT/mTOR pathway and targeting of HDAC7 could be potential therapeutic strategy in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Qi Feng
- School of Medicine, Jinan University, Guangzhou, China
| | - Sheng Hao
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Xiongxiu Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Zhong Yan
- Department of Gynecologic Oncology, Linyi Cancer Hospital, Linyi, China
| | - Kai Sheng
- Shenzhen Maternal and Child Healthcare Hospital, Shenzhen, China
| | - Yanping Li
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong, China
| | - Peng Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xiugui Sheng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
4
|
Li Y, Baig N, Roncancio D, Elbein K, Lowe D, Kyba M, Arriaga EA. Multiparametric identification of putative senescent cells in skeletal muscle via mass cytometry. Cytometry A 2024; 105:580-594. [PMID: 38995093 PMCID: PMC11719773 DOI: 10.1002/cyto.a.24853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 07/13/2024]
Abstract
Senescence is an irreversible arrest of the cell cycle that can be characterized by markers of senescence such as p16, p21, and KI-67. The characterization of different senescence-associated phenotypes requires selection of the most relevant senescence markers to define reliable cytometric methodologies. Mass cytometry (a.k.a. Cytometry by time of flight, CyTOF) can monitor up to 40 different cell markers at the single-cell level and has the potential to integrate multiple senescence and other phenotypic markers to identify senescent cells within a complex tissue such as skeletal muscle, with greater accuracy and scalability than traditional bulk measurements and flow cytometry-based measurements. This article introduces an analysis framework for detecting putative senescent cells based on clustering, outlier detection, and Boolean logic for outliers. Results show that the pipeline can identify putative senescent cells in skeletal muscle with well-established markers such as p21 and potential markers such as GAPDH. It was also found that heterogeneity of putative senescent cells in skeletal muscle can partly be explained by their cell type. Additionally, autophagy-related proteins ATG4A, LRRK2, and GLB1 were identified as important proteins in predicting the putative senescent population, providing insights into the association between autophagy and senescence. It was observed that sex did not affect the proportion of putative senescent cells among total cells. However, age did have an effect, with a higher proportion observed in fibro/adipogenic progenitors (FAPs), satellite cells, M1 and M2 macrophages from old mice. Moreover, putative senescent cells from muscle of old and young mice show different expression levels of senescence-related proteins, with putative senescent cells of old mice having higher levels of p21 and GAPDH, whereas putative senescent cells of young mice had higher levels of IL-6. Overall, the analysis framework prioritizes multiple senescence-associated proteins to characterize putative senescent cells sourced from tissue made of different cell types.
Collapse
Affiliation(s)
- Yijia Li
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nameera Baig
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Roncancio
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kris Elbein
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dawn Lowe
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Edgar A. Arriaga
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Chen J, Li Q. Emerging role of HDAC11 in skeletal muscle biology. Front Cell Dev Biol 2024; 12:1368171. [PMID: 38859964 PMCID: PMC11163118 DOI: 10.3389/fcell.2024.1368171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
HDAC11 is an epigenetic repressor of gene transcription, acting through its deacetylase activity to remove functional acetyl groups from the lysine residues of histones at genomic loci. It has been implicated in the regulation of different immune responses, metabolic activities, as well as cell cycle progression. Recent studies have also shed lights on the impact of HDAC11 on myogenic differentiation and muscle development, indicating that HDAC11 is important for histone deacetylation at the promoters to inhibit transcription of cell cycle related genes, thereby permitting myogenic activation at the onset of myoblast differentiation. Interestingly, the upstream networks of HDAC11 target genes are mainly associated with cell cycle regulators and the acetylation of histones at the HDAC11 target promoters appears to be residue specific. As such, selective inhibition, or activation of HDAC11 presents a potential therapeutic approach for targeting distinct epigenetic pathways in clinical applications.
Collapse
Affiliation(s)
- Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Chen S, Huang L, Liu B, Duan H, Li Z, Liu Y, Li H, Fu X, Lin J, Xu Y, Liu L, Wan D, Yin Y, Xie L. Dynamic changes in butyrate levels regulate satellite cell homeostasis by preventing spontaneous activation during aging. SCIENCE CHINA. LIFE SCIENCES 2024; 67:745-764. [PMID: 38157106 DOI: 10.1007/s11427-023-2400-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/15/2023] [Indexed: 01/03/2024]
Abstract
The gut microbiota plays a pivotal role in systemic metabolic processes and in particular functions, such as developing and preserving the skeletal muscle system. However, the interplay between gut microbiota/metabolites and the regulation of satellite cell (SC) homeostasis, particularly during aging, remains elusive. We propose that gut microbiota and its metabolites modulate SC physiology and homeostasis throughout skeletal muscle development, regeneration, and aging process. Our investigation reveals that microbial dysbiosis manipulated by either antibiotic treatment or fecal microbiota transplantation from aged to adult mice, leads to the activation of SCs or a significant reduction in the total number. Furthermore, employing multi-omics (e.g., RNA-seq, 16S rRNA gene sequencing, and metabolomics) and bioinformatic analysis, we demonstrate that the reduced butyrate levels, alongside the gut microbial dysbiosis, could be the primary factor contributing to the reduction in the number of SCs and subsequent impairments during skeletal muscle aging. Meanwhile, butyrate supplementation can mitigate the antibiotics-induced SC activation irrespective of gut microbiota, potentially by inhibiting the proliferation and differentiation of SCs/myoblasts. The butyrate effect is likely facilitated through the monocarboxylate transporter 1 (Mct1), a lactate transporter enriched on membranes of SCs and myoblasts. As a result, butyrate could serve as an alternative strategy to enhance SC homeostasis and function during skeletal muscle aging. Our findings shed light on the potential application of microbial metabolites in maintaining SC homeostasis and preventing skeletal muscle aging.
Collapse
Affiliation(s)
- Shujie Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Liujing Huang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Bingdong Liu
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Huimin Duan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Ze Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yifan Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 524023, China
| | - Hu Li
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Xiang Fu
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Jingchao Lin
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd., Shanghai, 201315, China
| | - Yinlan Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Li Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dan Wan
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 524023, China.
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yulong Yin
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 524023, China.
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Liwei Xie
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Li F, Yan C, Yao Y, Yang Y, Liu Y, Fan D, Zhao J, Tang Z. Transcription Factor SATB2 Regulates Skeletal Muscle Cell Proliferation and Migration via HDAC4 in Pigs. Genes (Basel) 2024; 15:65. [PMID: 38254955 PMCID: PMC10815226 DOI: 10.3390/genes15010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Skeletal muscle development remarkably affects meat production and growth rate, regulated by complex regulatory mechanisms in pigs. Specific AT sequence-binding protein 2 (SATB2) is a classic transcription factor and chromatin organizer, which holds a profound effect in the regulation of chromatin remodeling. However, the regulation role of SATB2 concerning skeletal muscle cell fate through chromatin remodeling in pigs remains largely unknown. Here, we observed that SATB2 was expressed higher in the lean-type compared to the obese-type pigs, which also enriched the pathways of skeletal muscle development, chromatin organization, and histone modification. Functionally, knockdown SATB2 led to decreases in the proliferation and migration markers at the mRNA and protein expression levels, respectively, while overexpression SATB2 had the opposite effects. Further, we found histone deacetylase 4 (HDAC4) was a key downstream target gene of SATB2 related to chromatin remodeling. The binding relationship between SATB2 and HDAC4 was confirmed by a dual-luciferase reporter system and ChIP-qPCR analysis. Besides, we revealed that HDAC4 promoted the skeletal muscle cell proliferation and migration at the mRNA and protein expression levels, respectively. In conclusion, our study indicates that transcription factor SATB2 binding to HDAC4 positively contributes to skeletal muscle cell proliferation and migration, which might mediate the chromatin remodeling to influence myogenesis in pigs. This study develops a novel insight into understanding the molecular regulatory mechanism of myogenesis, and provides a promising gene for genetic breeding in pigs.
