1
|
Gojon A, Cassan O, Bach L, Lejay L, Martin A. The decline of plant mineral nutrition under rising CO 2: physiological and molecular aspects of a bad deal. TRENDS IN PLANT SCIENCE 2023; 28:185-198. [PMID: 36336557 DOI: 10.1016/j.tplants.2022.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 05/26/2023]
Abstract
The elevation of atmospheric CO2 concentration has a strong impact on the physiology of C3 plants, far beyond photosynthesis and C metabolism. In particular, it reduces the concentrations of most mineral nutrients in plant tissues, posing major threats on crop quality, nutrient cycles, and carbon sinks in terrestrial agro-ecosystems. The causes of the detrimental effect of high CO2 levels on plant mineral status are not understood. We provide an update on the main hypotheses and review the increasing evidence that, for nitrogen, this detrimental effect is associated with direct inhibition of key mechanisms of nitrogen uptake and assimilation. We also mention promising strategies for identifying genotypes that will maintain robust nutrient status in a future high-CO2 world.
Collapse
Affiliation(s)
- Alain Gojon
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Océane Cassan
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Liên Bach
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Laurence Lejay
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France
| | - Antoine Martin
- Institut des Sciences des Plantes de Montpellier (IPSiM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Montpellier, France.
| |
Collapse
|
2
|
Grey A, Costeira R, Lorenzo E, O’Kane S, McCaul MV, McCarthy T, Jordan SF, Allen CCR, Kelleher BP. Biogeochemical properties of blue carbon sediments influence the distribution and monomer composition of bacterial polyhydroxyalkanoates (PHA). BIOGEOCHEMISTRY 2023; 162:359-380. [PMID: 36873379 PMCID: PMC9971093 DOI: 10.1007/s10533-022-01008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Coastal wetlands are highly efficient 'blue carbon' sinks which contribute to mitigating climate change through the long-term removal of atmospheric CO2 and capture of carbon (C). Microorganisms are integral to C sequestration in blue carbon sediments and face a myriad of natural and anthropogenic pressures yet their adaptive responses are poorly understood. One such response in bacteria is the alteration of biomass lipids, specifically through the accumulation of polyhydroxyalkanoates (PHAs) and alteration of membrane phospholipid fatty acids (PLFA). PHAs are highly reduced bacterial storage polymers that increase bacterial fitness in changing environments. In this study, we investigated the distribution of microbial PHA, PLFA profiles, community structure and response to changes in sediment geochemistry along an elevation gradient from intertidal to vegetated supratidal sediments. We found highest PHA accumulation, monomer diversity and expression of lipid stress indices in elevated and vegetated sediments where C, nitrogen (N), PAH and heavy metals increased, and pH was significantly lower. This was accompanied by a reduction in bacterial diversity and a shift to higher abundances of microbial community members favouring complex C degradation. Results presented here describe a connection between bacterial PHA accumulation, membrane lipid adaptation, microbial community composition and polluted C rich sediments. Graphical Abstract Geochemical, microbiological and polyhydroxyalkanoate (PHA) gradient in a blue carbon zone. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-022-01008-5.
Collapse
Affiliation(s)
- Anthony Grey
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Ricardo Costeira
- The School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland
| | - Emmaline Lorenzo
- Department of Chemistry, University of Kansas, Lawrence, 66045 USA
| | - Sean O’Kane
- National Centre for Geocomputation, Maynooth University, Maynooth, Ireland
| | - Margaret V. McCaul
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin 4, Ireland
| | - Tim McCarthy
- National Centre for Geocomputation, Maynooth University, Maynooth, Ireland
| | - Sean F. Jordan
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin 4, Ireland
| | | | - Brian P. Kelleher
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
3
|
Morzaria-Luna HN, Zedler JB. Salt marsh restoration surprise: A subordinate species accumulates and shares nitrogen while outcompeting salt marsh dominants. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.851055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Selectively planting native species could guide ecosystem development toward wetland restoration targets, once we understand how influential species function, alone and in combination. Knowing that Triglochin concinna (arrow grass, Juncaceae) accumulates N in its perennial roots, we asked how it would influence N dynamics on an excavated salt marsh plain at Tijuana Estuary, in southern California. We hypothesized that it would (a) accumulate N in roots and shoots, (b) reduce biomass of other marsh plain plants or, alternatively, (c) share N with neighbors as its litter decomposed and released N. We used 15N stable isotope enrichment to quantify N transfer between Triglochin and the marsh plain’s seven-species halophyte assemblage in field and greenhouse experiments. We also examined the effect of Triglochin on individual marsh plain species’ biomass and N accumulation. Triglochin had low shoot biomass (0.96 ± 0.5 g m−2 in field plots and 17.64 ± 2.2 g m−2 in greenhouse pots), high root:shoot ratios (4.3 in the field and 2.0 in the greenhouse), and high tissue N content (1.9 ± 0.2% in