1
|
Moreira AMS, Nogueira JM, Carceroni J, Guadalupe JL, dos Santos AEA, Fagundes AMA, Copola AGL, Silva GAB, da Silva AB, Santos JPF, Albergaria JDS, Oliveira Andrade LD, Jorge EC. Acetate cellulose fibrous scaffold is suitable for cultivated fat production. Curr Res Food Sci 2024; 9:100903. [PMID: 39555016 PMCID: PMC11564054 DOI: 10.1016/j.crfs.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Fat is an essential component of meat which contributes to its sensory characteristics. Therefore, producing cultivated fat is essential to replicate the texture, flavor, and juiciness of conventional meat. One of the challenges in obtaining cultivated fat is that once adipocytes reach differentiation in culture, they tend to float. In this study, we tested whether immortalized pre-adipocytes could be viable, grow, and differentiate when cultivated onto a fibrous scaffold produced by the electrospun of cellulose acetate. Our results demonstrated that the cells attach, proliferate, colonize, and differentiate into mature adipocytes in the three-dimensional fibrous structure during the culture period. Moreover, when layers of the scaffold containing differentiated cells were stacked, it acquired a characteristic similar to conventional animal fat. Therefore, this research suggests that fibrous scaffolds produced using cellulose acetate are a promising substrate for producing cultivated fat.
Collapse
Affiliation(s)
- Amanda Maria Siqueira Moreira
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Júlia Meireles Nogueira
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jade Carceroni
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jorge Luís Guadalupe
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Elisa Antunes dos Santos
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Alvarenga Fagundes
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Aline Gonçalves Lio Copola
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Aline Bruna da Silva
- Laboratory of Biomaterials, Department of Materials Engineering, Federal Center for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil
| | - João Paulo Ferreira Santos
- Laboratory of Biomaterials, Department of Materials Engineering, Federal Center for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil
| | - Juliano Douglas Silva Albergaria
- Laboratory of Biomaterials, Department of Materials Engineering, Federal Center for Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil
| | - Luciana de Oliveira Andrade
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Erika Cristina Jorge
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Cho SH, Lee S, Kim JI. 3D cotton-type anisotropic biomimetic scaffold with low fiber motion electrospun via a sharply inclined array collector for induced osteogenesis. Sci Rep 2024; 14:7365. [PMID: 38548858 PMCID: PMC10978854 DOI: 10.1038/s41598-024-58135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/26/2024] [Indexed: 04/01/2024] Open
Abstract
Electrospinning is an effective method to fabricate fibrous scaffolds that mimic the ECM of bone tissue on a nano- to macro-scale. However, a limitation of electrospun fibrous scaffolds for bone tissue engineering is the structure formed by densely compacted fibers, which significantly impedes cell infiltration and tissue ingrowth. To address this problem, several researchers have developed numerous techniques for fabricating 3D fibrous scaffolds with customized topography and pore size. Despite the success in developing various 3D electrospun scaffolds based on fiber repulsion, the lack of contact points between fibers in those scaffolds has been shown to hinder cell attachment, migration, proliferation, and differentiation due to excessive movement of the fibers. In this article, we introduce a Dianthus caryophyllus-inspired scaffold fabricated using SIAC-PE, a modified collector under specific viscosity conditions of PCL/LA solution. The developed scaffold mimicking the structural similarities of the nature-inspired design presented enhanced cell proliferation, infiltration, and increased expression of bone-related factors by reducing fiber movements, presenting high space interconnection, high porosity, and controlled fiber topography.
Collapse
Affiliation(s)
- Sun Hee Cho
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Gyeonggi-do, Republic of Korea.