Collapse
Affiliation(s)
- Fanqinyu Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (C.Y.); (Y.Y.); (Y.L.); (D.F.)
| | - Chao Yan
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (C.Y.); (Y.Y.); (Y.L.); (D.F.)
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China;
| | - Yilong Yao
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China;
| | - Yalan Yang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (C.Y.); (Y.Y.); (Y.L.); (D.F.)
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China;
| | - Yanwen Liu
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (C.Y.); (Y.Y.); (Y.L.); (D.F.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Danyang Fan
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (C.Y.); (Y.Y.); (Y.L.); (D.F.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Zhonglin Tang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (C.Y.); (Y.Y.); (Y.L.); (D.F.)
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528226, China;
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
8
|
Imbriano C, Moresi V, Belluti S, Renzini A, Cavioli G, Maretti E, Molinari S. Epitranscriptomics as a New Layer of Regulation of Gene Expression in Skeletal Muscle: Known Functions and Future Perspectives. Int J Mol Sci 2023; 24:15161. [PMID: 37894843 PMCID: PMC10606696 DOI: 10.3390/ijms242015161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Epitranscriptomics refers to post-transcriptional regulation of gene expression via RNA modifications and editing that affect RNA functions. Many kinds of modifications of mRNA have been described, among which are N6-methyladenosine (m6A), N1-methyladenosine (m1A), 7-methylguanosine (m7G), pseudouridine (Ψ), and 5-methylcytidine (m5C). They alter mRNA structure and consequently stability, localization and translation efficiency. Perturbation of the epitranscriptome is associated with human diseases, thus opening the opportunity for potential manipulations as a therapeutic approach. In this review, we aim to provide an overview of the functional roles of epitranscriptomic marks in the skeletal muscle system, in particular in embryonic myogenesis, muscle cell differentiation and muscle homeostasis processes. Further, we explored high-throughput epitranscriptome sequencing data to identify RNA chemical modifications in muscle-specific genes and we discuss the possible functional role and the potential therapeutic applications.
Collapse
Affiliation(s)
- Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Viviana Moresi
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy;
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy; (A.R.); (G.C.)
| | - Giorgia Cavioli
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy; (A.R.); (G.C.)
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Susanna Molinari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| |
Collapse
|
9
|
Li Q, Mach YZ, Hamed M, Khilji S, Chen J. Regulation of HDAC11 gene expression in early myogenic differentiation. PeerJ 2023; 11:e15961. [PMID: 37663282 PMCID: PMC10474826 DOI: 10.7717/peerj.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Histone acetylation and deacetylation affect the patterns of gene expression in cellular differentiation, playing pivotal roles in tissue development and maintenance. For example, the intrinsic histone acetyltransferase activity of transcriptional coactivator p300 is especially required for the expression of myogenic regulatory factors including Myf5 and MyoD, and consequently for skeletal myogenesis. On the other hand, histone deacetylases (HDACs) remove the acetyl group from histones, which is critical for gene repression in stem cell fate transition. Through integrative omic analyses, we found that while some HDACs were differentially expressed at the early stage of skeletal myoblast differentiation, Hdac11 gene expression was significantly enhanced by nuclear receptor signaling. In addition, p300 and MyoD control Hdac11 expression in milieu of normal and signal-enhanced myoblast differentiation. Thus, HDAC11 may be essential to differential gene expression at the onset of myoblast differentiation.
Collapse
Affiliation(s)
- Qiao Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yan Z. Mach
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Munerah Hamed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Saadia Khilji
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Sandonà M, Cavioli G, Renzini A, Cedola A, Gigli G, Coletti D, McKinsey TA, Moresi V, Saccone V. Histone Deacetylases: Molecular Mechanisms and Therapeutic Implications for Muscular Dystrophies. Int J Mol Sci 2023; 24:4306. [PMID: 36901738 PMCID: PMC10002075 DOI: 10.3390/ijms24054306] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate the deacetylation of numerous histone and non-histone proteins, thereby affecting a wide range of cellular processes. Deregulation of HDAC expression or activity is often associated with several pathologies, suggesting potential for targeting these enzymes for therapeutic purposes. For example, HDAC expression and activity are higher in dystrophic skeletal muscles. General pharmacological blockade of HDACs, by means of pan-HDAC inhibitors (HDACi), ameliorates both muscle histological abnormalities and function in preclinical studies. A phase II clinical trial of the pan-HDACi givinostat revealed partial histological improvement and functional recovery of Duchenne Muscular Dystrophy (DMD) muscles; results of an ongoing phase III clinical trial that is assessing the long-term safety and efficacy of givinostat in DMD patients are pending. Here we review the current knowledge about the HDAC functions in distinct cell types in skeletal muscle, identified by genetic and -omic approaches. We describe the signaling events that are affected by HDACs and contribute to muscular dystrophy pathogenesis by altering muscle regeneration and/or repair processes. Reviewing recent insights into HDAC cellular functions in dystrophic muscles provides new perspectives for the development of more effective therapeutic approaches based on drugs that target these critical enzymes.
Collapse
Affiliation(s)
| | - Giorgia Cavioli
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alessia Cedola
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), 73100 Lecce, Italy
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
- CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Aging B2A, Sorbonne Université, 75005 Paris, France
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Viviana Moresi
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy
| | - Valentina Saccone
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
11
|
Cuttini E, Goi C, Pellarin E, Vida R, Brancolini C. HDAC4 in cancer: A multitasking platform to drive not only epigenetic modifications. Front Mol Biosci 2023; 10:1116660. [PMID: 36762207 PMCID: PMC9902726 DOI: 10.3389/fmolb.2023.1116660] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Controlling access to genomic information and maintaining its stability are key aspects of cell life. Histone acetylation is a reversible epigenetic modification that allows access to DNA and the assembly of protein complexes that regulate mainly transcription but also other activities. Enzymes known as histone deacetylases (HDACs) are involved in the removal of the acetyl-group or in some cases of small hydrophobic moieties from histones but also from the non-histone substrate. The main achievement of HDACs on histones is to repress transcription and promote the formation of more compact chromatin. There are 18 different HDACs encoded in the human genome. Here we will discuss HDAC4, a member of the class IIa family, and its possible contribution to cancer development.
