1
|
Saburov V, Kazakova E, Moiseev A, Kazakov E, Podlutskii M, Babina D, Korol M, Gorbatova I, Volkova P. Combining clinostating and proton irradiation for modeling the space environment: a case study with a Chernobyl accession of Arabidopsis thaliana. Int J Radiat Biol 2024; 100:1696-1710. [PMID: 39353463 DOI: 10.1080/09553002.2024.2409665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE The study of mechanisms of plant responses to extreme conditions, particularly, microgravity and ionizing radiation, is crucial for space exploration. Modern space biology of plants focuses on increasing plant tolerance to harsh conditions of space environment. Given the limited access to the International Space Station, we designed and assembled the 3D clinostat for mimicking microgravity, which, in combination with proton irradiation, allows simulating space conditions. As a case study for testing the device, we studied the effect of clinostating on Arabidopsis thaliana accession originating from the Chernobyl exclusion zone. MATERIALS AND METHODS Using the combined clinostating and proton irradiation, we simulated the conditions of long-term space flight for Arabidopsis thaliana plants of the Chernobyl accession - progeny of chronically irradiated plants, grown from field-collected (Masa-0) and laboratory-cultivated (Masa-0-1) seeds, and for wild-type Col-8. The clinostating and irradiation of plants were also carried out separately. Plant responses were studied as photosynthetic and phenotypic endpoints of seedlings. RESULTS AND CONCLUSIONS Parameters of chlorophyll fluorescence estimated immediately after exposure showed that Masa-0-1 plants were resistant to the simulated space conditions, while Masa-0 demonstrated modulation of non-photochemical fluorescence quenching. Proton irradiation generally inhibited photosynthesis of Masa-0, Masa-0-1, and Col-8 seedlings. The combined effect of irradiation and clinostating modulated the photosynthetic activity of Col-8 seedlings. The leaf area of seedlings did not change after exposure to simulated conditions. The 3D clinostat model and software are published along with this article for researchers interested in the field of space biology.
Collapse
Affiliation(s)
- Vyacheslav Saburov
- Laboratory for the Development and Operation of Irradiation Equipment, A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Elizaveta Kazakova
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Alexander Moiseev
- Laboratory for the Development and Operation of Irradiation Equipment, A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Evgeniy Kazakov
- Laboratory for the Development and Operation of Irradiation Equipment, A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Mikhail Podlutskii
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Darya Babina
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Marina Korol
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Irina Gorbatova
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | | |
Collapse
|
2
|
Salazar M, Joly S, Anglada-Escudé G, Ribas L. Epigenetic and physiological alterations in zebrafish subjected to hypergravity. PLoS One 2024; 19:e0300310. [PMID: 38776274 PMCID: PMC11111069 DOI: 10.1371/journal.pone.0300310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 05/24/2024] Open
Abstract
Gravity is one of the most constant environmental factors across Earth's evolution and all organisms are adapted to it. Consequently, spatial exploration has captured the interest in studying the biological changes that physiological alterations are caused by gravity. In the last two decades, epigenetics has explained how environmental cues can alter gene functions in organisms. Although many studies addressed gravity, the underlying biological and molecular mechanisms that occur in altered gravity for those epigenetics-related mechanisms, are mostly inexistent. The present study addressed the effects of hypergravity on development, behavior, gene expression, and most importantly, on the epigenetic changes in a worldwide animal model, the zebrafish (Danio rerio). To perform hypergravity experiments, a custom-centrifuge simulating the large diameter centrifuge (100 rpm ~ 3 g) was designed and zebrafish embryos were exposed during 5 days post fertilization (dpf). Results showed a significant decrease in survival at 2 dpf but no significance in the hatching rate. Physiological and morphological alterations including fish position, movement frequency, and swimming behavior showed significant changes due to hypergravity. Epigenetic studies showed significant hypermethylation of the genome of the zebrafish larvae subjected to 5 days of hypergravity. Downregulation of the gene expression of three epigenetic-related genes (dnmt1, dnmt3, and tet1), although not significant, was further observed. Taken altogether, gravity alterations affected biological responses including epigenetics in fish, providing a valuable roadmap of the putative hazards of living beyond Earth.
Collapse
Affiliation(s)
- Marcela Salazar
- Department of Renewable Marine Resources, Institut de Ciències del Mar—Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain
| | - Silvia Joly
- Department of Renewable Marine Resources, Institut de Ciències del Mar—Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain
| | - Guillem Anglada-Escudé
- Department of Astrophysics, Institut de Ciències de l’Espai—Consejo Superior de Investigaciones Científicas (ICE-CSIC), UAB Campus at Cerdanyola del Vallès, Barcelona, Spain
- Institut d’Estudis Espacials de Catalunya–IEEC/CERCA, Gran Capità, 2–4, Edifici Nexus, Despatx 201, Barcelona, Spain
| | - Laia Ribas
- Department of Renewable Marine Resources, Institut de Ciències del Mar—Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain
| |
Collapse
|
3
|
Yemets A, Shadrina R, Blume R, Plokhovska S, Blume Y. Autophagy formation, microtubule disorientation, and alteration of ATG8 and tubulin gene expression under simulated microgravity in Arabidopsis thaliana. NPJ Microgravity 2024; 10:31. [PMID: 38499552 PMCID: PMC10948825 DOI: 10.1038/s41526-024-00381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Autophagy plays an important role in plant growth and development, pathogen invasion and modulates plant response and adaptation to various abiotic stress stimuli. The biogenesis and trafficking of autophagosomes involve microtubules (MTs) as important actors in the autophagic process. However, initiation of autophagy in plants under microgravity has not been previously studied. Here we demonstrate how simulated microgravity induces autophagy development involving microtubular reorganization during period of autophagosome formation. It was shown that induction of autophagy with maximal autophagosome formation in root cells of Arabidopsis thaliana is observed after 6 days of clinostating, along with MT disorganization, which leads to visible changes in root morphology. Gradual decrease of autophagosome number was indicated on 9th and 12th days of the experiment as well as no significant re-orientation of MTs were identified. Respectively, analysis of α- and β-tubulins and ATG8 gene expression was carried out. In particular, the most pronounced increase of expression on both 6th and 9th days in response to simulated microgravity was detected for non-paralogous AtATG8b, AtATG8f, AtATG8i, and AtTUA2, AtTUA3 genes, as well as for the pair of β-tubulin duplicates, namely AtTUB2 and AtTUB3. Overall, the main autophagic response was observed after 6 and 9 days of exposure to simulated microgravity, followed by adaptive response after 12 days. These findings provide a key basis for further studies of cellular mechanisms of autophagy and involvement of cytoskeletal structures in autophagy biogenesis under microgravity, which would enable development of new approaches, aimed on enhancing plant adaptation to microgravity.
Collapse
Affiliation(s)
- Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine.
| | - Ruslana Shadrina
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine
| | - Rostyslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine.
| | - Svitlana Plokhovska
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine.
| |
Collapse
|
4
|
Wernlé K, Thiel CS, Ullrich O. Increased H3K9me3 and F-Actin Reorganization in the Rapid Adaptive Response to Hypergravity in Human T Lymphocytes. Int J Mol Sci 2023; 24:17232. [PMID: 38139061 PMCID: PMC10743231 DOI: 10.3390/ijms242417232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Our study explored the impact of hypergravity on human T cells, which experience additional acceleration forces beyond Earth's gravity due to various factors, such as pulsatile blood flow, and technology, such as high-performance aircraft flights or spaceflights. We investigated the histone modifications Histone 3 lysine 4 and 9 trimethylation (H3K4me3 and H3K9me3, respectively), as well as the structural and cytoskeletal organization of Jurkat T cells in response to hypergravity. Histone modifications play a crucial role in gene regulation, chromatin organization and DNA repair. In response to hypergravity, we found only minimal changes of H3K4me3 and a rapid increase in H3K9me3, which was sustained for up to 15 min and then returned to control levels after 1 h. Furthermore, rapid changes in F-actin fluorescence were observed within seconds of hypergravity exposure, indicating filament depolymerization and cytoskeletal restructuring, which subsequently recovered after 1 h of hypergravity. Our study demonstrated the rapid, dynamic and adaptive cellular response to hypergravity, particularly in terms of histone modifications and cytoskeletal changes. These responses are likely necessary for maintaining genome stability and structural integrity under hypergravity conditions as they are constantly occurring in the human body during blood cell circulation.