the field and 1.7 ± 0.1% in the greenhouse). Two productive perennials, Sarcocornia pacifica (pickleweed) and Frankenia salina (alkali heath), outgrew Triglochin; yet these biomass dominants produced 44%–45% less shoot biomass in greenhouse pots with Triglochin than without. However, we did not find this reduction in the field where roots were unconfined. In the greenhouse, δ15N values were higher for species grown with 15N-enriched Triglochin, indicating that this species made N available to its neighbors. The δ15N values for plants grown in the field exceeded background levels, also indicating that the marsh plain assemblage took up N released by Triglochin. We conclude that Triglochin can influence the restoration of salt marsh vegetation by accumulating N and releasing its tissue N to neighbors as leaves and roots decompose, while simultaneously reducing the biomass of neighbors. The seasonally deciduous Triglochin is low in shoot biomass, yet competitively superior in N uptake. Because this often-ignored species has limited tidal dispersal, we suggest restoration plantings, including tests of its ability to facilitate diversity where S. pacifica, the marsh plain dominant, might otherwise form monocultures.
Collapse
|
4
|
Mozdzer TJ, McCormick MK, Slette IJ, Blum MJ, Megonigal JP. Rapid evolution of a coastal marsh ecosystem engineer in response to global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:157846. [PMID: 35948126 DOI: 10.1016/j.scitotenv.2022.157846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
There is increasing evidence that global change can alter ecosystems by eliciting rapid evolution of foundational plants capable of shaping vital attributes and processes. Here we describe results of a field-scale exposure experiment and multilocus assays illustrating that elevated CO2 (eCO2) and nitrogen (N) enrichment can result in rapid shifts in genetic and genotypic variation in Phragmites australis, an ecologically dominant plant that acts as an ecosystem engineer in coastal marshes worldwide. Compared to control treatments, genotypic diversity declined over three years of exposure, especially to N enrichment. The magnitude of loss also increased over time under conditions of N enrichment. Comparisons of genotype frequencies revealed that proportional abundances shifted with exposure to eCO2 and N in a manner consistent with expected responses to selection. Comparisons also revealed evidence of tradeoffs that constrained exposure responses, where any particular genotype responded favorably to one factor rather than to different factors or to combinations of factors. These findings challenge the prevailing view that plant-mediated ecosystem outcomes of global change are governed primarily by differences in species responses to shifting environmental pressures and highlight the value of accounting for organismal evolution in predictive models to improve forecasts of ecosystem responses to global change.
Collapse
Affiliation(s)
- Thomas J Mozdzer
- Bryn Mawr College, Department of Biology, 101 N. Merion Ave, Bryn Mawr, PA 19010, United States of America; Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037, United States of America.
| | - Melissa K McCormick
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037, United States of America.
| | - Ingrid J Slette
- Colorado State University, Department of Biology and Graduate Degree Program in Ecology, 251 W Pitkin St, Fort Collins, CO 80523, United States of America
| | - Michael J Blum
- University of Tennessee, Department of Ecology & Evolutionary Biology, 1416 Circle Dr, Knoxville, TN 37996, United States of America.
| | - J Patrick Megonigal
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037, United States of America.
| |
Collapse
|
5
|
Application of an Alternative Nutrient Replenishment Method to Electrical Conductivity-Based Closed-Loop Soilless Cultures of Sweet Peppers. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The nutrient replenishment method primarily impacts the nutrient variations in a closed-loop soilless culture system. However, there is still a lack of systematic approaches for the effective way of nutrient replenishment. Our previous study theoretically derived and experimentally validated an alternative nutrient replenishment method expecting synchronized total fertilizer supply to total nutrient absorption by crops and lower concentration fluctuations than conventional methods. However, no individual nutrient management has been performed. The objective of this study was to apply individual nutrient management to the alternative nutrient replenishment technique under experimental- and commercial-scale electrical conductivity (EC)-based closed-loop soilless cultures. Automated nutrient solution mixing modules and sweet peppers grown on rockwool slabs were used. Nutrient concentrations and crop productivity were compared between the closed-loop system using the alternative nutrient replenishment and the conventional open-loop systems. During early treatment, rapid decreases in K+ and H2PO4− were observed in the closed-loop system. However, after the stock solution nutrient adjustment, the decreasing trend was stabilized and returned close to initial concentrations. No significant differences in sugar content, incidence of blossom-end rot, and productivity of sweet peppers were observed between the closed- and open-loop soilless cultures. We confirmed that the nutrient variation stabilizing effect of the alternative nutrient replenishment method was valid under nutrient adjustment conditions and had comparable nutrient management performance with the open-loop system.
