1
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [DOI: https:/doi.org/10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Affiliation(s)
- Abolfazl Soulat
- Department of Atomic and Molecular Physics, Faculty of Sciences
- University of Mazandaran
| | - Taghi Mohsenpour
- Department of Atomic and Molecular Physics, Faculty of Sciences
- University of Mazandaran
| | - Leila Roshangar
- Department of Histology, Faculty of Medicine
- Tabriz University of Medical Sciences
| | | | - Fatemeh Soulat
- Applied Chemistry laboratory, Department of Chemistry, Faculty of Basic Science
- Azarbaijan Shahid Madani University (ASMU)
| |
Collapse
|
2
|
Shanei A, Shahedi F, Momeni S. Cold plasma enhances the generation of reactive oxygen species and the uptake of nanoparticles in cancer cells. J Taibah Univ Med Sci 2025; 20:226-233. [PMID: 40224200 PMCID: PMC11986217 DOI: 10.1016/j.jtumed.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/25/2024] [Accepted: 02/16/2025] [Indexed: 04/15/2025] Open
Abstract
Objectives Cold plasma, which is a rich source of reactive oxygen species (ROS) and also generates them when it comes into contact with cells, is being investigated for its potential to target cancer cells. ROS are crucial in causing tumor damage and are divided into long- and short-term species. Among them, the analysis of short-lived radicals such as hydroxyl radicals (HO⋅) is much more important because they are primarily responsible for biological damage and can also generate long-lived radicals. Moreover, selecting nanoparticles (NPs) to treat cancer is important; however, what matters most is how well the NPs are absorbed by the tumor. To minimize adverse effects, the challenge of many cancer treatments is selectivity. Cold plasma and gold (GNPs) were used in this study to target melanoma cells, and increase ROS production and GNP absorption. Methods The research involved testing efficiency with an MTT assay on melanoma cells and selectivity on healthy fibroblast cells. Flow cytometry measured apoptosis rates, whereas a chemical dosimeter measured the amount of free radicals generated in each treatment group. The average gold content absorbed in each cell was measured with inductively coupled plasma optical emission spectroscopy (ICP-OES) with and without cold plasma therapy. Results The findings demonstrated that while cold plasma caused cancer cells to undergo apoptosis, healthy cells remained unaffected. This effect was greatest when GNPs were used. The presence of cold plasma led to the significant production of HO⋅. Additionally, it was observed that cold plasma enhanced the uptake of GNPs in cancer cells while having no effect on healthy cells. Conclusion The findings of this study suggest that the approach of combining GNPs and cold plasma could offer an optimized targeted therapeutic option for addressing the challenges associated with melanoma management.
Collapse
Affiliation(s)
- Ahmad Shanei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Shahedi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Momeni
- Department of Radiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
3
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [PMID: 40191350 PMCID: PMC11966581 DOI: 10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
Transitional cold atmospheric plasma (TCAP) represents a novel technique for generating plasma remotely from a primary source. It consists of a partially nonthermal ionized gas mixture containing charged and neutral particles, photons, and free radicals. In recent years, TCAP has attracted considerable attention in biomedical applications. In order to evaluate colon cancer stem cells' (CCSCs) proliferation, apoptotic induction, inflammatory response, and survival, TCAP was utilized both directly and indirectly in this study. Using argon and helium gases, TCAP was continuously delivered in two stages during the experiment. For direct state, TCAP was irradiated onto CCSCs for 3 and 5 min. In the indirect technique, Matrigel was treated with TCAP for 5 min before the introduction of cells. In vitro assays demonstrated that TCAP exposure significantly reduced the viability of CCSCs; helium gas and direct application had greater impacts than argon. Numerous investigations confirmed the induction of apoptosis, showing that the treated groups had more apoptotic cells and altered cellular structures than controls (****p < 0.0001). A substantial increase in the Bax/Bcl-2 ratio was found by analyzing the expression of the Bax and Bcl-2 genes, indicating increased susceptibility to apoptosis (*p = 0.0177 and ***p = 0.0004). The higher efficacy of the direct helium mode was further highlighted by inflammatory marker analysis, which showed a significant reduction in interleukin-6 and interleukin-8 expression in cells directly treated with TCAP-helium compared to TCAP-argon (**p = 0.0015 and ***p = 0.0007). Lastly, the proliferation test, which relies on K i-67 expression, demonstrated a noteworthy decline in all TCAP-treated groups, with the direct helium group exhibiting the most robust impact (**p = 0.0014). Overall, the findings highlight the potential of TCAP, particularly with helium, as a promising approach for selectively targeting CCSCs and providing insights into its therapeutic mechanisms for cancer treatment. TCAP, therefore, emerges as a unique therapeutic strategy with potential applications in cancer stem cell-targeted therapies.