Collapse
Affiliation(s)
- Kendra Wernlé
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Faculty of Medical Sciences, Private University of the Principality of Liechtenstein (UFL), Dorfstrasse 24, 9495 Triesen, Liechtenstein
| | - Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Institute of Machine Design, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dubendorf, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Institute of Machine Design, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dubendorf, Switzerland
- Department of Industrial Engineering, Ernst-Abbe-Hochschule (EAH) Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
De Micco V, Aronne G, Caplin N, Carnero-Diaz E, Herranz R, Horemans N, Legué V, Medina FJ, Pereda-Loth V, Schiefloe M, De Francesco S, Izzo LG, Le Disquet I, Kittang Jost AI. Perspectives for plant biology in space and analogue environments. NPJ Microgravity 2023; 9:67. [PMID: 37604914 PMCID: PMC10442387 DOI: 10.1038/s41526-023-00315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Advancements in plant space biology are required for the realization of human space exploration missions, where the re-supply of resources from Earth is not feasible. Until a few decades ago, space life science was focused on the impact of the space environment on the human body. More recently, the interest in plant space biology has increased because plants are key organisms in Bioregenerative Life Support Systems (BLSS) for the regeneration of resources and fresh food production. Moreover, plants play an important role in psychological support for astronauts. The definition of cultivation requirements for the design, realization, and successful operation of BLSS must consider the effects of space factors on plants. Altered gravitational fields and radiation exposure are the main space factors inducing changes in gene expression, cell proliferation and differentiation, signalling and physiological processes with possible consequences on tissue organization and organogenesis, thus on the whole plant functioning. Interestingly, the changes at the cellular and molecular levels do not always result in organismic or developmental changes. This apparent paradox is a current research challenge. In this paper, the main findings of gravity- and radiation-related research on higher plants are summarized, highlighting the knowledge gaps that are still necessary to fill. Existing experimental facilities to simulate the effect of space factors, as well as requirements for future facilities for possible experiments to achieve fundamental biology goals are considered. Finally, the need for making synergies among disciplines and for establishing global standard operating procedures for analyses and data collection in space experiments is highlighted.
Collapse
Affiliation(s)
- Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy.
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Nicol Caplin
- SciSpacE Team, Directorate of Human and Robotic Exploration Programmes, European Space Agency (ESA), Noordwijk, Netherlands
| | - Eugénie Carnero-Diaz
- Institute of Systematic, Evolution, Biodiversity, Sorbonne University, National Museum of Natural History, CNRS, EPHE, UA, 45, rue Buffon CP50, 75005, Paris, France
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Biosphere Impact Studies (BIS), Boeretang 200, 2400, Mol, Belgium
| | - Valérie Legué
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - F Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | - Mona Schiefloe
- NTNU Social Research, Centre for Interdisciplinary Research in Space (CIRiS) Dragvoll Allé 38 B, 7049, Trondheim, Norway
| | - Sara De Francesco
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Isabel Le Disquet
- Institute of Systematic, Evolution, Biodiversity, Sorbonne University, National Museum of Natural History, CNRS, EPHE, UA, 45, rue Buffon CP50, 75005, Paris, France
| | - Ann- Iren Kittang Jost
- NTNU Social Research, Centre for Interdisciplinary Research in Space (CIRiS) Dragvoll Allé 38 B, 7049, Trondheim, Norway
| |
Collapse
|
6
|
Jagtap S, Kumar A, Mahale B, Dixit J, Kalange AE, Kanawade R, Gangal S, Vidyasagar P. Response of cardiac pulse parameters in humans at various inclinations via 360° rotating platform for simulated microgravity perspective. NPJ Microgravity 2023; 9:54. [PMID: 37463938 DOI: 10.1038/s41526-023-00301-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/02/2023] [Indexed: 07/20/2023] Open
Abstract
On the Earth, the human body is designed and adapted to function under uniform gravitational acceleration. However, exposure to microgravity or weightlessness as experienced by astronauts in space causes significant alterations in the functioning of the human cardiovascular system. Due to limitations in using real microgravity platforms, researchers opted for various ground-based microgravity analogs including head-down tilt (HDT) at fixed inclination. However, in the present study, an investigation of response of various cardiac parameters and their circulatory adaptation in 18 healthy male subjects was undertaken by using an indigenously developed 360° rotating platform. Cardiac pulse was recorded from 0° to 360° in steps of 30° inclination using piezoelectric pulse sensor (MLT1010) and associated cardiac parameters were analyzed. The results showed significant changes in the pulse shape while an interesting oscillating pattern was observed in associated cardiac parameters when rotated from 0° to 360°. The response of cardiac parameters became normal after returning to supine posture indicating the ability of the cardiovascular system to reversibly adapt to the postural changes. The observed changes in cardiac parameters at an inclination of 270°, in particular, were found to be comparable with spaceflight studies. Based on the obtained results and the proposed extended version of fluid redistribution mechanism, we herewith hypothesize that the rotation of a subject to head down tilt inclination (270°) along with other inclinations could represent a better microgravity analog for understanding the cumulative cardiac response of astronauts in space, particularly for short duration space missions.
Collapse
Affiliation(s)
- Sagar Jagtap
- Department of Physics, Haribhai V. Desai College, Pune, MS, 411002, India.
| | - Ajay Kumar
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Bhoopesh Mahale
- Department of Electronics, Savitribai Phule Pune University, Pune, MS, 411007, India
| | - Jyotsana Dixit
- Department of Microbiology, Savitribai Phule Pune University, Pune, MS, 411007, India
| | - Ashok E Kalange
- Department of Physics, Tuljaram Chaturchand College, Baramati, Dist., Pune, 413102, MS, India
| | - Rajesh Kanawade
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shashikala Gangal
- Department of Electronics, Savitribai Phule Pune University, Pune, MS, 411007, India
| | - Pandit Vidyasagar
- Department of Physics, Savitribai Phule Pune University, Pune, MS, 411007, India.
| |
Collapse
|
7
|
Roggan MD, Kronenberg J, Wollert E, Hoffmann S, Nisar H, Konda B, Diegeler S, Liemersdorf C, Hellweg CE. Unraveling astrocyte behavior in the space brain: Radiation response of primary astrocytes. Front Public Health 2023; 11:1063250. [PMID: 37089489 PMCID: PMC10116417 DOI: 10.3389/fpubh.2023.1063250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionExposure to space conditions during crewed long-term exploration missions can cause several health risks for astronauts. Space radiation, isolation and microgravity are major limiting factors. The role of astrocytes in cognitive disturbances by space radiation is unknown. Astrocytes' response toward low linear energy transfer (LET) X-rays and high-LET carbon (12C) and iron (56Fe) ions was compared to reveal possible effects of space-relevant high-LET radiation. Since astronauts are exposed to ionizing radiation and microgravity during space missions, the effect of simulated microgravity on DNA damage induction and repair was investigated.MethodsPrimary murine cortical astrocytes were irradiated with different doses of X-rays, 12C and 56Fe ions at the heavy ion accelerator GSI. DNA damage and repair (γH2AX, 53BP1), cell proliferation (Ki-67), astrocytes' reactivity (GFAP) and NF-κB pathway activation (p65) were analyzed by immunofluorescence microscopy. Cell cycle progression was investigated by flow cytometry of DNA content. Gene expression changes after exposure to X- rays were investigated by mRNA-sequencing. RT-qPCR for several genes of interest was performed with RNA from X-rays- and heavy-ion-irradiated astrocytes: Cdkn1a, Cdkn2a, Gfap, Tnf, Il1β, Il6, and Tgfβ1. Levels of the pro inflammatory cytokine IL-6 were determined using ELISA. DNA damage response was investigated after exposure to X-rays followed by incubation on a 2D clinostat to simulate the conditions of microgravity.ResultsAstrocytes showed distinct responses toward the three different radiation qualities. Induction of radiation-induced DNA double strand breaks (DSBs) and the respective repair was dose-, LET- and time-dependent. Simulated microgravity had no significant influence on DNA DSB repair. Proliferation and cell cycle progression was not affected by radiation qualities examined in this study. Astrocytes expressed IL-6 and GFAP with constitutive NF-κB activity independent of radiation exposure. mRNA sequencing of X-irradiated astrocytes revealed downregulation of 66 genes involved in DNA damage response and repair, mitosis, proliferation and cell cycle regulation.DiscussionIn conclusion, primary murine astrocytes are DNA repair proficient irrespective of radiation quality. Only minor gene expression changes were observed after X-ray exposure and reactivity was not induced. Co-culture of astrocytes with microglial cells, brain organoids or organotypic brain slice culture experiments might reveal whether astrocytes show a more pronounced radiation response in more complex network architectures in the presence of other neuronal cell types.
Collapse
Affiliation(s)
- Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), Cologne, Germany
| | - Esther Wollert
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sven Hoffmann
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sebastian Diegeler
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- *Correspondence: Christine E. Hellweg
| |
Collapse
|
8
|
Kamal KY, Lawler JM. Cellular and Molecular Signaling Meet the Space Environment. Int J Mol Sci 2023; 24:ijms24065955. [PMID: 36983029 PMCID: PMC10058013 DOI: 10.3390/ijms24065955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
During space missions that travel beyond the cocoon of the Earth's magnetosphere, astronauts are subjected to the microgravity and radiation stressors of outer space [...].