Collapse
|
6
|
Carmona R, Muñoz R, Niell FX. Differential Nutrient Uptake by Saltmarsh Plants Is Modified by Increasing Salinity. FRONTIERS IN PLANT SCIENCE 2021; 12:709453. [PMID: 34394167 PMCID: PMC8360633 DOI: 10.3389/fpls.2021.709453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
In Southern European estuaries and associated salt marshes, the anthropogenic nutrient inputs, together with longer drought periods, are leading to increasing eutrophication and salinization of these coastal ecosystems. In this study, uptake kinetics of ammonium, nitrate, and phosphate by three common plants in Palmones salt marsh (Southern Spain), Sarcocornia perennis ssp. alpini, Atriplex portulacoides, and Arthrocnemum macrostachyum were measured in hydroponic cultures. We also determined how these uptakes could be modified by increasing salinity, adding NaCl to the incubation medium (from 170 to 1,025 mM). Kinetic parameters are analyzed to understand the competition of the three species for nutrient resources under realistic most frequent concentrations in the salt marsh. These results may also be useful to predict the possible changes in the community composition and distribution if trends in environmental changes persist. Atriplex portulacoides showed the highest Vmax for ammonium, the most abundant nutrient in the salt marsh, while the highest affinity for this nutrient was observed in A. macrostachyum. Maximum uptake rates for nitrate were much lower than for ammonium, without significant differences among species. The highest Vmax value for phosphate was observed in A. macrostachyum, whereas A. portulacoides presented the highest affinity for this nutrient. High salinity drastically affected the physiological response of these species, decreasing nutrient uptake. Sarcocornia perennis ssp. alpini and A. macrostachyum were not affected by salinity up to 510 mM NaCl, whereas A. portulacoides notably decreased its uptake capacity at 427 mM and even withered at 1,025 mM NaCl. At current most frequent concentrations of ammonium and phosphate in the salt marsh, S. perennis ssp. alpini is the most favored species, from the nutritional point of view. However, A. portulacoides could enhance its presence if the increasing ammonium load continues, although a simultaneous salinization would negatively affect its nutritional physiology.
Collapse
|
7
|
Ahn TI, Shin JH, Son JE. Theoretical and Experimental Analyses of Nutrient Control in Electrical Conductivity-Based Nutrient Recycling Soilless Culture System. FRONTIERS IN PLANT SCIENCE 2021; 12:656403. [PMID: 34108979 PMCID: PMC8181128 DOI: 10.3389/fpls.2021.656403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
An electrical conductivity (EC)-based closed-loop soilless culture system is practical for in-field deployment. Literature on the closed-loop soilless culture nutrient management premise the limitations in managing recycled nutrients under dynamic changes in individual nutrient uptake concentrations. However, recent systems analysis studies predicting solutions for nutrient fluctuation stabilization in EC-based closed-loop soilless culture systems suggest that the system may have a deterministic side in nutrient variation. This study aims to derive a nutrient control principle in an EC-based nutrient recycling soilless culture system by theoretical and experimental analyses. An integrated model of solutes such as K+, Ca2+, and Mg2+ and water transport in growing media, automated nutrient solution preparation, and nutrient uptake was designed. In the simulation, the intrinsic characteristics of nutrient changes among open-, semi- closed-, and closed-loop soilless cultures were compared, and stochastic simulations for nutrient control were performed in the closed-loop system. Four automated irrigation modules for comparing nutrient changes among the soilless culture systems were constructed in the greenhouse. Sweet pepper plants were used in the experiment. In the experimental analysis, nutrient concentration conversion to the proportion between nutrients revealed distinctive trends of nutrient changes according to the treatment level of drainage recycling. Theoretical and experimental analyses exhibited that nutrient variations in open-, semi- closed-, and closed-loop soilless culture systems can be integrated as a function of nutrient supply to the system's boundary areas. Furthermore, stochastic simulation analysis indicated that the nutrient ratio in the soilless culture system reveals the nutrient uptake parameter-based deterministic patterns. Thus, the nutrient ratio in the closed-loop soilless culture could be controlled by the long-term feedback of this ratio. We expect that these findings provide theoretical frameworks for systemizing nutrient management techniques in EC-based closed-loop soilless culture systems.
