1
|
Majou D. Effects of carbon dioxide on germination of Clostridium botulinum spores. Int J Food Microbiol 2025; 427:110958. [PMID: 39500211 DOI: 10.1016/j.ijfoodmicro.2024.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024]
Abstract
Clostridium botulinum is a Gram -positive, strict anaerobic, rod -shaped, spore -forming, SOD -positive and catalase -negative bacterium. Its antioxidant defenses are not suited to chronic oxidative stress. H₂O₂ and reactive oxygen species have deleterious effects on C. botulinum. Spore germination is one of the key steps in its development. However, the mechanisms that trigger this germination have yet to be described. To manage C. botulinum growth, it is essential to understand the mechanisms that underlie the germination process. In this article, a series of complementary cascade reactions with water -dissolved CO₂ as an initiating germinant, and bicarbonate is suggested. It seems clear that ATP production is achieved through the use of various anaplerotic reactions with dissolved CO₂ as the carbon source. In addition to the production of oxaloacetate, an intermediate metabolite pyruvate would also be synthesized. Pyruvate would initiate the second phase of germination by producing hydrogen, which is a powerful reducing agent, via two enzymes (pyruvate -ferredoxin oxidoreductase and ferredoxin hydrogenase). These conditions would activate proteolytic enzymes and would reduce and would break the disulfide bridges of the proteins that make up the spore coats, thereby opening them. Thus, the phosphoenolpyruvate -pyruvate -acetyl -CoA pathway, in the presence of CO₂, would play a major role in the germination of spores of C. botulinum.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, rue de Bercy, 75595 Paris Cedex 12, France.
| |
Collapse
|
2
|
Burgess SA, Palevich FP, Gardner A, Mills J, Brightwell G, Palevich N. Occurrence of genes encoding spore germination in Clostridium species that cause meat spoilage. Microb Genom 2022; 8. [PMID: 35166653 PMCID: PMC8942025 DOI: 10.1099/mgen.0.000767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Members of the genus Clostridium are frequently associated with meat spoilage. The ability for low numbers of spores of certain Clostridium species to germinate in cold-stored vacuum-packed meat can result in blown pack spoilage. However, little is known about the germination process of these clostridia, despite this characteristic being important for their ability to cause spoilage. This study sought to determine the genomic conditions for germination of 37 representative Clostridium strains from seven species (C. estertheticum, C. tagluense, C. frigoris, C. gasigenes, C. putrefaciens, C. aligidicarnis and C. frigdicarnis) by comparison with previously characterized germination genes from C. perfringens, C. sporogenes and C. botulinum. All the genomes analysed contained at least one gerX operon. Seven different gerX operon configuration types were identified across genomes from C. estertheticum, C. tagluense and C. gasigenes. Differences arose between the C. gasigenes genomes and those belonging to C. tagluense/C. estertheticum in the number and type of genes coding for cortex lytic enzymes, suggesting the germination pathway of C. gasigenes is different. However, the core components of the germination pathway were conserved in all the Clostridium genomes analysed, suggesting that these species undergo the same major steps as Bacillus subtilis for germination to occur.
Collapse
Affiliation(s)
- Sara A Burgess
- Molecular Epidemiology and Veterinary Public Health Laboratory (mEpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Faith P Palevich
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Amanda Gardner
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - John Mills
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand.,New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
3
|
Mertaoja A, Nowakowska MB, Mascher G, Heljanko V, Groothuis D, Minton NP, Lindström M. CRISPR-Cas9-Based Toolkit for Clostridium botulinum Group II Spore and Sporulation Research. Front Microbiol 2021; 12:617269. [PMID: 33584620 PMCID: PMC7873358 DOI: 10.3389/fmicb.2021.617269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
The spores of Clostridium botulinum Group II strains pose a significant threat to the safety of modern packaged foods due to the risk of their survival in pasteurization and their ability to germinate into neurotoxigenic cultures at refrigeration temperatures. Moreover, spores are the infectious agents in wound botulism, infant botulism, and intestinal toxemia in adults. The identification of factors that contribute to spore formation is, therefore, essential to the development of strategies to control related health risks. Accordingly, development of a straightforward and versatile gene manipulation tool and an efficient sporulation-promoting medium is pivotal. Our strategy was to employ CRISPR-Cas9 and homology-directed repair (HDR) to replace targeted genes with mutant alleles incorporating a unique 24-nt "bookmark" sequence that could act as a single guide RNA (sgRNA) target for Cas9. Following the generation of the sporulation mutant, the presence of the bookmark allowed rapid generation of a complemented strain, in which the mutant allele was replaced with a functional copy of the deleted gene using CRISPR-Cas9 and the requisite sgRNA. Then, we selected the most appropriate medium for sporulation studies in C. botulinum Group II strains by measuring the efficiency of spore formation in seven different media. The most effective medium was exploited to confirm the involvement of a candidate gene in the sporulation process. Using the devised sporulation medium, subsequent comparisons of the sporulation efficiency of the wild type (WT), mutant and "bookmark"-complemented strain allowed the assignment of any defective sporulation phenotype to the mutation made. As a strain generated by complementation with the WT gene in the original locus would be indistinguishable from the parental strain, the gene utilized in complementation studies was altered to contain a unique "watermark" through the introduction of silent nucleotide changes. The mutagenesis system and the devised sporulation medium provide a solid basis for gaining a deeper understanding of spore formation in C. botulinum, a prerequisite for the development of novel strategies for spore control and related food safety and public health risk management.