Collapse
Affiliation(s)
- Khaled Y Kamal
- Redox Biology & Cell Signaling Laboratory, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Su SH, Levine HG, Masson PH. Brachypodium distachyon Seedlings Display Accession-Specific Morphological and Transcriptomic Responses to the Microgravity Environment of the International Space Station. Life (Basel) 2023; 13:life13030626. [PMID: 36983782 PMCID: PMC10058394 DOI: 10.3390/life13030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Plants have been recognized as key components of bioregenerative life support systems for space exploration, and many experiments have been carried out to evaluate their adaptability to spaceflight. Unfortunately, few of these experiments have involved monocot plants, which constitute most of the crops used on Earth as sources of food, feed, and fiber. To better understand the ability of monocot plants to adapt to spaceflight, we germinated and grew Brachypodium distachyon seedlings of the Bd21, Bd21-3, and Gaz8 accessions in a customized growth unit on the International Space Station, along with 1-g ground controls. At the end of a 4-day growth period, seedling organ’s growth and morphologies were quantified, and root and shoot transcriptomic profiles were investigated using RNA-seq. The roots of all three accessions grew more slowly and displayed longer root hairs under microgravity conditions relative to ground control. On the other hand, the shoots of Bd21-3 and Gaz-8 grew at similar rates between conditions, whereas those of Bd21 grew more slowly under microgravity. The three Brachypodium accessions displayed dramatically different transcriptomic responses to microgravity relative to ground controls, with the largest numbers of differentially expressed genes (DEGs) found in Gaz8 (4527), followed by Bd21 (1353) and Bd21-3 (570). Only 47 and six DEGs were shared between accessions for shoots and roots, respectively, including DEGs encoding wall-associated proteins and photosynthesis-related DEGs. Furthermore, DEGs associated with the “Oxidative Stress Response” GO group were up-regulated in the shoots and down-regulated in the roots of Bd21 and Gaz8, indicating that Brachypodium roots and shoots deploy distinct biological strategies to adapt to the microgravity environment. A comparative analysis of the Brachypodium oxidative-stress response DEGs with the Arabidopsis ROS wheel suggests a connection between retrograde signaling, light response, and decreased expression of photosynthesis-related genes in microgravity-exposed shoots. In Gaz8, DEGs were also found to preferentially associate with the “Plant Hormonal Signaling” and “MAP Kinase Signaling” KEGG pathways. Overall, these data indicate that Brachypodium distachyon seedlings exposed to the microgravity environment of ISS display accession- and organ-specific responses that involve oxidative stress response, wall remodeling, photosynthesis inhibition, expression regulation, ribosome biogenesis, and post-translational modifications. The general characteristics of these responses are similar to those displayed by microgravity-exposed Arabidopsis thaliana seedlings. However, organ- and accession-specific components of the response dramatically differ both within and between species. These results suggest a need to directly evaluate candidate-crop responses to microgravity to better understand their specific adaptability to this novel environment and develop cultivation strategies allowing them to strive during spaceflight.
Collapse
Affiliation(s)
- Shih-Heng Su
- Laboratory of Genetics, University of Wisconsin-Madison, 425 G Henry Mall, Madison, WI 53706, USA
- Correspondence: (S.-H.S.); (P.H.M.)
| | - Howard G. Levine
- NASA John F. Kennedy Space Center, Kennedy Space Center, Merritt Island, FL 32899, USA
| | - Patrick H. Masson
- Laboratory of Genetics, University of Wisconsin-Madison, 425 G Henry Mall, Madison, WI 53706, USA
- Correspondence: (S.-H.S.); (P.H.M.)
| |
Collapse
|
10
|
Vashi A, Sreejith KR, Nguyen NT. Lab-on-a-Chip Technologies for Microgravity Simulation and Space Applications. MICROMACHINES 2022; 14:116. [PMID: 36677176 PMCID: PMC9864955 DOI: 10.3390/mi14010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Gravity plays an important role in the development of life on earth. The effect of gravity on living organisms can be investigated by controlling the magnitude of gravity. Most reduced gravity experiments are conducted on the Lower Earth Orbit (LEO) in the International Space Station (ISS). However, running experiments in ISS face challenges such as high cost, extreme condition, lack of direct accessibility, and long waiting period. Therefore, researchers have developed various ground-based devices and methods to perform reduced gravity experiments. However, the advantage of space conditions for developing new drugs, vaccines, and chemical applications requires more attention and new research. Advancements in conventional methods and the development of new methods are necessary to fulfil these demands. The advantages of Lab-on-a-Chip (LOC) devices make them an attractive option for simulating microgravity. This paper briefly reviews the advancement of LOC technologies for simulating microgravity in an earth-based laboratory.
Collapse
|
11
|
Hosamani R, Swamy BK, Dsouza A, Sathasivam M. Plant responses to hypergravity: a comprehensive review. PLANTA 2022; 257:17. [PMID: 36534189 DOI: 10.1007/s00425-022-04051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Hypergravity is an effective novel stimulus to elucidate plant gravitational and mechanobiological behaviour. Here, we review the current understanding of phenotypic, physio-biochemical, and molecular plant responses to simulated hypergravity. Plants readily respond to altered gravity conditions, such as microgravity or hypergravity. Hypergravity-a gravitational force higher than that on the Earth's surface (> 1g)-can be simulated using centrifuges. Exposing seeds, seedlings, or plant cell cultures to hypergravity elicits characteristic morphological, physio-biochemical, and molecular changes. While several studies have provided insights into plant responses and underlying mechanisms, much is still elusive, including the interplay of hypergravity with gravitropism. Moreover, hypergravity is of great significance for mechano- and space/gravitational biologists to elucidate fundamental plant behaviour. In this review, we provide an overview of the phenotypic, physiological, biochemical, and molecular responses of plants to hypergravity. We then discuss the involvement of hypergravity in plant gravitropism-the directional growth along the gravity vector. Finally, we highlight future research directions to expand our understanding of hypergravity in plant biology.
Collapse
Affiliation(s)
- Ravikumar Hosamani
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India.
| | - Basavalingayya K Swamy
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India
| | - Ajwal Dsouza
- Controlled Environment Systems Research Facility, School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Malarvizhi Sathasivam
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India
- College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
12
|
Flores JC. Configurations of Proto-Cell Aggregates with Anisotropy: Gravity Promotes Complexity in Theoretical Biology. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1598. [PMID: 36359690 PMCID: PMC9689301 DOI: 10.3390/e24111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
This contribution considers proto-cell structures associated with asymmetries, mainly gravity, in the framework of reaction-diffusion. There are equivalent solutions for defined morphogen parameters in the equations that allow for defining proto-tissue complexity and configurational entropy. Using RNA data, improvements to the complexity and entropy due to the Earth's gravity are presented. The theoretical proto-tissues complexity estimation, as a function of arbitrary surface gravity, is likewise proposed. In this sense, hypothetical aggregates of proto-cells on Mars would have a lower complexity than on Earth, which is equally valid for the Moon. Massive planets, or exoplanets like BD+20594b, could have major proto-tissue complexity and, eventually, rich biodiversity.
Collapse
Affiliation(s)
- Juan César Flores
- Departamento de Física, FACI, Universidad de Tarapacá, Casilla 7-D, Arica 1000000, Chile
| |
Collapse
|
13
|
Red Light Enhances Plant Adaptation to Spaceflight and Mars g-Levels. Life (Basel) 2022; 12:life12101484. [PMID: 36294919 PMCID: PMC9605285 DOI: 10.3390/life12101484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Understanding how plants respond and adapt to extraterrestrial conditions is essential for space exploration initiatives. Deleterious effects of the space environment on plant development have been reported, such as the unbalance of cell growth and proliferation in the root meristem, or gene expression reprogramming. However, plants are capable of surviving and completing the seed-to-seed life cycle under microgravity. A key research challenge is to identify environmental cues, such as light, which could compensate the negative effects of microgravity. Understanding the crosstalk between light and gravity sensing in space was the major objective of the NASA-ESA Seedling Growth series of spaceflight experiments (2013–2018). Different g-levels were used, with special attention to micro-g, Mars-g, and Earth-g. In spaceflight seedlings illuminated for 4 days with a white light photoperiod and then photostimulated with red light for 2 days, transcriptomic studies showed, first, that red light partially reverted the gene reprogramming induced by microgravity, and that the combination of microgravity and photoactivation was not recognized by seedlings as stressful. Two mutant lines of the nucleolar protein nucleolin exhibited differential requirements in response to red light photoactivation. This observation opens the way to directed-mutagenesis strategies in crop design to be used in space colonization. Further transcriptomic studies at different g-levels showed elevated plastid and mitochondrial genome expression in microgravity, associated with disturbed nucleus–organelle communication, and the upregulation of genes encoding auxin and cytokinin hormonal pathways. At the Mars g-level, genes of hormone pathways related to stress response were activated, together with some transcription factors specifically related to acclimation, suggesting that seedlings grown in partial-g are able to acclimate by modulating genome expression in routes related to space-environment-associated stress.
Collapse
|
14
|
Vahlensieck C, Thiel CS, Pöschl D, Bradley T, Krammer S, Lauber B, Polzer J, Ullrich O. Post-Transcriptional Dynamics is Involved in Rapid Adaptation to Hypergravity in Jurkat T Cells. Front Cell Dev Biol 2022; 10:933984. [PMID: 35859900 PMCID: PMC9289288 DOI: 10.3389/fcell.2022.933984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
The transcriptome of human immune cells rapidly reacts to altered gravity in a highly dynamic way. We could show in previous experiments that transcriptional patterns show profound adaption after seconds to minutes of altered gravity. To gain further insight into these transcriptional alteration and adaption dynamics, we conducted a highly standardized RNA-Seq experiment with human Jurkat T cells exposed to 9xg hypergravity for 3 and 15 min, respectively. We investigated the frequency with which individual exons were used during transcription and discovered that differential exon usage broadly appeared after 3 min and became less pronounced after 15 min. Additionally, we observed a shift in the transcript pool from coding towards non-coding transcripts. Thus, adaption of gravity-sensitive differentially expressed genes followed a dynamic transcriptional rebound effect. The general dynamics were compatible with previous studies on the transcriptional effects of short hypergravity on human immune cells and suggest that initial up-regulatory changes mostly result from increased elongation rates. The shift correlated with a general downregulation of the affected genes. All chromosome bands carried homogenous numbers of gravity-sensitive genes but showed a specific tendency towards up- or downregulation. Altered gravity affected transcriptional regulation throughout the entire genome, whereby the direction of differential expression was strongly dependent on the structural location in the genome. A correlation analysis with potential mediators of the early transcriptional response identified a link between initially upregulated genes with certain transcription factors. Based on these findings, we have been able to further develop our model of the transcriptional response to altered gravity.