| | - Jeong In Kim
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Dong S, Maciejewska BM, Lißner M, Thomson D, Townsend D, Millar R, Petrinic N, Grobert N. Unveiling the Mechanism of the in Situ Formation of 3D Fiber Macroassemblies with Controlled Properties. ACS NANO 2023; 17:6800-6810. [PMID: 36988309 PMCID: PMC10100559 DOI: 10.1021/acsnano.3c00289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Electrospinning technique is well-known for the generation of different fibers. While it is a "simple" technique, it lies in the fact that the fibers are typically produced in the form of densely packed two-dimensional (2D) mats with limited thickness, shape, and porosity. The highly demanded three-dimensional (3D) fiber assemblies have been explored by time-consuming postprocessing and/or complex setup modifications. Here, we use a classic electrospinning setup to directly produce 3D fiber macrostructures only by modulating the spinning solution. Increasing solution conductivity modifies electrodynamic jet behavior and fiber assembling process; both are observed in situ using a high-speed camera. More viscous solutions render thicker fibers that own enhanced mechanical stiffness as examined by finite element analysis. We reveal the correlation between the universal solution parameters and the dimensionality of fiber assemblies, thereof, enlightening the design of more "3D spinnable" solutions that are compatible with any commercial electrospinning equipment. After a calcination step, ultralightweight ceramic fiber assemblies are generated. These inexpensive materials can clean up exceptionally large fractions of oil spillages and provide high-performance thermal insulation. This work would drive the development and scale-up production of next-generation 3D fiber materials for engineering, biomedical, and environmental applications.
Collapse
Affiliation(s)
- Shiling Dong
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
| | | | - Maria Lißner
- Department
of Engineering, University of Oxford; Parks Road, Oxford OX1 3PJ, U.K.
| | - Daniel Thomson
- Department
of Engineering, University of Oxford; Parks Road, Oxford OX1 3PJ, U.K.
| | - David Townsend
- Department
of Engineering, University of Oxford; Parks Road, Oxford OX1 3PJ, U.K.
| | - Robert Millar
- WAE
Technologies Ltd, Grove, Wantage, Oxfordshire OX12 0DQ, U.K.
| | - Nik Petrinic
- Department
of Engineering, University of Oxford; Parks Road, Oxford OX1 3PJ, U.K.
| | - Nicole Grobert
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.
- WAE
Technologies Ltd, Grove, Wantage, Oxfordshire OX12 0DQ, U.K.
| |
Collapse
|
4
|
Chan Lee J, Hee Park C, Sang Kim C. Amplified piezoelectric response with β-phase formation in PVDF blended 3D cotton type nanofibers for osteogenic differentiation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Marew T, Birhanu G. Three dimensional printed nanostructure biomaterials for bone tissue engineering. Regen Ther 2021; 18:102-111. [PMID: 34141834 PMCID: PMC8178073 DOI: 10.1016/j.reth.2021.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
The suffering from organ dysfunction due to damaged or diseased tissue/bone has been globally on the rise. Current treatment strategies for non-union bone defects include: the use of autografts, allografts, synthetic grafts and free vascularized fibular grafts. Bone tissue engineering has emerged as an alternative for fracture repair to satisfy the current unmet need of bone grafts and to alleviate the problems associated with autografts and allografts. The technology offers the possibility to induce new functional bone regeneration using synergistic combination of functional biomaterials (scaffolds), cells, and growth factors. Bone scaffolds are typically made of porous biodegradable materials that provide the mechanical support during repair and regeneration of damaged or diseased bone. Significant progress has been made towards scaffold materials for structural support, desired osteogenesis and angiogenesis abilities. Thanks for innovative scaffolds fabrication technologies, bioresorbable scaffolds with controlled porosity and tailored properties are possible today. Despite the presence of different bone scaffold fabrication methods, pore size, shape and interconnectivity have not yet been fully controlled in most of the methods. Moreover, scaffolds with tailored porosity for specific defects are still difficult to manufacture. Nevertheless, such scaffolds can be designed and fabricated using three dimensional (3D) printing approaches. 3D printing technology, as an advanced tissue scaffold fabrication method, offers the opportunity to produce complex geometries with distinct advantages. The technology has been used for the production of various types of bodily constructs such as blood vessels, vascular networks, bones, cartilages, exoskeletons, eyeglasses, cell cultures, tissues, organs and novel drug delivery devices. This review focuses on 3D printed scaffolds and their application in bone repair and regeneration. In addition, different classes of biomaterials commonly employed for the fabrication of 3D nano scaffolds for bone tissue engineering application so far are briefly discussed.
Collapse
Affiliation(s)
- Tesfa Marew
- Department of Pharmaceutics & Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gebremariam Birhanu
- Department of Pharmaceutics & Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Overcoming functional challenges in autologous and engineered fat grafting trends. Trends Biotechnol 2021; 40:77-92. [PMID: 34016480 DOI: 10.1016/j.tibtech.2021.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Autologous fat grafting offers significant promise for the repair of soft tissue deformities; however, high resorption rates indicate that engineered solutions are required to improve adipose tissue (AT) survival. Advances in material development and biofabrication have laid the foundation for the generation of functional AT constructs; however, a balance needs to be struck between clinically feasible delivery and improved structural integrity of the grafts. A new approach combining the objectives from both the clinical and research communities will assist in developing morphologically and genetically mature AT constructs, with controlled spatial arrangement and increased potential for neovascularization. In a rapidly progressing field, this review addresses research in both the preclinical and bioengineering domains and assesses their ability to resolve functional challenges.