Collapse
Affiliation(s)
- Abolfazl Soulat
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Taghi Mohsenpour
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Leila Roshangar
- Department
of Histology, Faculty of Medicine, Tabriz
University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Seyyed Yaghoub Moaddab
- Liver
and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Fatemeh Soulat
- Applied
Chemistry laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), 5375171379 Tabriz, Iran
| |
Collapse
|
4
|
Holanda AGA, Francelino LEC, de Moura CEB, Alves Junior C, Matera JM, de Queiroz GF. Cold Atmospheric Plasma in Oncology: A Review and Perspectives on Its Application in Veterinary Oncology. Animals (Basel) 2025; 15:968. [PMID: 40218360 PMCID: PMC11987927 DOI: 10.3390/ani15070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Cold atmospheric plasma (CAP) is emerging as an innovative approach for cancer treatment because of its selectivity for malignant cells and absence of significant adverse effects. While modern oncological therapies face challenges such as tumor heterogeneity and treatment resistance, CAP presents itself as a low-cost and environmentally sustainable alternative. Its mechanisms of action involve reactive oxygen and nitrogen species (RONS), UV radiation, and electromagnetic fields, which induce cell death. Preclinical and clinical studies have demonstrated the efficacy of CAP, with devices such as dielectric barrier discharge (DBD) and the plasma jet developed to minimize damage to healthy cells. Some CAP devices are already approved for clinical use, showing safety and efficacy. However, the standardization of treatments remains a challenge due to the variety of devices and parameters used. Although CAP has shown promising cytotoxic effects in vitro and in animal models, especially in different cancer cell lines, further research, particularly in vivo and in veterinary medicine, is needed to optimize its clinical use and maximize its efficacy in combating cancer.
Collapse
Affiliation(s)
- André Gustavo Alves Holanda
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (A.G.A.H.); (J.M.M.)
| | - Luiz Emanuel Campos Francelino
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (L.E.C.F.); (C.E.B.d.M.)
| | - Carlos Eduardo Bezerra de Moura
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (L.E.C.F.); (C.E.B.d.M.)
| | - Clodomiro Alves Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil;
| | - Julia Maria Matera
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (A.G.A.H.); (J.M.M.)
| | - Genilson Fernandes de Queiroz
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (L.E.C.F.); (C.E.B.d.M.)
| |
Collapse
|
5
|
Rostami Z, Alizadeh-Navaei R, Golpoor M, Yazdani Z, Rafiei A. Synergistic effects of cold atmospheric plasma and doxorubicin on melanoma: A systematic review and meta-analysis. Sci Rep 2025; 15:7870. [PMID: 40050300 PMCID: PMC11885813 DOI: 10.1038/s41598-025-90508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
Melanoma is responsible for the majority of skin cancer deaths, but there are ways to combat this deadly disease. One method is using anti-neoplastic agents, such as Doxorubicin (DOX). Unfortunately, DOX can be toxic and may lead to drug resistance. However, researchers are excited about the potential of Cold Atmospheric Plasma (CAP) treatment cancer cells and overcome drug resistance selectively. To better understand the effectiveness of the combination of CAP and DOX on melanoma cell viability, cytotoxicity, and cell death, we conducted a comprehensive evaluation and meta-analysis in this study. 41 studies out of 121 met our inclusion criteria. The pooled analysis found that CAP and DOX combination had a significant effect on cell viability (ES = 6.75, 95% CI 1.65 to 11.85, and I2 = 71%) and cytotoxicity (ES = 11.71, 95% CI 3.69 to 19.73, and I2 = 56%). however, no statistically significant association was found between cell death with combination treatment. Our studies have confirmed that the combined treatment of CAP and DOX has a synergistic effect on reducing cell viability and increasing cytotoxicity in melanoma cells. These results can assist researchers in selecting more effective treatment methods to address melanoma.