Collapse
Affiliation(s)
- Christian Vahlensieck
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
| | - Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center (KSC), Merritt Island, FL, United States
- Space Biotechnology, Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- *Correspondence: Cora S. Thiel, ; Oliver Ullrich,
| | - Daniel Pöschl
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Timothy Bradley
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Sonja Krammer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
| | - Beatrice Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center (KSC), Merritt Island, FL, United States
- Space Biotechnology, Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Space Medicine, Ernst-Abbe-Hochschule (EAH) Jena, Department of Industrial Engineering, Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- *Correspondence: Cora S. Thiel, ; Oliver Ullrich,
| |
Collapse
|
15
|
Wang Y, Shen W, Yin M, Huang W, Ye B, Li P, Shi S, Bai G, Guo X, Jin Y, Lin K, Zhang Y, Jiang Y, Wang J, Han Y, Zhao Z. Changes in Higher-Order Chromosomal Structure of Klebsiella pneumoniae Under Simulated Microgravity. Front Microbiol 2022; 13:879321. [PMID: 35711756 PMCID: PMC9197264 DOI: 10.3389/fmicb.2022.879321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Our previous work have shown that certain subpopulations of Klebsiella pneumoniae exhibit significant phenotypic changes under simulated microgravity (SMG), including enhanced biofilm formation and cellulose synthesis, which may be evoked by changes in gene expression patterns. It is well known that prokaryotic cells genomic DNA can be hierarchically organized into different higher-order three-dimensional structures, which can highly influence gene expression. It is remain elusive whether phenotypic changes induced by SMG in the subpopulations of K. pneumoniae are driven by genome higher-order structural changes. Here, we investigated the above-mentioned issue using the wild-type (WT) K. pneumoniae (WT was used as a control strain and continuously cultivated for 2 weeks under standard culture conditions of normal gravity) and two previous identified subpopulations (M1 and M2) obtained after 2 weeks of continuous incubation in a SMG device. By the combination of genome-wide chromosome conformation capture (Hi-C), RNA-seq and whole-genome methylation (WGS) analyses, we found that the along with the global chromosome interactions change, the compacting extent of M1, M2 subpopulations were much looser under SMG and even with an increase in active, open chromosome regions. In addition, transcriptome data showed that most differentially expressed genes (DEGs) were upregulated, whereas a few DEGs were downregulated in M1 and M2. The functions of both types DEGs were mainly associated with membrane fractions. Additionally, WGS analysis revealed that methylation levels were lower in M1 and M2. Using combined analysis of multi-omics data, we discovered that most upregulated DEGs were significantly enriched in the boundary regions of the variable chromosomal interaction domains (CIDs), in which genes regulating biofilm formation were mainly located. These results suggest that K. pneumoniae may regulate gene expression patterns through DNA methylation and changes in genome structure, thus resulting in new phenotypes in response to altered gravity.
Collapse
Affiliation(s)
- Yahao Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Wenlong Shen
- Beijing Institute of Biotechnology, Beijing, China
| | - Man Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bingyu Ye
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Shu Shi
- Beijing Institute of Biotechnology, Beijing, China
| | - Ge Bai
- Beijing Institute of Biotechnology, Beijing, China
| | - Xinjie Guo
- Beijing Institute of Biotechnology, Beijing, China
| | - Yifei Jin
- Beijing Institute of Biotechnology, Beijing, China
| | - Kailin Lin
- Beijing Institute of Biotechnology, Beijing, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Junfeng Wang
- Second Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
16
|
Impairment of 7F2 osteoblast function by simulated partial gravity in a Random Positioning Machine. NPJ Microgravity 2022; 8:20. [PMID: 35672327 PMCID: PMC9174291 DOI: 10.1038/s41526-022-00202-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/10/2022] [Indexed: 12/23/2022] Open
Abstract
The multifaceted adverse effects of reduced gravity pose a significant challenge to human spaceflight. Previous studies have shown that bone formation by osteoblasts decreases under microgravity conditions, both real and simulated. However, the effects of partial gravity on osteoblasts’ function are less well understood. Utilizing the software-driven newer version of the Random Positioning Machine (RPMSW), we simulated levels of partial gravity relevant to future manned space missions: Mars (0.38 G), Moon (0.16 G), and microgravity (Micro, ~10−3 G). Short-term (6 days) culture yielded a dose-dependent reduction in proliferation and the enzymatic activity of alkaline phosphatase (ALP), while long-term studies (21 days) showed a distinct dose-dependent inhibition of mineralization. By contrast, expression levels of key osteogenic genes (Alkaline phosphatase, Runt-related Transcription Factor 2, Sparc/osteonectin) exhibited a threshold behavior: gene expression was significantly inhibited when the cells were exposed to Mars-simulating partial gravity, and this was not reduced further when the cells were cultured under simulated Moon or microgravity conditions. Our data suggest that impairment of cell function with decreasing simulated gravity levels is graded and that the threshold profile observed for reduced gene expression is distinct from the dose dependence observed for cell proliferation, ALP activity, and mineral deposition. Our study is of relevance, given the dearth of research into the effects of Lunar and Martian gravity for forthcoming space exploration.
Collapse
|
17
|
Mohammadalikhani S, Ghanati F, Hajebrahimi Z, Sharifi M. Molecular and biochemical modifications of suspension-cultured tobacco cell walls after exposure to alternative gravity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 176:1-7. [PMID: 35180456 DOI: 10.1016/j.plaphy.2022.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The plant cell wall is a flexible physical barrier surrounding the cell which functions in growth and differentiation, signaling, and response to environmental stimuli including the Earth gravity force. In the present study, structural and molecular modifications of cell wall components of cultured tobacco (Nicotiana tabacum cv. Burley 21) cells under alternative gravity conditions induced by 7 days exposure to 2-D clinostat have been investigated. In comparison with the control group, clinorotation significantly increased biomass but reduced the total amounts of wall and the contents of cellulose, pectin, uronic acidic, and xyloglucan. Gene expression of H+-ATPase was not changed but of expansin A reduced in clinostat-treated cells. However, the gene expression and activity of xyloglucan endotransglycosylase/hydrolases (XTH; EC 2.4.1.207) and endo-(1,4)-β-D-glucanase (EGase; EC 3.2.1.4), the amount of arabinogalactan proteins (AGP), and the expression of wall-associated kinase (WAK) gene significantly increased by clinorotation. Altered gravity also reduced the activity of polyphenol oxidase and covalently bound peroxidase. The results suggest that altered gravity promoted orchestrated changes of wall-modifying genes and proteins which reduced its stiffness and enhanced cell expansion and division potential.
Collapse
Affiliation(s)
- Somaye Mohammadalikhani
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University (TMU), POB, 14115-154, Tehran, Iran
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University (TMU), POB, 14115-154, Tehran, Iran.
| | - Zahra Hajebrahimi
- A&S Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University (TMU), POB, 14115-154, Tehran, Iran
| |
Collapse
|
18
|
Wang L, Xie J, Mou C, Jiao Y, Dou Y, Zheng H. Transcriptomic Analysis of the Interaction Between FLOWERING LOCUS T Induction and Photoperiodic Signaling in Response to Spaceflight. Front Cell Dev Biol 2022; 9:813246. [PMID: 35178402 PMCID: PMC8844200 DOI: 10.3389/fcell.2021.813246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
Spaceflight has an impact on the growth and development of higher plants at both the vegetative stage and reproductive stage. A great deal of information has been available on the vegetative stage in space, but relatively little is known about the influence of spaceflight on plants at the reproductive stage. In this study, we constructed transgenic Arabidopsis thaliana plants expressing the flowering control gene, FLOWERING LOCUS T (FT), together with the green fluorescent protein gene (GFP) under control of a heat shock-inducible promoter (HSP17.4), by which we induced FT expression inflight through remote controlling heat shock (HS) treatment. Inflight photography data showed that induction of FT expression in transgenic plants in space under non-inductive short-day conditions could promote flowering and reduce the length of the inflorescence stem in comparison with that of wild-type plants under the same conditions. Whole-genome microarray analysis of gene expression changes in leaves of wild-type and these transgenic plants grown under the long-day and short-day photoperiod conditions in space indicated that the function of the photoperiod-related spaceflight responsive genes is mainly involved in protein synthesis and post-translation protein modulation, notably protein phosphorylation. In addition, changes of the circadian component of gene expression in response to spaceflight under different photoperiods indicated that roles of the circadian oscillator could act as integrators of spaceflight response and photoperiodic signals in Arabidopsis plants grown in space.
