1
|
Lamote B, da Fonseca MJM, Vanderstraeten J, Meert K, Elias M, Briers Y. Current challenges in designer cellulosome engineering. Appl Microbiol Biotechnol 2023; 107:2755-2770. [PMID: 36941434 DOI: 10.1007/s00253-023-12474-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
Designer cellulosomes (DCs) are engineered multi-enzyme complexes, comprising carbohydrate-active enzymes attached to a common backbone, the scaffoldin, via high-affinity cohesin-dockerin interactions. The use of DCs in the degradation of renewable biomass polymers is a promising approach for biorefineries. Indeed, DCs have shown significant hydrolytic activities due to the enhanced enzyme-substrate proximity and inter-enzyme synergies, but technical hurdles in DC engineering have hindered further progress towards industrial application. The challenge in DC engineering lies in the large diversity of possible building blocks and architectures, resulting in a multivariate and immense design space. Simultaneously, the precise DC composition affects many relevant parameters such as activity, stability, and manufacturability. Since protein engineers face a lack of high-throughput approaches to explore this vast design space, DC engineering may result in an unsatisfying outcome. This review provides a roadmap to guide researchers through the process of DC engineering. Each step, starting from concept to evaluation, is described and provided with its challenges, along with possible solutions, both for DCs that are assembled in vitro or are displayed on the yeast cell surface. KEY POINTS: • Construction of designer cellulosomes is a multi-step process. • Designer cellulosome research deals with multivariate construction challenges. • Boosting designer cellulosome efficiency requires exploring a vast design space.
Collapse
Affiliation(s)
- Babette Lamote
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | | | - Julie Vanderstraeten
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Kenan Meert
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Marte Elias
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Duarte M, Alves VD, Correia M, Caseiro C, Ferreira LM, Romão MJ, Carvalho AL, Najmudin S, Bayer EA, Fontes CM, Bule P. Structure-function studies can improve binding affinity of cohesin-dockerin interactions for multi-protein assemblies. Int J Biol Macromol 2022; 224:55-67. [DOI: 10.1016/j.ijbiomac.2022.10.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
3
|
Duarte M, Viegas A, Alves VD, Prates JAM, Ferreira LMA, Najmudin S, Cabrita EJ, Carvalho AL, Fontes CMGA, Bule P. A dual cohesin-dockerin complex binding mode in Bacteroides cellulosolvens contributes to the size and complexity of its cellulosome. J Biol Chem 2021; 296:100552. [PMID: 33744293 PMCID: PMC8063739 DOI: 10.1016/j.jbc.2021.100552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/03/2022] Open
Abstract
The Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin-dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role. Thus, type I Coh-Doc complexes are usually responsible for enzyme integration into the cellulosome, while type II Coh-Doc complexes tether the cellulosome to the bacterial wall. In contrast to other known cellulosomes, cohesin types from Bacteroides cellulosolvens, a cellulosome-producing bacterium capable of utilizing cellulose and cellobiose as carbon sources, are reversed for all scaffoldins, i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. It has been previously shown that type I B. cellulosolvens interactions possess a dual-binding mode that adds flexibility to scaffoldin assembly. Herein, we report the structural mechanism of enzyme recruitment into B. cellulosolvens cellulosome and the identification of the molecular determinants of its type II cohesin-dockerin interactions. The results indicate that, unlike other type II complexes, these possess a dual-binding mode of interaction, akin to type I complexes. Therefore, the plasticity of dual-binding mode interactions seems to play a pivotal role in the assembly of B. cellulosolvens cellulosome, which is consistent with its unmatched complexity and size.
Collapse
Affiliation(s)
- Marlene Duarte
- Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Aldino Viegas
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Victor D Alves
- Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, Lisboa, Portugal
| | - José A M Prates
- Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Luís M A Ferreira
- Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Shabir Najmudin
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Eurico J Cabrita
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Ana Luísa Carvalho
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
| | - Carlos M G A Fontes
- Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, Lisboa, Portugal; Research and Development, NZYTech Genes & Enzymes, Lisboa, Portugal
| | - Pedro Bule
- Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, Lisboa, Portugal.
| |
Collapse
|
4
|
Abstract
Cellulosomes are elaborate multienzyme complexes capable of efficiently deconstructing lignocellulosic substrates, produced by cellulolytic anaerobic microorganisms, colonizing a large variety of ecological niches. These macromolecular structures have a modular architecture and are composed of two main elements: the cohesin-bearing scaffoldins, which are non-catalytic structural proteins, and the various dockerin-bearing enzymes that tenaciously bind to the scaffoldins. Cellulosome assembly is mediated by strong and highly specific interactions between the cohesin modules, present in the scaffoldins, and the dockerin modules, present in the catalytic units. Cellulosomal architecture and composition varies between species and can even change within the same organism. These differences seem to be largely influenced by external factors, including the nature of the available carbon-source. Even though cellulosome producing organisms are relatively few, the development of new genomic and proteomic technologies has allowed the identification of cellulosomal components in many archea, bacteria and even some primitive eukaryotes. This reflects the importance of this cellulolytic strategy and suggests that cohesin-dockerin interactions could be involved in other non-cellulolytic processes. Due to their building-block nature and highly cellulolytic capabilities, cellulosomes hold many potential biotechnological applications, such as the conversion of lignocellulosic biomass in the production of biofuels or the development of affinity based technologies.
Collapse
Affiliation(s)
- Victor D Alves
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Carlos M G A Fontes
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Pedro Bule
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| |
Collapse
|
5
|
Whole grain cereal fibers and their support of the gut commensal Clostridia for health. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bcdf.2020.100245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Vita N, Borne R, Perret S, de Philip P, Fierobe HP. Turning a potent family-9 free cellulase into an operational cellulosomal component and vice versa. FEBS J 2019; 286:3359-3373. [PMID: 31004451 DOI: 10.1111/febs.14858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/18/2019] [Accepted: 04/16/2019] [Indexed: 11/29/2022]
Abstract
Ruminiclostridium cellulolyticum and Lachnoclostridium phytofermentans are cellulolytic clostridia either producing extracellular multienzymatic complexes termed cellulosomes or secreting free cellulases respectively. In the free state, the cellulase Cel9A secreted by L. phytofermentans is much more active on crystalline cellulose than any cellulosomal family-9 enzyme produced by R. cellulolyticum. Nevertheless, the incorporation of Cel9A in vitro in hybrid cellulosomes was formerly shown to generate artificial complexes with altered activity, whereas its incorporation in vivo in native R. cellulolyticum cellulosomes resulted in a strain displaying a weakened cellulolytic phenotype. In this study, we investigated why Cel9A is so potent in the free state but functions poorly as a cellulosomal component, in contrast to the most similar enzyme synthesized by R. cellulolyticum, Cel9G, weakly active in the free state but whose activity on crystalline cellulose is drastically increased in cellulosomes. We show that the removal of the C-terminal moiety of Cel9A encompassing the two X2 modules and the family-3b carbohydrate binding module (CBM3b), reduces its activity on crystalline cellulose. Grafting a dockerin module further diminishes the activity, but this truncated cellulosomal form of Cel9A displays important synergies in hybrid cellulosomes with the pivotal family-48 cellulosomal enzyme of R. cellulolyticum. The exact inverse approach was applied to the cellulosomal Cel9G. Grafting the two X2 modules and the CBM3b of Cel9A to Cel9G strongly increases its activity on crystalline cellulose, to reach Cel9A activity levels. Altogether these data emphasize the specific features required to generate an efficient free or cellulosomal family-9 cellulase.
Collapse
|