Collapse
Affiliation(s)
- Emma Cuttini
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Camilla Goi
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Ester Pellarin
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Riccardo Vida
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy,Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy,*Correspondence: Claudio Brancolini,
| |
Collapse
|
12
|
Jie W, Rui-Fen Z, Zhong-Xiang H, Yan W, Wei-Na L, Yong-Ping M, Jing S, Jing-Yi C, Wan-Hong L, Xiao-Hua H, Zhi L, Yan S. Inhibition of cell proliferation by Tas of foamy viruses through cell cycle arrest or apoptosis underlines the different mechanisms of virus-host interactions. Virulence 2022; 13:342-354. [PMID: 35132916 PMCID: PMC8837258 DOI: 10.1080/21505594.2022.2029329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022] Open
Abstract
Foamy viruses belong to the Spumaretrovirinae subfamily member of the Retroviridae family and produce nonpathogenic infection to hosts in the natural conditions. However, infections of foamy viruses can dramatically cause severe cytopathic effects in vitro. To date, the exact molecular mechanism has remained unclear which implied the tremendous importance of virus-host cell immune reactions. In this study, we found that the transactivator Tas in two foamy viruses isolated from Old World Monkey (OWM) induced obvious inhibition of cell proliferation via the upregulation of Foxo3a expression. It was mediated by the generation of ROS and the initiation of ER stress, and ultimately, the mitochondrial apoptosis pathway was triggered. Notably, PFV Tas contributed to the accumulation of G0/G1 phase cycle arrest induced by the activation of the p53 signaling pathway and the nuclear transportation of HDAC4 via upregulating PPM1E expression. Together, these results demonstrated the different survival strategies by which foamy virus can hijack host cell cytokines and regulate virus-host cell interactions.
Collapse
Affiliation(s)
- Wei Jie
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Zhang Rui-Fen
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Hu Zhong-Xiang
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Wu Yan
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Liu Wei-Na
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Ma Yong-Ping
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Song Jing
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Chen Jing-Yi
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Liu Wan-Hong
- School of Medicine, Wuhan University, Wuhan, P. R. China
| | - He Xiao-Hua
- School of Medicine, Wuhan University, Wuhan, P. R. China
| | - Li Zhi
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| | - Sun Yan
- College of Life Sciences, Shaanxi Normal University, Xi’an, P. R. China
| |
Collapse
|
13
|
Lee J, Park J, Choe H, Shim K. Insect peptide CopA3 promotes proliferation and PAX7 and MYOD expression in porcine muscle satellite cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1132-1143. [PMID: 36812017 PMCID: PMC9890342 DOI: 10.5187/jast.2022.e81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Insects are a valuable natural source that can produce a variety of bioactive compounds due to their increasing species diversity. CopA3 is an antimicrobial peptide derived from Copris tripartitus (i.e., the dung beetle). It is known to increase the proliferation of colonic epithelial and neuronal stem cells by regulating cell cycle. This research hypothesized that CopA3 can promote the proliferation of porcine muscle satellite cells (MSCs). The effects of CopA3 on porcine MSCs, which are important for muscle growth and regeneration, remain unclear. Here, we investigated the effects of CopA3 on porcine MSCs. According to viability results, we designed four groups: control (without CopA3) and three treatment groups (treated with 5,10, and 25 μg/mL of CopA3). At a CopA3 concentration of 5 μg/mL and 10 μg/mL, the proliferation of MSCs increased more than that observed in the control group. Furthermore, compared to that in the control, CopA3 treatment increased the S phase but decreased the G0/G1 phase ratio. Additionally, early and late apoptotic cells were found to be decreased in the 5 μg/mL group. The expressions of the myogenesis-related transcription factor PAX7 and MYOD proteins were significantly upregulated in the 5 μg/mL and 10 μg/mL groups, whereas the MYOG protein remained undetected in all group. This study suggested that CopA3 promotes muscle cell proliferation by regulating the cell cycle of MSCs and can regulate the activity of MSCs by increasing the expressions of PAX7 and MYOD.
Collapse
Affiliation(s)
- Jeongeun Lee
- Department of Agricultural Convergence
Technology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Jinryoung Park
- Department of Stem Cell and Regenerative
Biotechnology, Konkuk University, Seoul 06591, Korea,3D Tissue Culture Research Center, Konkuk
University, Seoul 06591, Korea
| | - Hosung Choe
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Kwanseob Shim
- Department of Agricultural Convergence
Technology, Jeonbuk National University, Jeonju 54896,
Korea,Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea,Corresponding author: Kwanseob Shim,
Department of Agricultural Convergence Technology, Jeonbuk National University,
Jeonju 54896, Korea. Tel: +82-63-270-2609, E-mail:
| |
Collapse
|
14
|
From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation. Exp Cell Res 2022; 420:113275. [PMID: 35931143 DOI: 10.1016/j.yexcr.2022.113275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
After extensive proliferation during development, the adult skeletal muscle cells remain outside the cell cycle, either as post-mitotic myofibers or as quiescent muscle stem cells (MuSCs). Despite its terminally differentiated state, adult skeletal muscle has a remarkable regeneration potential, driven by MuSCs. Upon injury, MuSC quiescence is reversed to support tissue growth and repair and it is re-established after the completion of muscle regeneration. The distinct cell cycle states and transitions observed in the different myogenic populations are orchestrated by elements of the cell cycle machinery. This consists of i) complexes of cyclins and Cyclin-Dependent Kinases (CDKs) that ensure cell cycle progression and ii) their negative regulators, the Cyclin-Dependent Kinase Inhibitors (CDKIs). In this review we discuss the roles of these factors in developmental and adult myogenesis, with a focus on CDKIs that have emerging roles in stem cell functions.