Collapse
Affiliation(s)
- Lihua Wang
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Junyan Xie
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenghong Mou
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuwei Jiao
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanhui Dou
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huiqiong Zheng
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
Braveboy-Wagner J, Sharoni Y, Lelkes PI. Nutraceuticals Synergistically Promote Osteogenesis in Cultured 7F2 Osteoblasts and Mitigate Inhibition of Differentiation and Maturation in Simulated Microgravity. Int J Mol Sci 2021; 23:136. [PMID: 35008559 PMCID: PMC8745420 DOI: 10.3390/ijms23010136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023] Open
Abstract
Microgravity is known to impact bone health, similar to mechanical unloading on Earth. In the absence of countermeasures, bone formation and mineral deposition are strongly inhibited in Space. There is an unmet need to identify nutritional countermeasures. Curcumin and carnosic acid are phytonutrients with anticancer, anti-inflammatory, and antioxidative effects and may exhibit osteogenic properties. Zinc is a trace element essential for bone formation. We hypothesized that these nutraceuticals could counteract the microgravity-induced inhibition of osteogenic differentiation and function. To test this hypothesis, we cultured 7F2 murine osteoblasts in simulated microgravity (SMG) in a Random Positioning Machine in the presence and absence of curcumin, carnosic acid, and zinc and evaluated cell proliferation, function, and differentiation. SMG enhanced cell proliferation in osteogenic medium. The nutraceuticals partially reversed the inhibitory effects of SMG on alkaline phosphatase (ALP) activity and did not alter the SMG-induced reduction in the expression of osteogenic marker genes in osteogenic medium, while they promoted osteoblast proliferation and ALP activity in the absence of traditional osteogenic media. We further observed a synergistic effect of the intermix of the phytonutrients on ALP activity. Intermixes of phytonutrients may serve as convenient and effective nutritional countermeasures against bone loss in space.
Collapse
Affiliation(s)
- Justin Braveboy-Wagner
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA;
| | - Yoav Sharoni
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
| | - Peter I. Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA;
| |
Collapse
|
20
|
Qiu D, Jian Y, Zhang Y, Xie G. Plant Gravitropism and Signal Conversion under a Stress Environment of Altered Gravity. Int J Mol Sci 2021; 22:ijms222111723. [PMID: 34769154 PMCID: PMC8583895 DOI: 10.3390/ijms222111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Humans have been committed to space exploration and to find the next planet suitable for human survival. The construction of an ecosystem that adapts to the long-term survival of human beings in space stations or other planets would be the first step. The space plant cultivation system is the key component of an ecosystem, which will produce food, fiber, edible oil and oxygen for future space inhabitants. Many plant experiments have been carried out under a stimulated or real environment of altered gravity, including at microgravity (0 g), Moon gravity (0.17 g) and Mars gravity (0.38 g). How plants sense gravity and change under stress environment of altered gravity were summarized in this review. However, many challenges remain regarding human missions to the Moon or Mars. Our group conducted the first plant experiment under real Moon gravity (0.17 g) in 2019. One of the cotton seeds successfully germinated and produced a green seedling, which represents the first green leaf produced by mankind on the Moon.
Collapse
Affiliation(s)
- Dan Qiu
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; (Y.J.); (Y.Z.)
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Correspondence: (D.Q.); (G.X.)
| | - Yongfei Jian
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; (Y.J.); (Y.Z.)
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuanxun Zhang
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; (Y.J.); (Y.Z.)
| | - Gengxin Xie
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; (Y.J.); (Y.Z.)
- Correspondence: (D.Q.); (G.X.)
| |
Collapse
|
21
|
Manzano A, Pereda-Loth V, de Bures A, Sáez-Vásquez J, Herranz R, Medina FJ. Light signals counteract alterations caused by simulated microgravity in proliferating plant cells. AMERICAN JOURNAL OF BOTANY 2021; 108:1775-1792. [PMID: 34524692 DOI: 10.1002/ajb2.1728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Light and gravity are fundamental cues for plant development. Our understanding of the effects of light stimuli on plants in space, without gravity, is key to providing conditions for plants to acclimate to the environment. Here we tested the hypothesis that the alterations caused by the absence of gravity in root meristematic cells can be counteracted by light. METHODS Seedlings of wild-type Arabidopsis thaliana and two mutants of the essential nucleolar protein nucleolin (nuc1, nuc2) were grown in simulated microgravity, either under a white light photoperiod or under continuous darkness. Key variables of cell proliferation (cell cycle regulation), cell growth (ribosome biogenesis), and auxin transport were measured in the root meristem using in situ cellular markers and transcriptomic methods and compared with those of a 1 g control. RESULTS The incorporation of a photoperiod regime was sufficient to attenuate or suppress the effects caused by gravitational stress at the cellular level in the root meristem. In all cases, values for variables recorded from samples receiving light stimuli in simulated microgravity were closer to values from the controls than values from samples grown in darkness. Differential sensitivities were obtained for the two nucleolin mutants. CONCLUSIONS Light signals may totally or partially replace gravity signals, significantly improving plant growth and development in microgravity. Despite that, molecular alterations are still compatible with the expected acclimation mechanisms, which need to be better understood. The differential sensitivity of nuc1 and nuc2 mutants to gravitational stress points to new strategies to produce more resilient plants to travel with humans in new extraterrestrial endeavors.
Collapse
Affiliation(s)
- Aránzazu Manzano
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | | | - Anne de Bures
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, 66860, France
- Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, 66860, France
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, 66860, France
- Université de Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, 66860, France
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - F Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
22
|
Braddock M. From Target Identification to Drug Development in Space: Using the Microgravity Assist. Curr Drug Discov Technol 2021; 17:45-56. [PMID: 30648510 DOI: 10.2174/1570163816666190112150014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022]
Abstract
The unique nature of microgravity encountered in space provides an opportunity for drug discovery and development that cannot be replicated on Earth. From the production of superior protein crystals to the identification and validation of new drug targets to microarray analyses of transcripts attenuated by microgravity, there are numerous examples which demonstrate the benefit of exploiting the space environment. Moreover, studies conducted on Space Shuttle missions, the International Space Station and other craft have had a direct benefit for drug development programmes such as those directed against reducing bone and muscle loss or increasing bone formation. This review will highlight advances made in both drug discovery and development and offer some future insight into how drug discovery and associated technologies may be further advanced using the microgravity assist.
Collapse
Affiliation(s)
- Martin Braddock
- Sherwood Observatory, Mansfield and Sutton Astronomical Society, Coxmoor Road, Sutton-in-Ashfield, Nottinghamshire, NG17 5LF, United Kingdom
| |
Collapse
|
23
|
Kamal KY, Khodaeiaminjan M, Yahya G, El-Tantawy AA, Abdel El-Moneim D, El-Esawi MA, Abd-Elaziz MAA, Nassrallah AA. Modulation of cell cycle progression and chromatin dynamic as tolerance mechanisms to salinity and drought stress in maize. PHYSIOLOGIA PLANTARUM 2021; 172:684-695. [PMID: 33159351 DOI: 10.1111/ppl.13260] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 05/14/2023]
Abstract
Salinity and drought are the major abiotic stresses that disturb several aspects of maize plants growth at the cellular level, one of these aspects is cell cycle machinery. In our study, we dissected the molecular alterations and downstream effectors of salinity and drought stress on cell cycle regulation and chromatin remodeling. Effects of salinity and drought stress were determined on maize seedlings using 200 mM NaCl (induced salinity stress), and 250 mM mannitol (induced drought stress) treatments, then cell cycle progression and chromatin remodeling dynamics were investigated. Seedlings displayed severe growth defects, including inhibition of root growth. Interestingly, stress treatments induced cell cycle arrest in S-phase with extensive depletion of cyclins B1 and A1. Further investigation of gene expression profiles of cell cycle regulators showed the downregulation of the CDKA, CDKB, CYCA, and CYCB. These results reveal the direct link between salinity and drought stress and cell cycle deregulation leading to a low cell proliferation rate. Moreover, abiotic stress alters chromatin remodeling dynamic in a way that directs the cell cycle arrest. We observed low DNA methylation patterns accompanied by dynamic histone modifications that favor chromatin decondensation. Also, the high expression of DNA topoisomerase 2, 6 family was detected as consequence of DNA damage. In conclusion, in response to salinity and drought stress, maize seedlings exhibit modulation of cell cycle progression, resulting in the cell cycle arrest through chromatin remodeling.