Collapse
Affiliation(s)
- Tae In Ahn
- Department of Agriculture, Forest and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul, South Korea
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, South Korea
| | - Jong Hwa Shin
- Department of Horticulture and Breeding, Andong National University, Andong, South Korea
| | - Jung Eek Son
- Department of Agriculture, Forest and Bioresources (Horticultural Science and Biotechnology), Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
8
|
Mozdzer TJ, Drew SE, Caplan JS, Weber PE, Deegan LA. Rapid recovery of carbon cycle processes after the cessation of chronic nutrient enrichment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:140927. [PMID: 32853928 DOI: 10.1016/j.scitotenv.2020.140927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Salt marshes provide critical ecosystem services including some of the highest rates of carbon storage on Earth. However, many salt marshes receive very high nutrient loads and there is a growing body of evidence indicating that this nutrient enrichment alters carbon cycle processes. While many restoration plans prioritize nutrient management in their efforts to conserve salt marsh ecosystems, there has been little empirical investigation of the capacity for carbon cycle processes to recover once nutrient loading is reduced. To address this, we compared rates of greenhouse gas fluxes (i.e., CO2 and methane) measured using static chambers, and soil organic matter decomposition, using both litter bags and the Tea Bag Index (TBI), during the last two years of a long-term, ecosystem-scale nutrient enrichment experiment (2015-2016) as well as in the first two years of recovery post-enrichment (2017-2018). We found that both ecosystem respiration (Reco) and decomposition processes (i.e., rhizome decomposition and soil organic matter stabilization) were enhanced by nutrient enrichment, but returned to reference ecosystem levels within the first year following the cessation of nutrient enrichment and remained at reference levels in the second year. These results suggest that management practices intended to reduce nutrient loads in coastal systems may, in fact, allow for rapid recovery of carbon cycle processes, potentially restoring the high carbon sequestration rates of these blue carbon ecosystems.
Collapse
Affiliation(s)
- Thomas J Mozdzer
- Bryn Mawr College, Department of Biology, 101 N Merion Ave, Bryn Mawr, PA, 19010, United States of America.
| | - Sophie E Drew
- Bryn Mawr College, Department of Biology, 101 N Merion Ave, Bryn Mawr, PA, 19010, United States of America
| | - Joshua S Caplan
- Department of Architecture and Environmental Design, Temple University, 580 Meetinghouse Rd., Ambler, PA 19002, United States of America
| | - Paige E Weber
- Bryn Mawr College, Department of Biology, 101 N Merion Ave, Bryn Mawr, PA, 19010, United States of America
| | - Linda A Deegan
- Woods Hole Research Center, 149 Woods Hole Rd., Woods Hole, MA 02540, United States of America
| |
Collapse
|
9
|
Bowen JL, Giblin AE, Murphy AE, Bulseco AN, Deegan LA, Johnson DS, Nelson JA, Mozdzer TJ, Sullivan HL. Not All Nitrogen Is Created Equal: Differential Effects of Nitrate and Ammonium Enrichment in Coastal Wetlands. Bioscience 2020; 70:1108-1119. [PMID: 33376455 PMCID: PMC7750101 DOI: 10.1093/biosci/biaa140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Excess reactive nitrogen (N) flows from agricultural, suburban, and urban systems to coasts, where it causes eutrophication. Coastal wetlands take up some of this N, thereby ameliorating the impacts on nearshore waters. Although the consequences of N on coastal wetlands have been extensively studied, the effect of the specific form of N is not often considered. Both oxidized N forms (nitrate, NO3-) and reduced forms (ammonium, NH4+) can relieve nutrient limitation and increase primary production. However, unlike NH4+, NO3- can also be used as an electron acceptor for microbial respiration. We present results demonstrating that, in salt marshes, microbes use NO3- to support organic matter decomposition and primary production is less stimulated than when enriched with reduced N. Understanding how different forms of N mediate the balance between primary production and decomposition is essential for managing coastal wetlands as N enrichment and sea level rise continue to assail our coasts.