Collapse
|
15
|
Renzini A, Marroncelli N, Cavioli G, Di Francescantonio S, Forcina L, Lambridis A, Di Giorgio E, Valente S, Mai A, Brancolini C, Giampietri C, Magenta A, De Santa F, Adamo S, Coletti D, Moresi V. Cytoplasmic HDAC4 regulates the membrane repair mechanism in Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2022; 13:1339-1359. [PMID: 35170869 PMCID: PMC8977968 DOI: 10.1002/jcsm.12891] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/18/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Histone deacetylase 4 (HDAC4) is a stress-responsive factor that mediates multiple cellular responses. As a member of class IIa HDACs, HDAC4 shuttles between the nucleus and the cytoplasm; however, HDAC4 cytoplasmic functions have never been fully investigated. Duchenne muscular dystrophy (DMD) is a genetic, progressive, incurable disorder, characterized by muscle wasting, which can be treated with the unspecific inhibition of HDACs, despite this approach being only partially effective. More efficient strategies may be proposed for DMD only after the different HDAC members will be characterized. METHODS To fully understand HDAC4 functions, we generated dystrophic mice carrying a skeletal muscle-specific deletion of HDAC4 (mdx;KO mice). The progression of muscular dystrophy was characterized in mdx and age-matched mdx;KO mice by means of histological, molecular, and functional analyses. Satellite cells (SCs) from these mice were differentiated in vitro, to identify HDAC4 intrinsic functions influencing the myogenic potential of dystrophic SCs. Gain-of-function experiments revealed the cytoplasmic functions of HDAC4 in mdx;KO muscles. RESULTS Histone deacetylase 4 increased in the skeletal muscles of mdx mice (~3-fold; P < 0.05) and of DMD patients (n = 3, males, mean age 13.3 ± 1.5 years), suggesting that HDAC4 has a role in DMD. Its deletion in skeletal muscles importantly worsens the pathological features of DMD, leading to greater muscle fragility and degeneration over time. Additionally, it impairs SC survival, myogenic potential, and muscle regeneration, ultimately compromising muscle function (P < 0.05-0.001). The impaired membrane repair mechanism in muscles and SCs accounts for the mdx;KO phenotype. Indeed, the ectopic expression of Trim72, a major player in the membrane repair mechanism, prevents SC death (~20%; P < 0.01) and increases myogenic fusion (~40%; P < 0.01) in vitro; in vivo it significantly reduces myofibre damage (~10%; P < 0.005) and improves mdx;KO muscle function (P < 0.05). The mdx;KO phenotype is also fully rescued by restoring cytoplasmic levels of HDAC4, both in vitro and in vivo. The protective role of HDAC4 in the cytoplasm of mdx;KO muscles is, in part, independent of its deacetylase activity. HDAC4 expression correlates with Trim72 mRNA levels; furthermore, Trim72 mRNA decays more rapidly (P < 0.01) in mdx;KO muscle cells, compared with mdx ones. CONCLUSIONS Histone deacetylase 4 performs crucial functions in the cytoplasm of dystrophic muscles, by mediating the muscle repair response to damage, an important role in ensuring muscle homeostasis, probably by stabilizing Trim72 mRNA. Consequently, the cytoplasmic functions of HDAC4 should be stimulated rather than inhibited in muscular dystrophy treatments, a fact to be considered in future therapeutic approaches.
Collapse
Affiliation(s)
- Alessandra Renzini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Marroncelli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Giorgia Cavioli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Silvia Di Francescantonio
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Laura Forcina
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Alessandro Lambridis
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | | | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Human Anatomy, Sapienza University of Rome, Rome, Italy
| | - Alessandra Magenta
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Francesca De Santa
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Sergio Adamo
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Dario Coletti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.,Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Viviana Moresi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.,Institute of Nanotechnology (Nanotec), National Research Council (CNR), c/o Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Hao J, Chen Y, Yu Y. Circular RNA circ_0008360 Inhibits the Proliferation, Migration, and Inflammation and Promotes Apoptosis of Fibroblast-Like Synoviocytes by Regulating miR-135b-5p/HDAC4 Axis in Rheumatoid Arthritis. Inflammation 2021; 45:196-211. [PMID: 34462830 DOI: 10.1007/s10753-021-01538-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022]
Abstract
Circular RNAs (circRNAs) have been demonstrated to play crucial roles in the development and progression of many diseases, including rheumatoid arthritis (RA). However, the functions and molecular mechanism of circ_0008360 in RA remain unclear. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to determine the expression of circ_0008360, microRNA-135b-5p (miR-135b-5p), and histone deacetylase 4 (HDAC4). Cell Counting Kit-8 (CCK-8) assay, wound healing assay, and flow cytometry analysis were performed to assess cell proliferation, migration, and apoptosis, respectively. Inflammatory response was evaluated by enzyme-linked immunosorbent assay (ELISA). The interaction between miR-135b-5p and circ_0008360 or HDAC4 was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) and RNA pull-down assays. Western blot assay was used to detect the protein expression of HDAC4 and proliferating cell nuclear antigen (PCNA). The expression of circ_0008360 was downregulated in RA synovial tissues and RA fibroblast-like synoviocytes (RA-FLSs). Circ_0008360 suppressed the proliferation, migration, and inflammation and promoted apoptosis of RA-FLSs, and circ_0008360 knockdown showed opposite effects. Moreover, miR-135b-5p was a direct target of circ_0008360, and miR-135b-5p could reverse the effects of circ_0008360 on proliferation, migration, inflammation, and apoptosis in RA-FLSs. Furthermore, HDAC4 was a downstream target of miR-135b-5p, and miR-135b-5p accelerated the proliferation, migration, and inflammation and suppressed apoptosis of RA-FLSs by targeting HDAC4. In addition, circ_0008360 positively regulated HDAC4 expression by sponging miR-135b-5p. Circ_0008360 inhibited the proliferation, migration, and inflammation and facilitated apoptosis of RA-FLSs by sponging miR-135b-5p and upregulating HDAC4, providing a potential target for prevention and treatment of RA.
Collapse
Affiliation(s)
- Jinying Hao
- Department of Rheumatology, Heping Hospital Affiliated To Changzhi Medical College, Changzhi, Shanxi, China
| | - Yan Chen
- Department of Rheumatology, Zao Zhuang Hospitai of Zao Zhuang Mining Group, Shandong, Zaozhuang, China
| | - Yunxiang Yu
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, No.32, South Renmin Road, Shiyan, 442000, Hubei, China. .,Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, No.32, South Renmin Road, Hubei, 442000, Shiyan, China.
| |
Collapse
|
17
|
Jing J, Jiang X, Zhu C, Zheng Q, Ji Q, Yin H, Huang J, Zhu Y, Wang J, Qin S, Ling Y. Dynamic changes of miRNAs in skeletal muscle development at New Zealand rabbits. BMC Genomics 2021; 22:577. [PMID: 34315409 PMCID: PMC8314457 DOI: 10.1186/s12864-021-07896-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND miRNA is one of the crucial roles in the complex and dynamic network that regulates the development of skeletal muscle. The landscape of skeletal muscle miRNAs from fetus to adult in New Zealand rabbits has not been revealed yet. RESULTS In this study, nine RNA-seq libraries of fetus, child and adult rabbits' leg muscles were constructed. A total of 278 differentially expressed miRNAs (DEmiRNAs) were identified. In the fetus vs. child group, the main functional enrichments were involved in membrane and transport. Pathway enriched terms of up-regulated DEmiRNAs were connected with the differentiation and hypertrophy of skeletal muscle, and down-regulated ones were related to muscle structure and metabolic capacity. In the child vs. adult group, functions were associated to positioning and transportation, and pathways were relevant to ECM, muscle structure and hypertrophy. Finally, ocu-miR-185-3p and ocu-miR-370-3p, which had the most target genes, were identified as hub-miRNAs in these two groups. CONCLUSIONS In short, we summarized the highly expressed and uniquely expressed DEmiRNAs of fetus, child and adult rabbits' leg muscles. Besides, the potential functional changes of miRNAs in two consecutive stages have been explored. Among them, the ocu-miR-185-3p and ocu-miR-370-3p with the most target genes were selected as hub-miRNAs. These data improved the understanding of the regulatory molecules of meat rabbit development, and provided a novel perspective for molecular breeding of meat rabbits.