Collapse
Affiliation(s)
- Khaled Y Kamal
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Redox Biology and Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, Texas, USA
| | - Mortaza Khodaeiaminjan
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, The Czech Republic
| | - Galal Yahya
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Ahmed A El-Tantawy
- Ornamental Horticulture Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Diaa Abdel El-Moneim
- Department of Plant production (Genetic branch), Faculty of Environmental and Agricultural Sciences, Arish University, Arish, Egypt
| | | | - Mohamed A A Abd-Elaziz
- Maize Research Department, Field Crops Research Institute, Agriculture Research Center, Giza, Egypt
| | - Amr A Nassrallah
- Biochemistry Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
El-Hallouty SM, Soliman AAF, Nassrallah A, Salamatullah A, Alkaltham MS, Kamal KY, Hanafy EA, Gaballa HS, Aboul-Soud MAM. Crude Methanol Extract of Rosin Gum Exhibits Specific Cytotoxicity against Human Breast Cancer Cells via Apoptosis Induction. Anticancer Agents Med Chem 2021; 20:1028-1036. [PMID: 32324522 DOI: 10.2174/1871520620666200423074826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Rosin (Colophony) is a natural resin derived from species of the pine family Pinaceae. It has wide industrial applications including printing inks, photocopying paper, adhesives and varnishes, soap and soda. Rosin and its derivatives are employed as ingredients in various pharmaceutical products such as ointments and plasters. Rosin-based products contain allergens that may exert some occupational health problems such as asthma and contact dermatitis. OBJECTIVE Our knowledge of the pharmaceutical and medicinal properties of rosin is limited. The current study aims at investigating the cytotoxic potential of Rosin-Derived Crude Methanolic Extract (RD-CME) and elucidation of its mode-of-action against breast cancer cells (MCF-7 and MDA-MB231). METHODS Crude methanol extract was prepared from rosin. Its phenolic contents were analyzed by Reversed- Phase High-Performance Liquid Chromatography (RP-HPLC). Antioxidant activity was evaluated by DPPH radical-scavenging assay. Antiproliferation activity against MCF-7 and MDA-MB231 cancerous cells was investigated by MTT assay; its potency compared with doxorubicin as positive control and specificity were assessed compared to two non-cancerous cell lines (BJ-1 and MCF-12F). Selected apoptosis protein markers were assayed by western blotting. Cell cycle analysis was performed by Annexin V-FITC/PI FACS assay. RESULTS RD-CME exhibited significant and selective cytotoxicity against the two tested breast cancer cells (MCF-7 and MDA-MB231) compared to normal cells as revealed by MTT assay. ELISA and western blotting indicated that the observed antiproliferative activity of RD-CME is mediated via the engagement of an intrinsic apoptosis signaling pathway, as judged by enhanced expression of key pro-apoptotic protein markers (p53, Bax and Casp 3) relative to vehicle solvent-treated MCF-7 control cells. CONCLUSION To our knowledge, this is the first report to investigate the medicinal anticancer and antioxidant potential of crude methanolic extract derived from colophony rosin. We provided evidence that RD-CME exhibits strong antioxidant and anticancer effects. The observed cytotoxic activity against MCF-7 is proposed to take place via G2/M cell cycle arrest and apoptosis. Colophony resin has a great potential to join the arsenal of plantderived natural anticancer drugs. Further thorough investigation of the potential cytotoxicity of RD-CME against various cancerous cell lines is required to assess the spectrum and potency of its novel activity.
Collapse
Affiliation(s)
- Salwa M El-Hallouty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Ahmed A F Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Amr Nassrallah
- Biochemistry Department, Cairo University Research Park (CURP), Cairo University, Giza 12613, Egypt
| | - Ahmad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia
| | - Mohammed S Alkaltham
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia
| | - Khaled Y Kamal
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig, Sharqia, 44511, Egypt
| | - Eman A Hanafy
- Biochemistry Department, Cairo University Research Park (CURP), Cairo University, Giza 12613, Egypt
| | - Hanan S Gaballa
- Biochemistry Department, Cairo University Research Park (CURP), Cairo University, Giza 12613, Egypt
| | - Mourad A M Aboul-Soud
- Biochemistry Department, Cairo University Research Park (CURP), Cairo University, Giza 12613, Egypt
| |
Collapse
|
25
|
Module to Support Real-Time Microscopic Imaging of Living Organisms on Ground-Based Microgravity Analogs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since opportunities for spaceflight experiments are scarce, ground-based microgravity simulation devices (MSDs) offer accessible and economical alternatives for gravitational biology studies. Among the MSDs, the random positioning machine (RPM) provides simulated microgravity conditions on the ground by randomizing rotating biological samples in two axes to distribute the Earth’s gravity vector in all directions over time. Real-time microscopy and image acquisition during microgravity simulation are of particular interest to enable the study of how basic cell functions, such as division, migration, and proliferation, progress under altered gravity conditions. However, these capabilities have been difficult to implement due to the constantly moving frames of the RPM as well as mechanical noise. Therefore, we developed an image acquisition module that can be mounted on an RPM to capture live images over time while the specimen is in the simulated microgravity (SMG) environment. This module integrates a digital microscope with a magnification range of 20× to 700×, a high-speed data transmission adaptor for the wireless streaming of time-lapse images, and a backlight illuminator to view the sample under brightfield and darkfield modes. With this module, we successfully demonstrated the real-time imaging of human cells cultured on an RPM in brightfield, lasting up to 80 h, and also visualized them in green fluorescent channel. This module was successful in monitoring cell morphology and in quantifying the rate of cell division, cell migration, and wound healing in SMG. It can be easily modified to study the response of other biological specimens to SMG.
Collapse
|
26
|
Tesei D, Chiang AJ, Kalkum M, Stajich JE, Mohan GBM, Sterflinger K, Venkateswaran K. Effects of Simulated Microgravity on the Proteome and Secretome of the Polyextremotolerant Black Fungus Knufia chersonesos. Front Genet 2021; 12:638708. [PMID: 33815472 PMCID: PMC8012687 DOI: 10.3389/fgene.2021.638708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Black fungi are a group of melanotic microfungi characterized by remarkable polyextremotolerance. Due to a broad ecological plasticity and adaptations at the cellular level, it is predicted that they may survive in a variety of extreme environments, including harsh niches on Earth and Mars, and in outer space. However, the molecular mechanisms aiding survival, especially in space, are yet to be fully elucidated. Based on these premises, the rock-inhabiting black fungus Knufia chersonesos (Wt) and its non-melanized mutant (Mut) were exposed to simulated microgravity-one of the prevalent features characterizing space conditions-by growing the cultures in high-aspect-ratio vessels (HARVs). Qualitative and quantitative proteomic analyses were performed on the mycelia and supernatant of culture medium (secretome) to assess alterations in cell physiology in response to low-shear simulated microgravity (LSSMG) and to ultimately evaluate the role of cell-wall melanization in stress survival. Differential expression was observed for proteins involved in carbohydrate and lipid metabolic processes, transport, and ribosome biogenesis and translation via ribosomal translational machinery. However, no evidence of significant activation of stress components or starvation response was detected, except for the scytalone dehydratase, enzyme involved in the synthesis of dihydroxynaphthalene (DNH) melanin, which was found to be upregulated in the secretome of the wild type and downregulated in the mutant. Differences in protein modulation were observed between K. chersonesos Wt and Mut, with several proteins being downregulated under LSSMG in the Mut when compared to the Wt. Lastly, no major morphological alterations were observed following exposure to LSSMG. Similarly, the strains' survivability was not negatively affected. This study is the first to characterize the response to simulated microgravity in black fungi, which might have implications on future astrobiological missions.
Collapse
Affiliation(s)
- Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Abby J. Chiang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Ganesh Babu Malli Mohan
- Department of Biotechnology, Centre for Research and Infectious Diseases, SASTRA Deemed University, Thanjavur, India
| | - Katja Sterflinger
- Institute for Natural Sciences and Technology in the Arts, Academy of Fine Arts Vienna, Vienna, Austria
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
27
|
Sathasivam M, Hosamani R, K Swamy B, Kumaran G S. Plant responses to real and simulated microgravity. LIFE SCIENCES IN SPACE RESEARCH 2021; 28:74-86. [PMID: 33612182 DOI: 10.1016/j.lssr.2020.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
Plant biology experiments in real and simulated microgravity have significantly contributed to our understanding of physiology and behavior of plants. How do plants perceive microgravity? How that perception translates into stimulus? And in turn plant's response and adaptation to microgravity through physiological, cellular, and molecular changes have been reasonably well documented in the literature. Knowledge gained through these plant biology experiments in microgravity helped to successfully cultivate crops in space. For instance, salad crop such as red romaine lettuce grown on the International Space Station (ISS) is allowed to incorporate into the crew's supplementary diet. However, the use of plants as a sustainable bio-regenerative life support system (BLSS) to produce fresh food and O2, reduce CO2 level, recycle metabolic waste, and efficient water management for long-duration space exploration missions requires critical gap filling research. Hence, it is inevitable to reflect and review plant biology microgravity research findings time and again with a new set of data available in the literature. With that in focus, the current article discusses phenotypic, physiological, biochemical, cell cycle, cell wall changes and molecular responses of plants to microgravity both in real and simulated conditions with the latest literature.
Collapse
Affiliation(s)
- Malarvizhi Sathasivam
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka, 580005, India
| | - Ravikumar Hosamani
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka, 580005, India.
| | - Basavalingayya K Swamy
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka, 580005, India
| | | |
Collapse
|
28
|
Zhu L, Nie L, Xie S, Li M, Zhu C, Qiu X, Kuang J, Liu C, Lu C, Li W, Meng E, Zhang D, Zhu L. Attenuation of Antiviral Immune Response Caused by Perturbation of TRIM25-Mediated RIG-I Activation under Simulated Microgravity. Cell Rep 2021; 34:108600. [PMID: 33406425 DOI: 10.1016/j.celrep.2020.108600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/20/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Microgravity is a major environmental factor of space flight that triggers dysregulation of the immune system and increases clinical risks for deep-space-exploration crews. However, systematic studies and molecular mechanisms of the adverse effects of microgravity on the immune system in animal models are limited. Here, we establish a ground-based zebrafish disease model of microgravity for the research of space immunology. RNA sequencing analysis demonstrates that the retinoic-acid-inducible gene (RIG)-I-like receptor (RLR) and the Toll-like receptor (TLR) signaling pathways are significantly compromised by simulated microgravity (Sμg). TRIM25, an essential E3 for RLR signaling, is inhibited under Sμg, hampering the K63-linked ubiquitination of RIG-I and the following function-induction positive feedback loop of antiviral immune response. These mechanisms provide insights into better understanding of the effects and principles of microgravity on host antiviral immunity and present broad potential implications for developing strategies that can prevent and control viral diseases during space flight.
Collapse
Affiliation(s)
- Lvyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China.