Collapse
Affiliation(s)
- Zeinab Rostami
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, KM 18 Khazarabad Road, KhazarSq, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Monireh Golpoor
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, KM 18 Khazarabad Road, KhazarSq, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Yazdani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, KM 18 Khazarabad Road, KhazarSq, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, KM 18 Khazarabad Road, KhazarSq, Sari, Iran.
| |
Collapse
|
6
|
Chen CY, Chou CH, Cheng YC. The Genetic Expression Difference of A2058 Cells Treated by Plasma Direct Exposure and Plasma-Treated Medium and the Appropriate Treatment Strategy. Biomedicines 2025; 13:184. [PMID: 39857768 PMCID: PMC11762557 DOI: 10.3390/biomedicines13010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Cold atmospheric plasma (CAP) has been demonstrated as an adjustable device to generate various combinations of short-lived reactive oxygen and nitrogen species (RONS) and as a promising appliance for cancer therapy. This study investigated the effects of direct and indirect treatments of Argon-based CAP to cancer cells (A2058, A549, U2OS and BCC) and fibroblasts (NIH3T3 and L929) on cell viability. We also aimed to understand whether plasma-generated RONS were involved in this process using genetic evidence. Methods: The intensity of reactive species in the plasma gas and the concentrations of RONS in phosphate-buffered saline (PBS) and cell culture medium were measured. A viability assay was performed after the cells were treated by plasma in PBS and medium with various volumes to realize the lethal effects of plasma under different conditions. Diverse cells were treated in the same solution to compare the sensitivities of different cells to plasma treatments. The gene expression profiles of A2058 cells after the direct and indirect treatments were analyzed by next generation gene sequencing. Accordingly, we discovered the advantages of sequential treatments on cancer therapy. Results: The cumulative concentration of hydroxyterephthalic acid (HTA) revealed that the pre-existing OH radical (•OH) in PBS increased with the treatment durations. However, there was no significant increase in the concentration of HTA in culture medium. HTA was detected in the treatment interface of PBS but not medium, showing the penetration of •OH through PBS. The concentrations of H2O2 and NO2- increased with the treatment durations, but that of NO3- was low. The direct treatments caused stronger lethal effects on cancer cells under certain conditions. The fibroblasts showed higher tolerance to plasma treatments. From gene expression analysis, the initial observations showed that both treatments influenced transcription-related pathways and exhibited shared or unique cellular stress responses. The pre-treatments, especially of direct exposure, revealed better cancer inhibition. Conclusions: The anti-cancer efficiency of plasma could be enhanced by pre-treatments and by adjusting the liquid interfaces to avoid the rapid consumption of short-lived RONS in the medium. To achieve better therapeutic effects and selectivity, more evidence is necessary to find optional plasma treatments.
Collapse
Affiliation(s)
- Chao-Yu Chen
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chung-Hsien Chou
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yun-Chien Cheng
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
7
|
Zhang J, Wu T, Wang Z, Xu S, Jing X, Zhang Z, Lin J, Zhang H, Liu D, Zhou R, Guo L, Wang X, Rong M, Shao Y, Ostrikov KK. Plasma-generated RONS in liquid transferred into cryo-microneedles patch for skin treatment of melanoma. Redox Biol 2024; 75:103284. [PMID: 39059203 PMCID: PMC11332077 DOI: 10.1016/j.redox.2024.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Malignant melanoma is the most lethal form of skin cancer. As a promising anti-cancer agent, plasma-activated water (PAW) rich in reactive oxygen and nitrogen species (RONS) has shown significant potential for melanoma treatment. However, rapid decay of RONS and inefficient delivery of PAW in conventional injection methods limit its practical applications. To address this issue, here we report a new approach for the production of plasma-activated cryo-microneedles (PA-CMNs) patches using custom-designed plasma devices and processes. Our innovation is to incorporate PAW into the PA-CMNs that are fabricated using a fast cryogenic micro-molding method. It is demonstrated that PA-CMNs can be easily inserted into skin to release RONS and slow the decay of RONS thereby prolonging their bioactivity and effectiveness. The new insights into the effective melanoma treatment suggest that the rich mixture of RONS within PA-CMNs prepared by custom-developed hybrid plasma-assisted configuration induces both ferroptosis and apoptosis to selectively kill tumor cells. A significant inhibition of subcutaneous A375 melanoma growth was observed in PA-CMNs-treated tumor-bearing nude mice without any signs of systemic toxicity. The new approach based on PA-CMNs may potentially open new avenues for a broader range of disease treatments.
Collapse
Affiliation(s)
- Jishen Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Tong Wu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Shengduo Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Xixi Jing
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Zizhu Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Jiao Lin
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China.