Collapse
Affiliation(s)
- Anna Mertaoja
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Maria B. Nowakowska
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Gerald Mascher
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Daphne Groothuis
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Zhang Z, Lahti M, Douillard FP, Korkeala H, Lindström M. Phage lysin that specifically eliminates Clostridium botulinum Group I cells. Sci Rep 2020; 10:21571. [PMID: 33299101 PMCID: PMC7725837 DOI: 10.1038/s41598-020-78622-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
Clostridium botulinum poses a serious threat to food safety and public health by producing potent neurotoxin during its vegetative growth and causing life-threatening neuroparalysis, botulism. While high temperature can be utilized to eliminate C. botulinum spores and the neurotoxin, non-thermal elimination of newly germinated C. botulinum cells before onset of toxin production could provide an alternative or additional factor controlling the risk of botulism in some applications. Here we introduce a putative phage lysin that specifically lyses vegetative C. botulinum Group I cells. This lysin, called CBO1751, efficiently kills cells of C. botulinum Group I strains at the concentration of 5 µM, but shows little or no lytic activity against C. botulinum Group II or III or other Firmicutes strains. CBO1751 is active at pH from 6.5 to 10.5. The lytic activity of CBO1751 is tolerant to NaCl (200 mM), but highly susceptible to divalent cations Ca2+ and Mg2+ (50 mM). CBO1751 readily and effectively eliminates C. botulinum during spore germination, an early stage preceding vegetative growth and neurotoxin production. This is the first report of an antimicrobial lysin against C. botulinum, presenting high potential for developing a novel antibotulinal agent for non-thermal applications in food and agricultural industries.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland
| | - Meeri Lahti
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland
| | - François P Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P. O. Box 66, 00014, Helsinki, Finland.
| |
Collapse
|
5
|
Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front Microbiol 2020; 11:593215. [PMID: 33193264 PMCID: PMC7609970 DOI: 10.3389/fmicb.2020.593215] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
With the alarming increase of infections caused by pathogenic multidrug-resistant bacteria over the last decades, antimicrobial peptides (AMPs) have been investigated as a potential treatment for those infections, directly through their lytic effect or indirectly, due to their ability to modulate the immune system. There are still concerns regarding the use of such molecules in the treatment of infections, such as cell toxicity and host factors that lead to peptide inhibition. To overcome these limitations, different approaches like peptide modification to reduce toxicity and peptide combinations to improve therapeutic efficacy are being tested. Human defense peptides consist of an important part of the innate immune system, against a myriad of potential aggressors, which have in turn developed different ways to overcome the AMPs microbicidal activities. Since the antimicrobial activity of AMPs vary between Gram-positive and Gram-negative species, so do the bacterial resistance arsenal. This review discusses the mechanisms exploited by Gram-positive bacteria to circumvent killing by antimicrobial peptides. Specifically, the most clinically relevant genera, Streptococcus spp., Staphylococcus spp., Enterococcus spp. and Gram-positive bacilli, have been explored.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Barbara Milani
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marianna Ribeiro Carvalho
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucas Natanael Nepomuceno
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Natalha Tedeschi Waz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
6
|
Brunt J, van Vliet AHM, Stringer SC, Carter AT, Lindström M, Peck MW. Pan-Genomic Analysis of Clostridium botulinum Group II (Non-Proteolytic C. botulinum) Associated with Foodborne Botulism and Isolated from the Environment. Toxins (Basel) 2020; 12:E306. [PMID: 32397147 PMCID: PMC7291236 DOI: 10.3390/toxins12050306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
The neurotoxin formed by Clostridium botulinum Group II is a major cause of foodborne botulism, a deadly intoxication. This study aims to understand the genetic diversity and spread of C. botulinum Group II strains and their neurotoxin genes. A comparative genomic study has been conducted with 208 highly diverse C. botulinum Group II strains (180 newly sequenced strains isolated from 16 countries over 80 years, 28 sequences from Genbank). Strains possessed a single type B, E, or F neurotoxin gene or were closely related strains with no neurotoxin gene. Botulinum neurotoxin subtype variants (including novel variants) with a unique amino acid sequence were identified. Core genome single-nucleotide polymorphism (SNP) analysis identified two major lineages-one with type E strains, and the second dominated by subtype B4 strains with subtype F6 strains. This study revealed novel details of population structure/diversity and established relationships between whole-genome lineage, botulinum neurotoxin subtype variant, association with foodborne botulism, epidemiology, and geographical source. Additionally, the genome sequences represent a valuable resource for the research community (e.g., understanding evolution of C. botulinum and its neurotoxin genes, dissecting key aspects of C. botulinum Group II biology). This may contribute to improved risk assessments and the prevention of foodborne botulism.
Collapse
Affiliation(s)
- Jason Brunt
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Arnoud H. M. van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK;
| | - Sandra C. Stringer
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Andrew T. Carter
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Michael W. Peck
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (S.C.S.); (A.T.C.)
| |
Collapse
|