Collapse
|
7
|
Revia RA, Wagner BA, Zhang M. A Portable Electrospinner for Nanofiber Synthesis and Its Application for Cosmetic Treatment of Alopecia. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1317. [PMID: 31540131 PMCID: PMC6781269 DOI: 10.3390/nano9091317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
A portable, handheld electrospinning apparatus is designed and constructed using off-the-shelf components and 3D-printed parts. The portable electrospinner is used to generate nanofibers with diameters ranging from 85 to 600 nm; examination of these fibers is achieved with scanning electron microscopy. This portable electrospinner has similar capabilities to standard stationary benchtop electrospinners in terms of the diversity of polymers the device is able to spin into nanofibers and their resulting size and morphology. However, it provides much more ambulatory flexibility, employs current-limiting measures that allow for safer operation and is cost effective. As a demonstration of the device's unique application space afforded by its portability, the device is applied in direct-to-skin electrospinning to improve the aesthetics of simulated hair loss in a mouse model by electrospinning dyed polyacrylonitrile nanofibers that mimic hair. The superficial nanofiber treatment for thinning hair is able to achieve an improvement in appearance similar to that of a commercially available powder product but outperforms the powder in the nanofiber's superior adherence to the affected area. The portable electrospinning apparatus overcomes many limitations of immobile benchtop electrospinners and holds promise for applications in consumer end-use scenarios such as the treatment of alopecia via cosmetic hair thickening.
Collapse
Affiliation(s)
- Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Brandon A Wagner
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Freedman BR, Mooney DJ. Biomaterials to Mimic and Heal Connective Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806695. [PMID: 30908806 PMCID: PMC6504615 DOI: 10.1002/adma.201806695] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/27/2019] [Indexed: 05/11/2023]
Abstract
Connective tissue is one of the four major types of animal tissue and plays essential roles throughout the human body. Genetic factors, aging, and trauma all contribute to connective tissue dysfunction and motivate the need for strategies to promote healing and regeneration. The goal here is to link a fundamental understanding of connective tissues and their multiscale properties to better inform the design and translation of novel biomaterials to promote their regeneration. Major clinical problems in adipose tissue, cartilage, dermis, and tendon are discussed that inspire the need to replace native connective tissue with biomaterials. Then, multiscale structure-function relationships in native soft connective tissues that may be used to guide material design are detailed. Several biomaterials strategies to improve healing of these tissues that incorporate biologics and are biologic-free are reviewed. Finally, important guidance documents and standards (ASTM, FDA, and EMA) that are important to consider for translating new biomaterials into clinical practice are highligted.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Denchai A, Tartarini D, Mele E. Cellular Response to Surface Morphology: Electrospinning and Computational Modeling. Front Bioeng Biotechnol 2018; 6:155. [PMID: 30406098 PMCID: PMC6207584 DOI: 10.3389/fbioe.2018.00155] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022] Open
Abstract
Surface properties of biomaterials, such as chemistry and morphology, have a major role in modulating cellular behavior and therefore impact on the development of high-performance devices for biomedical applications, such as scaffolds for tissue engineering and systems for drug delivery. Opportunely-designed micro- and nanostructures provides a unique way of controlling cell-biomaterial interaction. This mini-review discusses the current research on the use of electrospinning (extrusion of polymer nanofibers upon the application of an electric field) as effective technique to fabricate patterns of micro- and nano-scale resolution, and the corresponding biological studies. The focus is on the effect of morphological cues, including fiber alignment, porosity and surface roughness of electrospun mats, to direct cell migration and to influence cell adhesion, differentiation and proliferation. Experimental studies are combined with computational models that predict and correlate the surface composition of a biomaterial with the response of cells in contact with it. The use of predictive models can facilitate the rational design of new bio-interfaces.
Collapse
Affiliation(s)
- Anna Denchai
- Department of Materials, Loughborough University, Loughborough, United Kingdom
| | - Daniele Tartarini
- Department of Civil Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Elisa Mele
- Department of Materials, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|