Collapse
Affiliation(s)
- Jennifer L Bowen
- Northeastern University's Marine Science Center, Nahant, Massachusetts, and a senior scientist at INSPIRE Environmental, Newport, Rhode Island
| | - Anne E Giblin
- Marine Biological Laboratory, Woods Hole, Massachusetts, and is now an assistant professor of Marine Science at Eckerd College, St. Petersburg, Florida
| | - Anna E Murphy
- Northeastern University's Marine Science Center, Nahant, Massachusetts, and a senior scientist at INSPIRE Environmental, Newport, Rhode Island
| | - Ashley N Bulseco
- Marine Biological Laboratory, Woods Hole, Massachusetts, and is now an assistant professor of Marine Science at Eckerd College, St. Petersburg, Florida
| | - Linda A Deegan
- Woodwell Climate Research Center (formerly, the Woods Hole Research Center), in Falmouth, Massachusetts. Deegan leads the TIDE project, the long-term nutrient enrichment experiment from which much of these results derive
| | - David S Johnson
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, Virginia
| | | | | | - Hillary L Sullivan
- Woodwell Climate Research Center (formerly, the Woods Hole Research Center), in Falmouth, Massachusetts. Deegan leads the TIDE project, the long-term nutrient enrichment experiment from which much of these results derive
| |
Collapse
|
10
|
Mozdzer TJ, Watson EB, Orem WH, Swarzenski CM, Turner RE. Unraveling the Gordian Knot: Eight testable hypotheses on the effects of nutrient enrichment on tidal wetland sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140420. [PMID: 32758808 DOI: 10.1016/j.scitotenv.2020.140420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
The position of tidal wetlands at the land-sea interface makes them especially vulnerable to the effects of nutrient discharges and sea level rise (SLR). Experimental studies of coastal wetland nutrient additions report conflicting results among and within habitats, highlighting the importance of site-specific factors, and how spatial and temporal scaling modulates responses. This suite of influences as SLR accelerates creates a "Gordian Knot" that may compromise coastal habitat integrity. We present eight testable hypotheses here to loosen this knot by identifying critical modulators about nutrient form, soil type and porosity, physiochemical gradients, and eco-evolutionary responses that may control the impacts of nutrient enrichment on coastal wetland sustainability: (1) the delivery and form of the nutrient shapes the ecosystem response; (2) soil type mediates the effects of nutrient enrichment on marshes; (3) belowground responses cannot be solely explained by phenotypic responses; (4) shifting zones of redox and salinity gradients modulate nutrient enrichment impacts; (5) eco-evolutionary processes can drive responses to nutrient availability; (6) nutrient enrichment leads to multiple changed ecosystem states; (7) biogeography trumps a plant's plastic responses to nutrient enrichment; and, (8) nutrient-enhanced wetlands are more susceptible to additional (and anticipated) anthropogenic changes. They provide a framework to investigate and integrate the urgently needed research to understand how excess nutrients threaten the sustainability of coastal wetlands, and wetlands in general. While there is no single 'right way' to test these hypotheses, including a combination of complex and simple, highly-replicated experiments is essential.
Collapse
Affiliation(s)
- Thomas J Mozdzer
- Department of Biology, Bryn Mawr College, 101 N Merion Ave, Bryn Mawr, PA 19010, USA.
| | - Elizabeth Burke Watson
- Department of Biodiversity, Earth & Environmental Sciences, Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103, USA
| | - William H Orem
- U.S. Geological Survey, 12201 Sunrise Valley Drive, Mail Stop 956, Reston, VA 20192-0002, USA.
| | - Christopher M Swarzenski
- U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, 3535 S. Sherwood Forest Blvd., Baton Rouge, LA 70816, USA.
| | - R Eugene Turner
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
11
|
Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO 2. Proc Natl Acad Sci U S A 2019; 116:21623-21628. [PMID: 31591204 DOI: 10.1073/pnas.1904990116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Terrestrial ecosystem responses to climate change are mediated by complex plant-soil feedbacks that are poorly understood, but often driven by the balance of nutrient supply and demand. We actively increased aboveground plant-surface temperature, belowground soil temperature, and atmospheric CO2 in a brackish marsh and found nonlinear and nonadditive feedbacks in plant responses. Changes in root-to-shoot allocation by sedges were nonlinear, with peak belowground allocation occurring at +1.7 °C in both years. Above 1.7 °C, allocation to root versus shoot production decreased with increasing warming such that there were no differences in root biomass between ambient and +5.1 °C plots in either year. Elevated CO2 altered this response when crossed with +5.1 °C, increasing root-to-shoot allocation due to increased plant nitrogen demand and, consequently, root production. We suggest these nonlinear responses to warming are caused by asynchrony between the thresholds that trigger increased plant nitrogen (N) demand versus increased N mineralization rates. The resulting shifts in biomass allocation between roots and shoots have important consequences for forecasting terrestrial ecosystem responses to climate change and understanding global trends.
Collapse
|