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, P.R. China
| | - Sisi Xie
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Ming Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Chushu Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Jingyu Kuang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Chenyu Lu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Wenying Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Er Meng
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China.
| |
Collapse
|
29
|
Boada M, Perez-Poch A, Ballester M, García-Monclús S, González DV, García S, Barri PN, Veiga A. Microgravity effects on frozen human sperm samples. J Assist Reprod Genet 2020; 37:2249-2257. [PMID: 32683528 PMCID: PMC7492354 DOI: 10.1007/s10815-020-01877-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Microgravity has severe effects on cellular and molecular structures as well as on metabolic interactions. The aim of this study is to investigate the effects of microgravity (μg) exposure on human frozen sperm samples. METHODS Sibling samples from 15 normozoospermic healthy donors were frozen using glycerol as cryoprotectant and analyzed under microgravity and ground conditions. Microgravity was obtained by parabolic flights using a CAP10B plane. The plane executed 20 parabolic maneuvers with a mean of 8.5 s of microgravity for each parabola. RESULTS Frozen sperm samples preserved in cryostraws and stored in a secure and specific nitrogen vapor cryoshipper do not suffer significant alterations after μg exposure. Comparing the study group (μg) and the control group (1 g), similar results were obtained in the main parameters studied: sperm motility (M/ml) 13.72 ± 12.57 vs 13.03 ± 12.13 (- 0.69 95% CI [- 2.9; 1.52]), progressive a + b sperm motility (%) 21.83 ± 11.69 vs 22.54 ± 12.83 (0.03 95% CI [- 0.08; 0.15]), sperm vitality (%) 46.42 ± 10.81 vs 44.62 ± 9.34 (- 0.04 95% CI [- 0.13; 0.05]), morphologically normal spermatozoa (%) 7.03 ± 2.61 vs 8.09 ± 3.61 (0.12 95% CI [0.01; 0.24]), DNA sperm fragmentation by SCD (%) 13.33 ± 5.12 vs 13.88 ± 6.14 (0.03 95% CI [- 0.09; 0.16]), and apoptotic spermatozoa by MACS (%) 15.47 ± 15.04 vs 23.80 ± 23.63 (- 0.20 95% CI [- 0.66; 1.05]). CONCLUSION The lack of differences obtained between frozen samples exposed to μg and those maintained in ground conditions provides the possibility of considering the safe transport of human male gametes to space. Nevertheless, further research is needed to validate the results and to consider the possibility of creating a human sperm bank outside the Earth. TRIAL REGISTRATION NUMBER ClinicalTrials.gov: NCT03760783.
Collapse
Affiliation(s)
- M Boada
- Women's Health Dexeus, Department of Obstetrics, Gynaecology and Reproduction, Hospital Universitari Dexeus, Avinguda Carles III 71-75, 08028, Barcelona, Spain.
| | - A Perez-Poch
- Universitat Politècnica de Catalunya, UPC BarcelonaTech, EEBE Campus Diagonal-Besòs, C. E. Maristany 16, 08019, Barcelona, Spain
| | - M Ballester
- Women's Health Dexeus, Department of Obstetrics, Gynaecology and Reproduction, Hospital Universitari Dexeus, Avinguda Carles III 71-75, 08028, Barcelona, Spain
| | - S García-Monclús
- Women's Health Dexeus, Department of Obstetrics, Gynaecology and Reproduction, Hospital Universitari Dexeus, Avinguda Carles III 71-75, 08028, Barcelona, Spain
| | - D V González
- Aeroclub Barcelona-Sabadell, Sabadell Airport, Carretera de Bellaterra s/n, 08205 Sabadell, Barcelona, Spain
| | - S García
- Women's Health Dexeus, Unit of Biostatistics, Avinguda Carles III 71-75, 08028, Barcelona, Spain
| | - P N Barri
- Women's Health Dexeus, Department of Obstetrics, Gynaecology and Reproduction, Hospital Universitari Dexeus, Avinguda Carles III 71-75, 08028, Barcelona, Spain
| | - A Veiga
- Women's Health Dexeus, Department of Obstetrics, Gynaecology and Reproduction, Hospital Universitari Dexeus, Avinguda Carles III 71-75, 08028, Barcelona, Spain
- Barcelona Stem Cell Bank, Centre of Regenerative Medicine in Barcelona, Hospital Duran i Reynals, Gran Via de l'Hospitalet 199, 08908 Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
30
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
31
|
Kiss JZ, Wolverton C, Wyatt SE, Hasenstein KH, van Loon JJ. Comparison of Microgravity Analogs to Spaceflight in Studies of Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1577. [PMID: 31867033 PMCID: PMC6908503 DOI: 10.3389/fpls.2019.01577] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/12/2019] [Indexed: 05/19/2023]
Abstract
Life on Earth has evolved under the influence of gravity. This force has played an important role in shaping development and morphology from the molecular level to the whole organism. Although aquatic life experiences reduced gravity effects, land plants have evolved under a 1-g environment. Understanding gravitational effects requires changing the magnitude of this force. One method of eliminating gravity''s influence is to enter into a free-fall orbit around the planet, thereby achieving a balance between centripetal force of gravity and the centrifugal force of the moving object. This balance is often mistakenly referred to as microgravity, but is best described as weightlessness. In addition to actually compensating gravity, instruments such as clinostats, random-positioning machines (RPM), and magnetic levitation devices have been used to eliminate effects of constant gravity on plant growth and development. However, these platforms do not reduce gravity but constantly change its direction. Despite these fundamental differences, there are few studies that have investigated the comparability between these platforms and weightlessness. Here, we provide a review of the strengths and weaknesses of these analogs for the study of plant growth and development compared to spaceflight experiments. We also consider reduced or partial gravity effects via spaceflight and analog methods. While these analogs are useful, the fidelity of the results relative to spaceflight depends on biological parameters and environmental conditions that cannot be simulated in ground-based studies.
Collapse
Affiliation(s)
- John Z. Kiss
- Department of Biology, University of North Carolina—Greensboro, Greensboro, NC, United States
| | - Chris Wolverton
- Department of Botany & Microbiology, Ohio Wesleyan University, Delaware, OH, United States
| | - Sarah E. Wyatt
- Molecular and Cellular Biology Program, Department of Environmental & Plant Biology, Ohio University, Athens, OH, United States
| | - Karl H. Hasenstein
- Biology Department, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Jack J.W.A. van Loon
- DESC (Dutch Experiment Support Center), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Academic Centre for Dentistry Amsterdam (ACTA), VU-University, Amsterdam, Netherlands
- European Space Agency (ESA) Technology Center (ESTEC), Life & Physical Science, Instrumentation and Life Support Laboratory, TEC-MMG, Noordwijk, Netherlands
| |
Collapse
|
32
|
Kamal KY, van Loon JJ, Medina FJ, Herranz R. Differential transcriptional profile through cell cycle progression in Arabidopsis cultures under simulated microgravity. Genomics 2019; 111:1956-1965. [DOI: 10.1016/j.ygeno.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/30/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
|
33
|
Sun Z, Li Y, Wang H, Cai M, Gao S, Liu J, Tong L, Hu Z, Wang Y, Wang K, Zhang L, Cao X, Zhang S, Shi F, Zhao J. miR-181c-5p mediates simulated microgravity-induced impaired osteoblast proliferation by promoting cell cycle arrested in the G 2 phase. J Cell Mol Med 2019; 23:3302-3316. [PMID: 30761733 PMCID: PMC6484313 DOI: 10.1111/jcmm.14220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/06/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Impaired osteoblast proliferation plays fundamental roles in microgravity‐induced bone loss, and cell cycle imbalance may result in abnormal osteoblast proliferation. However, whether microgravity exerts an influence on the cell cycle in osteoblasts or what mechanisms may underlie such an effect remains to be fully elucidated. Herein, we confirmed that simulated microgravity inhibits osteoblast proliferation. Then, we investigated the effect of mechanical unloading on the osteoblast cell cycle and found that simulated microgravity arrested the osteoblast cell cycle in the G2 phase. In addition, our data showed that cell cycle arrest in osteoblasts from simulated microgravity was mainly because of decreased cyclin B1 expression. Furthermore, miR‐181c‐5p directly inhibited cyclin B1 protein translation by binding to a target site in the 3′UTR. Lastly, we demonstrated that inhibition of miR‐181c‐5p partially counteracted cell cycle arrest and decreased the osteoblast proliferation induced by simulated microgravity. In conclusion, our study demonstrates that simulated microgravity inhibits cell proliferation and induces cell cycle arrest in the G2 phase in primary mouse osteoblasts partially through the miR‐181c‐5p/cyclin B1 pathway. This work may provide a novel mechanism of microgravity‐induced detrimental effects on osteoblasts and offer a new avenue to further investigate bone loss induced by mechanical unloading.