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
8
|
Espona-Noguera A, Tampieri F, Canal C. Engineering alginate-based injectable hydrogels combined with bioactive polymers for targeted plasma-derived oxidative stress delivery in osteosarcoma therapy. Int J Biol Macromol 2024; 257:128841. [PMID: 38104678 DOI: 10.1016/j.ijbiomac.2023.128841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Reactive Oxygen and Nitrogen Species (RONS) in biological systems display hormetic effects, capable of either promoting cell regenerative effects or inducing cell death. Recently, hydrogels have emerged as a promising delivery platform for RONS generated from Cold Atmospheric Plasmas (CAP), known as Plasma-Treated Hydrogels (PTH). PTH have been proposed as an alternative therapy to conventional cancer treatments, offering reduced side effects through the controlled and localized delivery of plasma-derived RONS. In this work, we have developed alginate-based PTH with dual therapeutic action provided by plasma-derived RONS acting as selective anticancer agents for osteosarcoma treatment, and biomolecules (hyaluronic acid and gelatin) to promote stem cell-mediated bone regeneration. For this purpose, we designed a novel manufacturing process to maximize the load of plasma-derived RONS within the PTH. Then, we assessed the PTH bioactivity on osteosarcoma MG-63 cells, and human mesenchymal stem cells (hMSCs). The results showed that the PTH composed of 0.25 % alginate +1 % hyaluronic acid is the most promising formulation in osteosarcoma treatment, showing a dual-action bioactivity as a selective cytotoxic anticancer agent, and as promoter of the proliferation and osteogenic differentiation of hMSCs. These findings provide strong evidence of the significant potential of PTH in the oncological field.
Collapse
Affiliation(s)
- Albert Espona-Noguera
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain.
| | - Francesco Tampieri
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain.
| |
Collapse
|
9
|
Dezhpour A, Ghafouri H, Jafari S, Nilkar M. Effects of cold atmospheric-pressure plasma in combination with doxorubicin drug against breast cancer cells in vitro and invivo. Free Radic Biol Med 2023; 209:202-210. [PMID: 37890599 DOI: 10.1016/j.freeradbiomed.2023.10.405] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Cold atmospheric plasma (CAP) has been suggested for medical applications that can be applied indirectly through plasma-activated medium (PAM) and recently it has been introduced as an innovative therapeutic approach for all cancer types. Studies have exhibited that ROS/RNS are key factors in CAP-dependent apoptosis; nevertheless, ROS/RNS stability are weak. Combination therapy is considered an effective strategy to overcome these problems. In the present research, we revealed that the combination of CAP and doxorubicin (DOX) significantly induces the apoptosis of breast cancer cells both in vitro and in vivo. Our results indicated that both Ar and He/O2 CAP treatment as well as DOX drug alone reduced cell growth. CAP/PAM treatment in combination with DOX induced apoptosis in MCF-7 breast cancer cells and 4T1-implanted BALB/c mice, resulting in a significant increase in antitumor activity. The apoptotic effects of CAP-DOX on MCF-7 cells were inferred from altered expression of BAX and cleaved-caspase-3 which mechanistically take place through the mitochondrial pathway mediated by Bcl-2 family members. Besides, the BAX/BCL-2 ratio is significantly higher in the simultaneous treatment of CAP and DOX. This ratio was equal to 2.82 ± 0.24, 2.54 ± 0.30, and 11.27 ± 0.31 for treatment with DOX, He/O2 plasma, and combination treatment, respectively. Additionally, the tumor growth rate of He/O2-PAM + DOX and Ar-PAM + DOX treatments was significantly inhibited by PAM-injection, and the tumor growth rate of PAM alone or DOX alone was slightly reduced. It can be concluded that the effect of PAM + DOX may increase the anticancer activity and decrease the dose required for the chemotherapeutic treatment.
Collapse
Affiliation(s)
- A Dezhpour
- Department of Physics, Faculty of Science, University of Guilan, Rasht, Iran
| | - H Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | - S Jafari
- Department of Physics, Faculty of Science, University of Guilan, Rasht, Iran.