Collapse
Affiliation(s)
- Jing Jing
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio- Breeding, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China
| | - Xichun Jiang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui, 230031, Hefei, People's Republic of China
| | - Cuiyun Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio- Breeding, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio- Breeding, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China
| | - Qianyun Ji
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio- Breeding, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China
| | - Huiqun Yin
- Reproductive Medicine Center, The 901st Hospital, Anhui, 230031, Hefei, People's Republic of China
| | - Jingtong Huang
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio- Breeding, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China
| | - Yixiao Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio- Breeding, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China
| | - Jiao Wang
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio- Breeding, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China
| | - Shuaiqi Qin
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio- Breeding, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China. .,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio- Breeding, Anhui Agricultural University, Anhui, 230036, Hefei, People's Republic of China.
| |
Collapse
|
18
|
Hurtado E, Núñez-Álvarez Y, Muñoz M, Gutiérrez-Caballero C, Casas J, Pendás AM, Peinado MA, Suelves M. HDAC11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle. FEBS J 2021; 288:902-919. [PMID: 32563202 DOI: 10.1111/febs.15456] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/14/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
Abstract
Skeletal muscle is the largest tissue in mammalian organisms and is a key determinant of basal metabolic rate and whole-body energy metabolism. Histone deacetylase 11 (HDAC11) is the only member of the class IV subfamily of HDACs, and it is highly expressed in skeletal muscle, but its role in skeletal muscle physiology has never been investigated. Here, we describe for the first time the consequences of HDAC11 genetic deficiency in skeletal muscle, which results in the improvement of muscle function enhancing fatigue resistance and muscle strength. Loss of HDAC11 had no obvious impact on skeletal muscle structure but increased the number of oxidative myofibers by promoting a glycolytic-to-oxidative muscle fiber switch. Unexpectedly, HDAC11 was localized in muscle mitochondria and its deficiency enhanced mitochondrial content. In particular, we showed that HDAC11 depletion increased mitochondrial fatty acid β-oxidation through activating the AMP-activated protein kinase-acetyl-CoA carboxylase pathway and reducing acylcarnitine levels in vivo, thus providing a mechanistic explanation for the improved muscle strength and fatigue resistance. Overall, our data reveal a unique role of HDAC11 in the maintenance of muscle fiber-type balance and the mitochondrial lipid oxidation. These findings shed light on the mechanisms governing muscle metabolism and may have implications for chronic muscle metabolic disease management.
Collapse
Affiliation(s)
- Erica Hurtado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| | - Yaiza Núñez-Álvarez
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| | - Mar Muñoz
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| | | | - Josefina Casas
- Institute of Advanced Chemistry of Catalonia, Barcelona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre, Madrid, Spain
| | - Alberto M Pendás
- Institute of Cellular and Molecular Biology of Cancer, Salamanca, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| | - Mònica Suelves
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| |
Collapse
|
19
|
Di Felice V, Coletti D, Seelaender M. Editorial: Myokines, Adipokines, Cytokines in Muscle Pathophysiology. Front Physiol 2020; 11:592856. [PMID: 33192608 PMCID: PMC7645054 DOI: 10.3389/fphys.2020.592856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Valentina Di Felice
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Dario Coletti
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France.,Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, Rome, Italy.,Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Interuniversity Institute of Myology, Rome, Italy
| | - Marilia Seelaender
- Department of Surgery, LIM26 HC, Medical School of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Kobayashi Y, Tanaka T, Mulati M, Ochi H, Sato S, Kaldis P, Yoshii T, Okawa A, Inose H. Cyclin-Dependent Kinase 1 Is Essential for Muscle Regeneration and Overload Muscle Fiber Hypertrophy. Front Cell Dev Biol 2020; 8:564581. [PMID: 33163487 PMCID: PMC7591635 DOI: 10.3389/fcell.2020.564581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022] Open
Abstract
Satellite cell proliferation is an essential step in proper skeletal muscle development and muscle regeneration. However, the mechanisms regulating satellite cell proliferation are relatively unknown compared to the knowledge associated with the differentiation of satellite cells. Moreover, it is still unclear whether overload muscle fiber hypertrophy is dependent on satellite cell proliferation. In general, cell proliferation is regulated by the activity of cell cycle regulators, such as cyclins and cyclin-dependent kinases (CDKs). Despite recent reports on the function of CDKs and CDK inhibitors in satellite cells, the physiological role of Cdk1 in satellite cell proliferation remains unknown. Herein, we demonstrate that Cdk1 regulates satellite cell proliferation, muscle regeneration, and muscle fiber hypertrophy. Cdk1 is highly expressed in myoblasts and is downregulated upon myoblast differentiation. Inhibition of CDK1 activity inhibits myoblast proliferation. Deletion of Cdk1 in satellite cells leads to inhibition of muscle recovery after muscle injury due to reduced satellite cell proliferation in vivo. Finally, we provide direct evidence that Cdk1 expression in satellite cells is essential for overload muscle fiber hypertrophy in vivo. Collectively, our results demonstrate that Cdk1 is essential for myoblast proliferation, muscle regeneration, and muscle fiber hypertrophy. These findings could help to develop treatments for refractory muscle injuries and muscle atrophy, such as sarcopenia.
Collapse
Affiliation(s)
- Yutaka Kobayashi
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoyuki Tanaka
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mieradilli Mulati
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Movement Functions, National Rehabilitation Center for Persons with Disabilities, Research Institute, Tokorozawa, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Toshitaka Yoshii
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Okawa
- Department of Orthopaedics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Inose
- Department of Orthopedic and Trauma Research, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
21
|
Gabellini D, Musarò A. 16th Meeting of the Interuniversity Institute of Myology (IIM) - Assisi (Italy), October 17-20, 2019: Foreword, Program and Abstracts. Eur J Transl Myol 2020; 30:9345. [PMID: 33117514 PMCID: PMC7582450 DOI: 10.4081/ejtm.2020.9345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
The 16th Meeting of the Interuniversity Institute of Myology (IIM), October 17-20, 2019, Assisi, Italy brought together scientists, pharma and patient organization representatives discussing new results on muscle research. Internationally renowned Keynote speakers presented advances on muscle development, homeostasis, metabolism, and disease. Speakers selected among submitted abstracts presented their new, unpublished data in seven scientific sessions. The remaining abstracts were showcased in two poster sessions. Young trainees where directly involved in the selection of keynote speakers, the organizing scientific sessions and roundtables discussions tailored to the interests of their peers. A broad Italian, European and North-American audience participated to the different initiatives. The meeting allowed muscle biology researchers to discuss ideas and scientific collaborations aimed at better understanding the mechanisms underlying muscle diseases in order to develop better therapeutic strategies. The active participation of young trainees was facilitated by the friendly and inclusive atmosphere, which fostered lively discussions identifying emerging areas of myology research and stimulated scientific cross-fertilization. The meeting was a success and the IIM community will continue to bring forward significant contributions to the understanding of muscle development and function, the pathogenesis of muscular diseases and the development of novel therapeutic approaches. Here, we report abstracts of the meeting illustrating novel results of basic, translational, and clinical research, which confirms that the Myology field is strong and healthy.
