1
|
Caskey JR, Wiseman RW, Karl JA, Baker DA, Lee T, Maddox RJ, Raveendran M, Harris RA, Hu J, Muzny DM, Rogers J, O'Connor DH. MHC genotyping from rhesus macaque exome sequences. Immunogenetics 2019; 71:531-544. [PMID: 31321455 PMCID: PMC6790296 DOI: 10.1007/s00251-019-01125-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/02/2019] [Indexed: 02/03/2023]
Abstract
Indian rhesus macaque major histocompatibility complex (MHC) variation can influence the outcomes of transplantation and infectious disease studies. Frequently, rhesus macaques are MHC genotyped to identify variants that could account for unexpected results. Since the MHC is only one region in the genome where variation could impact experimental outcomes, strategies for simultaneously profiling variation in the macaque MHC and the remainder of the protein coding genome would be useful. Here we determine MHC class I and class II genotypes using target-capture probes enriched for MHC sequences, a method we term macaque exome sequence (MES) genotyping. For a cohort of 27 Indian rhesus macaques, we describe two methods for obtaining MHC genotypes from MES data and demonstrate that the MHC class I and class II genotyping results obtained with these methods are 98.1% and 98.7% concordant, respectively, with expected MHC genotypes. In contrast, conventional MHC genotyping results obtained by deep sequencing of short multiplex PCR amplicons were only 92.6% concordant with expectations for this cohort.
Collapse
Affiliation(s)
- John R Caskey
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Julie A Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David A Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Taylor Lee
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Robert J Maddox
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | | | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
2
|
Shiina T, Blancher A. The Cynomolgus Macaque MHC Polymorphism in Experimental Medicine. Cells 2019; 8:E978. [PMID: 31455025 PMCID: PMC6770713 DOI: 10.3390/cells8090978] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Among the non-human primates used in experimental medicine, cynomolgus macaques (Macaca fascicularis hereafter referred to as Mafa) are increasingly selected for the ease with which they are maintained and bred in captivity. Macaques belong to Old World monkeys and are phylogenetically much closer to humans than rodents, which are still the most frequently used animal model. Our understanding of the Mafa genome has progressed rapidly in recent years and has greatly benefited from the latest technical advances in molecular genetics. Cynomolgus macaques are widespread in Southeast Asia and numerous studies have shown a distinct genetic differentiation of continental and island populations. The major histocompatibility complex of cynomolgus macaque (Mafa MHC) is organized in the same way as that of human, but it differs from the latter by its high degree of classical class I gene duplication. Human polymorphic MHC regions play a pivotal role in allograft transplantation and have been associated with more than 100 diseases and/or phenotypes. The Mafa MHC polymorphism similarly plays a crucial role in experimental allografts of organs and stem cells. Experimental results show that the Mafa MHC class I and II regions influence the ability to mount an immune response against infectious pathogens and vaccines. MHC also affects cynomolgus macaque reproduction and impacts on numerous biological parameters. This review describes the Mafa MHC polymorphism and the methods currently used to characterize it. We discuss some of the major areas of experimental medicine where an effect induced by MHC polymorphism has been demonstrated.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Antoine Blancher
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse 31000, France.
- Laboratoire d'immunologie, CHU de Toulouse, Institut Fédératif de Biologie, hôpital Purpan, 330 Avenue de Grande Bretagne, TSA40031, 31059 Toulouse CEDEX 9, France.
| |
Collapse
|
3
|
Cynomolgus macaque IL37 polymorphism and control of SIV infection. Sci Rep 2019; 9:7981. [PMID: 31138840 PMCID: PMC6538695 DOI: 10.1038/s41598-019-44235-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/27/2019] [Indexed: 01/17/2023] Open
Abstract
The association between gene polymorphisms and plasma virus load at the set point (SP-PVL) was investigated in Mauritian macaques inoculated with SIV. Among 44 macaques inoculated with 50 AID50, six individuals were selected: three with SP-PVL among the highest and three with SP-PVL among the lowest. The exons of 390 candidate genes of these six animals were sequenced. Twelve non-synonymous single nucleotide polymorphisms (NS-SNPs) lying in nine genes potentially associated with PVL were genotyped in 23 animals. Three NS-SNPs with probabilities of association with PVL less than 0.05 were genotyped in a total of 44 animals. One NS-SNP lying in exon 1 of the IL37 gene displayed a significant association (p = 3.33 × 10−4) and a strong odds ratio (19.52). Multiple linear regression modeling revealed three significant predictors of SP-PVL, including the IL37 exon 1 NS-SNP (p = 0.0004) and the MHC Class IB haplotypes M2 (p = 0.0007) and M6 (p = 0.0013). These three factors in conjunction explained 48% of the PVL variance (p = 4.8 × 10−6). The potential role of IL37 in the control of SIV infection is discussed.
Collapse
|