Collapse
Affiliation(s)
- Zhongyang Sun
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Orthopedics, Junxie Hospital, Anhui Medical University, Nanjing, China.,The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Ying Li
- Department of Orthopedics, Junxie Hospital, Anhui Medical University, Nanjing, China
| | - Han Wang
- Department of Orthopedics, Affiliated Hospital of Air Force Aviation Medicine Research Institute, Fourth Military Medical University, Beijing, China
| | - Min Cai
- Department of Orthopedics, Junxie Hospital, Anhui Medical University, Nanjing, China.,Medical Services Section, Junxie Hospital, Anhui Medical University, Nanjing, China
| | - Shanshan Gao
- Medical Services Section, Junxie Hospital, Anhui Medical University, Nanjing, China
| | - Jing Liu
- Department of Pharmacy, Junxie Hospital, Anhui Medical University, Nanjing, China
| | - Liangcheng Tong
- Department of Orthopedics, Junxie Hospital, Anhui Medical University, Nanjing, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Jianning Zhao
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
34
|
Herranz R, Vandenbrink JP, Villacampa A, Manzano A, Poehlman WL, Feltus FA, Kiss JZ, Medina FJ. RNAseq Analysis of the Response of Arabidopsis thaliana to Fractional Gravity Under Blue-Light Stimulation During Spaceflight. FRONTIERS IN PLANT SCIENCE 2019; 10:1529. [PMID: 31850027 PMCID: PMC6889863 DOI: 10.3389/fpls.2019.01529] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/01/2019] [Indexed: 05/17/2023]
Abstract
Introduction: Traveling to nearby extraterrestrial objects having a reduced gravity level (partial gravity) compared to Earth's gravity is becoming a realistic objective for space agencies. The use of plants as part of life support systems will require a better understanding of the interactions among plant growth responses including tropisms, under partial gravity conditions. Materials and Methods: Here, we present results from our latest space experiments on the ISS, in which seeds of Arabidopsis thaliana were germinated, and seedlings grew for six days under different gravity levels, namely micro-g, several intermediate partial-g levels, and 1g, and were subjected to irradiation with blue light for the last 48 h. RNA was extracted from 20 samples for subsequent RNAseq analysis. Transcriptomic analysis was performed using the HISAT2-Stringtie-DESeq pipeline. Differentially expressed genes were further characterized for global responses using the GEDI tool, gene networks and for Gene Ontology (GO) enrichment. Results: Differential gene expression analysis revealed only one differentially expressed gene (AT4G21560, VPS28-1 a vacuolar protein) across all gravity conditions using FDR correction (q < 0.05). However, the same 14 genes appeared differentially expressed when comparing either micro-g, low-g level (< 0.1g) or the Moon g-level with 1g control conditions. Apart from these 14-shared genes, the number of differentially expressed genes was similar in microgravity and the Moon g-level and increased in the intermediate g-level (< 0.1g), but it was then progressively reduced as the difference with the Earth gravity became smaller. The GO groups were differentially affected at each g-level: light and photosynthesis GO under microgravity, genes belonged to general stress, chemical and hormone responses under low-g, and a response related to cell wall and membrane structure and function under the Moon g-level. Discussion: Transcriptional analyses of plants under blue light stimulation suggests that root blue-light phototropism may be enough to reduce the gravitational stress response caused by the lack of gravitropism in microgravity. Competition among tropisms induces an intense perturbation at the micro-g level, which shows an extensive stress response that is progressively attenuated. Our results show a major effect on cell wall/membrane remodeling (detected at the interval from the Moon to Mars gravity), which can be potentially related to graviresistance mechanisms.
Collapse
Affiliation(s)
- Raúl Herranz
- Plant Microgravity Lab, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- *Correspondence: Raúl Herranz,
| | - Joshua P. Vandenbrink
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, United States
| | - Alicia Villacampa
- Plant Microgravity Lab, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Aránzazu Manzano
- Plant Microgravity Lab, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - William L. Poehlman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Frank Alex Feltus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - John Z. Kiss
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | | |
Collapse
|
35
|
Muthert LWF, Izzo LG, van Zanten M, Aronne G. Root Tropisms: Investigations on Earth and in Space to Unravel Plant Growth Direction. FRONTIERS IN PLANT SCIENCE 2019; 10:1807. [PMID: 32153599 PMCID: PMC7047216 DOI: 10.3389/fpls.2019.01807] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/24/2019] [Indexed: 05/12/2023]
Abstract
Root tropisms are important responses of plants, allowing them to adapt their growth direction. Research on plant tropisms is indispensable for future space programs that envisage plant-based life support systems for long-term missions and planet colonization. Root tropisms encompass responses toward or away from different environmental stimuli, with an underexplored level of mechanistic divergence. Research into signaling events that coordinate tropistic responses is complicated by the consistent coincidence of various environmental stimuli, often interacting via shared signaling mechanisms. On Earth the major determinant of root growth direction is the gravitational vector, acting through gravitropism and overruling most other tropistic responses to environmental stimuli. Critical advancements in the understanding of root tropisms have been achieved nullifying the gravitropic dominance with experiments performed in the microgravity environment. In this review, we summarize current knowledge on root tropisms to different environmental stimuli. We highlight that the term tropism must be used with care, because it can be easily confused with a change in root growth direction due to asymmetrical damage to the root, as can occur in apparent chemotropism, electrotropism, and magnetotropism. Clearly, the use of Arabidopsis thaliana as a model for tropism research contributed much to our understanding of the underlying regulatory processes and signaling events. However, pronounced differences in tropisms exist among species, and we argue that these should be further investigated to get a more comprehensive view of the signaling pathways and sensors. Finally, we point out that the Cholodny-Went theory of asymmetric auxin distribution remains to be the central and unifying tropistic mechanism after 100 years. Nevertheless, it becomes increasingly clear that the theory is not applicable to all root tropistic responses, and we propose further research to unravel commonalities and differences in the molecular and physiological processes orchestrating root tropisms.
Collapse
Affiliation(s)
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Luigi Gennaro Izzo,
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
36
|
Moreno-Villanueva M, Feiveson AH, Krieger S, Kay Brinda A, von Scheven G, Bürkle A, Crucian B, Wu H. Synergistic Effects of Weightlessness, Isoproterenol, and Radiation on DNA Damage Response and Cytokine Production in Immune Cells. Int J Mol Sci 2018; 19:ijms19113689. [PMID: 30469384 PMCID: PMC6275019 DOI: 10.3390/ijms19113689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/10/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022] Open
Abstract
The implementation of rotating-wall vessels (RWVs) for studying the effect of lack of gravity has attracted attention, especially in the fields of stem cells, tissue regeneration, and cancer research. Immune cells incubated in RWVs exhibit several features of immunosuppression including impaired leukocyte proliferation, cytokine responses, and antibody production. Interestingly, stress hormones influence cellular immune pathways affected by microgravity, such as cell proliferation, apoptosis, DNA repair, and T cell activation. These pathways are crucial defense mechanisms that protect the cell from toxins, pathogens, and radiation. Despite the importance of the adrenergic receptor in regulating the immune system, the effect of microgravity on the adrenergic system has been poorly studied. Thus, we elected to investigate the synergistic effects of isoproterenol (a sympathomimetic drug), radiation, and microgravity in nonstimulated immune cells. Peripheral blood mononuclear cells were treated with the sympathomimetic drug isoproterenol, exposed to 0.8 or 2 Gy γ-radiation, and incubated in RWVs. Mixed model regression analyses showed significant synergistic effects on the expression of the β2-adrenergic receptor gene (ADRB2). Radiation alone increased ADRB2 expression, and cells incubated in microgravity had more DNA strand breaks than cells incubated in normal gravity. We observed radiation-induced cytokine production only in microgravity. Prior treatment with isoproterenol clearly prevents most of the microgravity-mediated effects. RWVs may be a useful tool to provide insight into novel regulatory pathways, providing benefit not only to astronauts but also to patients suffering from immune disorders or undergoing radiotherapy.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Alan H Feiveson
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| | | | - AnneMarie Kay Brinda
- Department of Biomedical Engineering, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA.
| | - Gudrun von Scheven
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Brian Crucian
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| | - Honglu Wu
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| |
Collapse
|
37
|
Liu G, Bollier D, Gübeli C, Peter N, Arnold P, Egli M, Borghi L. Simulated microgravity and the antagonistic influence of strigolactone on plant nutrient uptake in low nutrient conditions. NPJ Microgravity 2018; 4:20. [PMID: 30345347 PMCID: PMC6193021 DOI: 10.1038/s41526-018-0054-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 11/24/2022] Open
Abstract
Human-assisted space exploration will require efficient methods of food production. Large-scale farming in presence of an Earth-like atmosphere in space faces two main challenges: plant yield in microgravity and plant nutrition in extraterrestrial soils, which are likely low in nutrients compared to terrestrial farm lands. We propose a plant-fungal symbiosis (i.e. mycorrhiza) as an efficient tool to increase plant biomass production in extraterrestrial environments. We tested the mycorrhization of Solanaceae on the model plant Petunia hybrida using the arbuscular mycorrhizal fungus Rhizophagus irregularis under simulated microgravity (s0-g) conditions obtained through a 3-D random positioning machine. Our results show that s0-g negatively affects mycorrhization and plant phosphate uptake by inhibiting hyphal elongation and secondary branching. However, in low nutrient conditions, the mycorrhiza can still support plant biomass production in s0-g when colonized plants have increased SL root exudation. Alternatively, s0-g in high nutrient conditions boosts tissue-specific cell division and cell expansion and overall plant size in Petunia, which has been reported for other plants species. Finally, we show that the SL mimic molecule rac-GR24 can still induce hyphal branching in vitro under simulated microgravity. Based on these results, we propose that in nutrient limited conditions strigolactone root exudation can challenge the negative microgravity effects on mycorrhization and therefore might play an important role in increasing the efficiency of future space farming.
Collapse
Affiliation(s)
- Guowei Liu
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Daniel Bollier
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Christian Gübeli
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Noemi Peter
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Peter Arnold
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Marcel Egli
- Institute of Medical Engineering, HSLU Lucerne, Obermattweg 9, 6052 Hergiswil, Switzerland
| | - Lorenzo Borghi
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|