Collapse
Affiliation(s)
- Davide Gabellini
- Gene Expression and Muscular Dystrophy Group, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to “Istituto Pasteur Italia – Fondazione Cenci Bolognetti”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Schutt C, Hallmann A, Hachim S, Klockner I, Valussi M, Atzberger A, Graumann J, Braun T, Boettger T. Linc-MYH configures INO80 to regulate muscle stem cell numbers and skeletal muscle hypertrophy. EMBO J 2020; 39:e105098. [PMID: 32960481 PMCID: PMC7667881 DOI: 10.15252/embj.2020105098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Chromatin remodeling complexes have functions in transcriptional regulation and chromosome maintenance, but it is mostly unknown how the function of these normally ubiquitous complexes is specified in the cellular context. Here, we describe that the evolutionary conserved long non‐coding RNA linc‐MYH regulates the composition of the INO80 chromatin remodeler complex in muscle stem cells and prevents interaction with WDR5 and the transcription factor YY1. Linc‐MYH acts as a selective molecular switch in trans that governs the pro‐proliferative function of the ubiquitous INO80 complex but does not affect its role in maintaining genomic stability. The molecular switch is essential for restricting generation of quiescent MuSCs and proliferation of myoblasts in homeostasis and regeneration. Since linc‐MYH is expressed in proliferating myoblasts but not in quiescent MuSCs, we reason that the extent of myoblast proliferation has decisive effects on the size of the quiescent MuSC pool.
Collapse
Affiliation(s)
- Christian Schutt
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany
| | - Alix Hallmann
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany
| | - Salma Hachim
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany
| | - Ina Klockner
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany
| | - Melissa Valussi
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany
| | - Ann Atzberger
- Max Planck Institute for Heart- and Lung Research, FACS Service Group, Bad Nauheim, Germany
| | - Johannes Graumann
- Max Planck Institute for Heart- and Lung Research, Mass Spectrometry Service Group, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany
| | - Thomas Boettger
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
23
|
Jhamat N, Niazi A, Guo Y, Chanrot M, Ivanova E, Kelsey G, Bongcam-Rudloff E, Andersson G, Humblot P. LPS-treatment of bovine endometrial epithelial cells causes differential DNA methylation of genes associated with inflammation and endometrial function. BMC Genomics 2020; 21:385. [PMID: 32493210 PMCID: PMC7268755 DOI: 10.1186/s12864-020-06777-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background Lipopolysaccharide (LPS) endotoxin stimulates pro-inflammatory pathways and is a key player in the pathological mechanisms involved in the development of endometritis. This study aimed to investigate LPS-induced DNA methylation changes in bovine endometrial epithelial cells (bEECs), which may affect endometrial function. Following in vitro culture, bEECs from three cows were either untreated (0) or exposed to 2 and 8 μg/mL LPS for 24 h. Results DNA samples extracted at 0 h and 24 h were sequenced using reduced representation bisulfite sequencing (RRBS). When comparing DNA methylation results at 24 h to time 0 h, a larger proportion of hypomethylated regions were identified in the LPS-treated groups, whereas the trend was opposite in controls. When comparing LPS groups to controls at 24 h, a total of 1291 differentially methylated regions (DMRs) were identified (55% hypomethylated and 45% hypermethylated). Integration of DNA methylation data obtained here with our previously published gene expression data obtained from the same samples showed a negative correlation (r = − 0.41 for gene promoter, r = − 0.22 for gene body regions, p < 0.05). Differential methylation analysis revealed that effects of LPS treatment were associated with methylation changes for genes involved in regulation of immune and inflammatory responses, cell adhesion, and external stimuli. Gene ontology and pathway analyses showed that most of the differentially methylated genes (DMGs) were associated with cell proliferation and apoptotic processes; and pathways such as calcium-, oxytocin- and MAPK-signaling pathways with recognized roles in innate immunity. Several DMGs were related to systemic inflammation and tissue re-modelling including HDAC4, IRAK1, AKT1, MAP3K6, Wnt7A and ADAMTS17. Conclusions The present results show that LPS altered the DNA methylation patterns of bovine endometrial epithelial cells. This information, combined with our previously reported changes in gene expression related to endometrial function, confirm that LPS activates pro-inflammatory mechanisms leading to perturbed immune balance and cell adhesion processes in the endometrium.
Collapse
Affiliation(s)
- Naveed Jhamat
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,Department of Information Technology, University of the Punjab, Gujranwala Campus, Gujranwala, Pakistan
| | - Adnan Niazi
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden. .,SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.
| | - Yongzhi Guo
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Metasu Chanrot
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat, 802 40, Thailand
| | - Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Section of Molecular Genetics, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.,Centre for Reproductive Biology in Uppsala, CRU, P.O. Box 7054, 750 07, Uppsala, Sweden
| | - Patrice Humblot
- Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| |
Collapse
|
24
|
Dungan CM, Peck BD, Walton RG, Huang Z, Bamman MM, Kern PA, Peterson CA. In vivo analysis of γH2AX+ cells in skeletal muscle from aged and obese humans. FASEB J 2020; 34:7018-7035. [PMID: 32246795 DOI: 10.1096/fj.202000111rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022]
Abstract
Over the past 20 years, various identifiers of cellular senescence have been used to quantify the abundance of these cells in different tissues. These include classic markers such as p16, senescence-associated β-gal, and γH2AX, in addition to more recent markers (Sudan Black B and HMGB1). In vivo data on the usefulness of these markers in skeletal muscle are very limited and inconsistent. In the present study, we attempted to identify senescent cells in frozen human skeletal muscle biopsies using these markers to determine the effects of age and obesity on senescent cell burden; however, we were only able to assess the abundance of DNA-damaged nuclei using γH2AX immunohistochemistry. The abundance of γH2AX+ cells, including satellite cells, was not higher in muscle from old compared to young individuals; however, γH2AX+ cells were higher with obesity. Additionally, terminally differentiated, postmitotic myofiber nuclei from obese individuals had elevated γH2AX abundance compared to muscle from lean individuals. Analyses of gene expression support the conclusion that the elevated DNA damage and the senescence-associated secretory phenotype are preferentially associated with obesity in skeletal muscle. These data implicate obesity as a larger contributor to DNA damage in skeletal muscle than aging; however, more sensitive senescence markers for human skeletal muscle are needed to determine if these cells are in fact senescent.
Collapse
Affiliation(s)
- Cory M Dungan
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - R Grace Walton
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Zhengyan Huang
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama, Birmingham, AL, USA.,Geriatric Research, Education, and Clinical Center, Birmingham VA Medical Center, Birmingham, AL, USA
| | - Philip A Kern
- Department of Internal Medicine/Endocrinology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
25
|
Zhao J, Shen X, Cao X, He H, Han S, Chen Y, Cui C, Wei Y, Wang Y, Li D, Zhu Q, Yin H. HDAC4 Regulates the Proliferation, Differentiation and Apoptosis of Chicken Skeletal Muscle Satellite Cells. Animals (Basel) 2020; 10:ani10010084. [PMID: 31947925 PMCID: PMC7023402 DOI: 10.3390/ani10010084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Histone Deacetylase 4 (HDAC4) plays a critical role in cell proliferation and differentiation, but the function of HDAC4 in the skeletal muscle satellite cells (SMSCs) of chickens is still unknown. Here, we demonstrated that knockdown of HDAC4 inhibits the proliferation and differentiation of chicken SMSCs but has no significant effect on its apoptosis. These results suggest that HDAC4 has an essential role in skeletal muscle growth and in the development of chicken. Abstract The development of skeletal muscle satellite cells (SMSCs) is a complex process that could be regulated by many genes. Previous studies have shown that Histone Deacetylase 4 (HDAC4) plays a critical role in cell proliferation, differentiation, and apoptosis in mouse. However, the function of HDAC4 in chicken muscle development is still unknown. Given that chicken is a very important meat-producing animal that is also an ideal model to study skeletal muscle development, we explored the functions of HDAC4 in chicken SMSCs after the interference of HDAC4. The results showed that HDAC4 was enriched in embryonic skeletal muscle, and it was highly expressed in embryonic muscle than in postnatal muscles. Meanwhile, knockdown of HDAC4 could significantly inhibit the proliferation and differentiation of chicken SMSCs but had no effect on the apoptosis of SMSCs as observed in a series of experiment conducted in vitro. These results indicated that HDAC4 might play a positive role in chicken skeletal muscle growth and development.
Collapse
|
26
|
Harvey A, Caretti G, Moresi V, Renzini A, Adamo S. Interplay between Metabolites and the Epigenome in Regulating Embryonic and Adult Stem Cell Potency and Maintenance. Stem Cell Reports 2019; 13:573-589. [PMID: 31597110 PMCID: PMC6830055 DOI: 10.1016/j.stemcr.2019.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
The environment surrounding stem cells has the ability to elicit profound, heritable epigenetic changes orchestrated by multiple epigenetic mechanisms, which can be modulated by the level of specific metabolites. In this review, we highlight the significance of metabolism in regulating stem cell homeostasis, cell state, and differentiation capacity, using metabolic regulation of embryonic and adult muscle stem cells as examples, and cast light on the interaction between cellular metabolism and epigenetics. These new regulatory networks, based on the dynamic interplay between metabolism and epigenetics in stem cell biology, are important, not only for understanding tissue homeostasis, but to determine in vitro culture conditions which accurately support normal cell physiology.
Collapse
Affiliation(s)
- Alexandra Harvey
- School of BioSciences, University of Melbourne, Parkville, VIC 2010, Australia
| | - Giuseppina Caretti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Viviana Moresi
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy.
| | - Alessandra Renzini
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy
| | - Sergio Adamo
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy
| |
Collapse
|
27
|
Hou F, Wei W, Qin X, Liang J, Han S, Han A, Kong Q. The posttranslational modification of HDAC4 in cell biology: Mechanisms and potential targets. J Cell Biochem 2019; 121:930-937. [PMID: 31588631 DOI: 10.1002/jcb.29365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Histone deacetylase 4 (HDAC4) is a member of the HDACs family, its expression is closely related to the cell development. The cell is an independent living entity that undergoes proliferation, differentiation, senescence, apoptosis, and pathology, and each process has a strict and complex regulatory system. With deepening of its research, the expression of HDAC4 is critical in the life process. This review focuses on the posttranslational modification of HDAC4 in cell biology, providing an important target for future disease treatment.
Collapse
Affiliation(s)
- Fei Hou
- Lupus Research Institute, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Wei Wei
- Lupus Research Institute, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Xiao Qin
- Lupus Research Institute, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Jing Liang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China.,College of Life Sciences, Qufu Normal University, Qufu, China
| | - Sha Han
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Aizhong Han
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| | - Qingsheng Kong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong, Jining, China
| |
Collapse
|
28
|
Gava P, Ravara B. Master World Records show minor gender differences of performance decline with aging. Eur J Transl Myol 2019; 29:8327. [PMID: 31579476 PMCID: PMC6767836 DOI: 10.4081/ejtm.2019.8327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Aging behaviours are significantly different in females and males, e.g., the former have a longer life expectancy, but consistently a weaker muscle force. Our purpose is to analyse possible gender-differential declines of skeletal muscle performance. The method to find out the decline of performances with aging is based on a parametric analysis of the World Records of Master athletes in different Track and Field events. The analysis is a transformation (normalization) of sports results into dimensionless parameters ranging from the maximum value of 1 (for the absolute world record) to decreasing values with decreasing performances. Master athletes compete in age groups of 5 years till the age of 100 years, thus their World Records are lists of up to 16 data. Results of the normalization procedure are trend-lines indicating that the decline starts not later than the age of thirty years for both women and women. The decline with aging of the muscle performances indicates only minor gender differences in the aging process and all trend-lines tend to zero at about the age of 110 years. The approach, making use of a homogeneous cohort of testers, gets rid of the main confounding factors biasing other kind of studies of the muscle performance decline with aging, in particular clinical studies. Comparing normalized female and male World Records of Master athletes, a surprise emerged: aging decline is very similar, if not identical, the unique exception to the general rule of gender differences in sports activities. The substantial identity of decline trends among females and males suggests that neuro-hormonal differences among genders poorly influence the aging decline, being conceivably related to fundamental cell bioregulators, such as those of cellular energy metabolism and/or their epigenetic regulatory mechanisms.
Collapse
Affiliation(s)
- Paolo Gava
- A&C M-C Foundation for Translational Myology, Padova, Italy
| | - Barbara Ravara
- A&C M-C Foundation for Translational Myology, Padova, Italy.,Interdepartmental Research Center of Myology, Department of Biomedical Science, University of Padova, Italy
| |
Collapse
|
29
|
Paracrine Mechanisms of Redox Signalling for Postmitotic Cell and Tissue Regeneration. Trends Cell Biol 2019; 29:514-530. [DOI: 10.1016/j.tcb.2019.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 01/08/2023]
|
30
|
Martinez-Redondo P, Izpisua Belmonte JC. Tailored chromatin modulation to promote tissue regeneration. Semin Cell Dev Biol 2019; 97:3-15. [PMID: 31028854 DOI: 10.1016/j.semcdb.2019.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic regulation of gene expression is fundamental in the maintenance of cellular identity and the regulation of cellular plasticity during tissue repair. In fact, epigenetic modulation is associated with the processes of cellular de-differentiation, proliferation, and re-differentiation that takes place during tissue regeneration. In here we explore the epigenetic events that coordinate tissue repair in lower vertebrates with high regenerative capacity, and in mammalian adult stem cells, which are responsible for the homeostasis maintenance of most of our tissues. Finally we summarize promising CRISPR-based editing technologies developed during the last years, which look as promising tools to not only study but also promote specific events during tissue regeneration.
Collapse
Affiliation(s)
- Paloma Martinez-Redondo
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States.
| |
Collapse
|
31
|
Histone deacetylase 4 protects from denervation and skeletal muscle atrophy in a murine model of amyotrophic lateral sclerosis. EBioMedicine 2019; 40:717-732. [PMID: 30713114 PMCID: PMC6414308 DOI: 10.1016/j.ebiom.2019.01.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background Histone deacetylase 4 (HDAC4) has been proposed as a target for Amyotrophic Lateral Sclerosis (ALS) because it mediates nerve-skeletal muscle interaction and since its expression in skeletal muscle correlates with the severity of the disease. However, our recent studies on the skeletal muscle response upon long-term denervation highlighted the importance of HDAC4 in maintaining muscle integrity. Methods To fully identify the yet uncharacterized HDAC4 functions in ALS, we genetically deleted HDAC4 in skeletal muscles of a mouse model of ALS. Body weight, skeletal muscle, innervation and spinal cord were analyzed over time by morphological and molecular analyses. Transcriptome analysis was also performed to delineate the signaling modulated by HDAC4 in skeletal muscle of a mouse model of ALS. Findings HDAC4 deletion in skeletal muscle caused earlier ALS onset, characterized by body weight loss, muscle denervation and atrophy, and compromised muscle performance, although the main catabolic pathways were not activated. Transcriptome analysis identified the gene networks modulated by HDAC4 in ALS, revealing UCP1 as a top regulator that may be implicated in worsening ALS features. Interpretation HDAC4 plays an important role in preserving innervations and skeletal muscle in ALS, likely by modulating the UCP1 gene network. Our study highlights a possible risk in considering HDAC inhibitors for the treatment of ALS. Fund This work was supported by FIRB grant (RBFR12BUMH) from Ministry of Education, Universities and Research, by Fondazione Veronesi, by Sapienza research project 2017 (RM11715C78539BD8) and Polish National Science Center grant (UMO-2016/21/B/NZ3/03638).
Collapse
|
32
|
Editors T. Program and Book of the 15th Interuniversity Institute of Myology Meeting - Assisi (Italy), 2018. Eur J Transl Myol 2018; 28:7927. [PMID: 30662694 PMCID: PMC6317144 DOI: 10.4081/ejtm.2018.7927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 11/24/2022] Open
Abstract
Not available.
Collapse
Affiliation(s)
- The Editors
- Interuniversity Institute of Myology (IIM), Rome, Italy
| |
Collapse
|
33
|
Renzini A, Marroncelli N, Noviello C, Moresi V, Adamo S. HDAC4 Regulates Skeletal Muscle Regeneration via Soluble Factors. Front Physiol 2018; 9:1387. [PMID: 30319457 PMCID: PMC6171007 DOI: 10.3389/fphys.2018.01387] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle possesses a high ability to regenerate after an insult or in pathological conditions, relying on satellite cells, the skeletal muscle stem cells. Satellite cell behavior is tightly regulated by the surrounding microenvironment, which provides multiple signals derived from local cells and systemic factors. Among epigenetic mechanisms, histone deacetylation has been proved to affect muscle regeneration. Indeed, pan-histone deacetylase inhibitors were found to improve muscle regeneration, while deletion of histone deacetylase 4 (HDAC4) in satellite cells inhibits their proliferation and differentiation, leading to compromised muscle regeneration. In this study, we delineated the HDAC4 function in adult skeletal muscle, following injury, by using a tissue-specific null mouse line. We showed that HDAC4 is crucial for skeletal muscle regeneration by mediating soluble factors that influence muscle-derived cell proliferation and differentiation. These findings add new biological functions to HDAC4 in skeletal muscle that need considering when administering histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Marroncelli
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| | - Chiara Noviello
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| | - Viviana Moresi
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy.,Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
34
|
Zheng X, Wu Z, Xu K, Qiu Y, Su X, Zhang Z, Zhou M. Interfering histone deacetylase 4 inhibits the proliferation of vascular smooth muscle cells via regulating MEG3/miR-125a-5p/IRF1. Cell Adh Migr 2018; 13:41-49. [PMID: 30156956 PMCID: PMC6527374 DOI: 10.1080/19336918.2018.1506653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated the role ofhistone deacetylase 4 (HDAC4) and MEG3/miR-125a-5p/interferonregulatoryfactor 1 (IRF1) on vascular smooth muscle cell (VSMCs)proliferation. Platelet derived growth factor (PDGF)-BB was used toinduce the proliferation and migration of VSMCs. The expressionsof MEG3, miR-125a-5p, HDAC4 and IRF1in VSMCs were detectedby qRT-PCR and western blot, respectively. ChIP assay was usedto determine the relationship between MEG3 and HDAC4. Doubleluciferase reporter assay was used to test the regulation betweenmiR-125-5p and IRF1. Results showed that PDGF-BB decreasedthe expression of MEG3 and IRF1, while increased the expressionof miR-125a-5p and HDAC4. In addition, HDAC4 knockdowninhibited the proliferation and migration of VSMCs via upregulatingMEG3 and downregulating miR-125a-5p. MiR-125a-5p inhibitorcould repress the proliferation and migration of VSMCs andalleviate intimal hyperplasia (IH) by directly upregulating IRF1expression. These results suggested that HDAC4 interferenceinhibited PDGF-BB-induced VSMCs proliferation via regulatingMEG3/miR-125a-5p/IRF1 axis, and then alleviated IH.
Collapse
Affiliation(s)
- Xiangtao Zheng
- a Department of Vascular Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Ziheng Wu
- b Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Ke Xu
- a Department of Vascular Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Yihui Qiu
- a Department of Vascular Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xiang Su
- a Department of Vascular Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Zhen Zhang
- c Department of Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Mengtao Zhou
- c Department of Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
35
|
Sun Y, Qin B. Long noncoding RNA MALAT1 regulates HDAC4-mediated proliferation and apoptosis via decoying of miR-140-5p in osteosarcoma cells. Cancer Med 2018; 7:4584-4597. [PMID: 30094957 PMCID: PMC6144160 DOI: 10.1002/cam4.1677] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/18/2018] [Indexed: 12/11/2022] Open
Abstract
Noncoding RNAs regulate the initiation and progression of osteosarcoma (OS). The role of long noncoding RNA metastasis‐associated lung adenocarcinoma transcript 1 (MALAT1) playing in OS and whether the function it working out was achieved through HDAC4 pathway remain uncovered. In this study, we illustrated that MALAT1 was upregulated and was correlated with poor prognosis in OS patients. Meanwhile, we demonstrated that a depression of MALAT1 suppressed proliferation and promoted apoptosis in OS cell line HOS and 143B. Further, we verified that MALAT1 exerting its function via upregulating of histone deacetylase 4 (HDAC4). Through an online prediction, a series of luciferase assays and RNA pull‐down assays, we demonstrated that both MALAT1 and HDAC4 were the targets of microRNA‐140‐5p (miR‐140‐5p) via sharing a similar microRNA responding elements. Even further, we revealed that MALAT1 served as a ceRNA of HDAC4 via decoying of miR‐140‐5p. Finally, we proved that MALAT1 promoted OS tumor growth in an in vivo animal study. In summary, the outcomes of this study demonstrated the complex ceRNA network among MALAT, miR‐140‐5p, and HDAC4‐mediated proliferation and apoptosis in OS. This study might provide a new axial in molecular treatment of OS.
Collapse
Affiliation(s)
- Yuxiu Sun
- Department of Internal Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Baoli Qin
- Department of Internal Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|