| | - M Nilkar
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000, Ghent, Belgium
| |
Collapse
|
10
|
Momeni S, Shanei A, Sazgarnia A, Azmoonfar R, Ghorbani F. Increased radiosensitivity of melanoma cells through cold plasma pretreatment mediated by ICG. JOURNAL OF RADIATION RESEARCH 2023; 64:751-760. [PMID: 37586714 PMCID: PMC10516736 DOI: 10.1093/jrr/rrad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/13/2023] [Indexed: 08/18/2023]
Abstract
Radiation therapy (RT) is the primary treatment for many cancers, but its effectiveness is reduced due to radioresistance and side effects. The study aims to investigate an emerging treatment for cancer, cold atmospheric plasma (CAP), as a selectable treatment between cancerous and healthy cells and its role in the occurrence of photodynamic therapy (PDT) utilizing indocyanine green (ICG) as a photosensitizer. We examined whether the efficiency of radiotherapy could be improved by combining CAP with ICG. The PDT effect induced by cold plasma irradiation and the radiosensitivity of ICG were investigated on DFW and HFF cell lines. Then, for combined treatment, ICG was introduced to the cells and treated with radiotherapy, followed by cold plasma treatment simultaneously and 24-h intervals. MTT and colony assays were used to determine the survival of treated cells, and flow cytometry was used to identify apoptotic cells. Despite a decrease in the survival of melanoma cells in CAP, ICG did not affect RT. Comparing the ICG + CAP group with CAP, a significant reduction in cell survival was observed, confirming the photodynamic properties of plasma utilizing ICG. The treatment outcome depends on the duration of CAP. The results for healthy and cancer cells also confirmed the selectivity of plasma function. Moreover, cold plasma sensitized melanoma cells to radiotherapy, increasing treatment efficiency. Treatment of CAP with RT can be effective in treating melanoma. The inclusion of ICG results in plasma treatment enhancement. These findings help to select an optimal strategy for a combination of plasma and radiotherapy.
Collapse
Affiliation(s)
- Sara Momeni
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ahmad Shanei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ameneh Sazgarnia
- Department of Medical Physics, Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Rasool Azmoonfar
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Farzaneh Ghorbani
- Department of Medical Physics and Radiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
11
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
12
|
Dai X, Wu J, Lu L, Chen Y. Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy. Biomol Ther (Seoul) 2023; 31:496-514. [PMID: 37641880 PMCID: PMC10468422 DOI: 10.4062/biomolther.2023.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 08/31/2023] Open
Abstract
Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiale Wu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lianghui Lu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyu Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
13
|
Songca SP. Combinations of Photodynamic Therapy with Other Minimally Invasive Therapeutic Technologies against Cancer and Microbial Infections. Int J Mol Sci 2023; 24:10875. [PMID: 37446050 DOI: 10.3390/ijms241310875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The rapid rise in research and development following the discovery of photodynamic therapy to establish novel photosensitizers and overcome the limitations of the technology soon after its clinical translation has given rise to a few significant milestones. These include several novel generations of photosensitizers, the widening of the scope of applications, leveraging of the offerings of nanotechnology for greater efficacy, selectivity for the disease over host tissue and cells, the advent of combination therapies with other similarly minimally invasive therapeutic technologies, the use of stimulus-responsive delivery and disease targeting, and greater penetration depth of the activation energy. Brought together, all these milestones have contributed to the significant enhancement of what is still arguably a novel technology. Yet the major applications of photodynamic therapy still remain firmly located in neoplasms, from where most of the new innovations appear to launch to other areas, such as microbial, fungal, viral, acne, wet age-related macular degeneration, atherosclerosis, psoriasis, environmental sanitization, pest control, and dermatology. Three main value propositions of combinations of photodynamic therapy include the synergistic and additive enhancement of efficacy, the relatively low emergence of resistance and its rapid development as a targeted and high-precision therapy. Combinations with established methods such as chemotherapy and radiotherapy and demonstrated applications in mop-up surgery promise to enhance these top three clinical tools. From published in vitro and preclinical studies, clinical trials and applications, and postclinical case studies, seven combinations with photodynamic therapy have become prominent research interests because they are potentially easily applied, showing enhanced efficacy, and are rapidly translating to the clinic. These include combinations with chemotherapy, photothermal therapy, magnetic hyperthermia, cold plasma therapy, sonodynamic therapy, immunotherapy, and radiotherapy. Photochemical internalization is a critical mechanism for some combinations.
Collapse
Affiliation(s)
- Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, Pietermaritzburg Campus, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| |
Collapse
|
14
|
Ullah N, Khan MI, Qamar A, Rehman NU, Tag elDin E, Alkhedher M, Majid A. Metrology of Ar-N 2/O 2 Mixture Atmospheric Pressure Pulsed DC Jet Plasma and its Application in Bio-Decontamination. ACS OMEGA 2023; 8:12028-12038. [PMID: 37033817 PMCID: PMC10077541 DOI: 10.1021/acsomega.2c07810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Atmospheric pressure plasma jets are gaining a lot of attention due to their widespread applications in the field of bio-decontamination, polymer modification, material processing, deposition of thin film, and nanoparticle fabrication. Herein, we are reporting the disinfection of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli bacteria using plasma jet. In this regard, Ar-O2, Ar-N2, and Ar-O2-N2 mixture plasma is generated and characterized using optical and electrical characterization. Variation in plasma parameters like electron temperature, electron density, and reactive species production is monitored with discharge parameters such as applied voltage and feed gas concentration. Results show that the peak average power consumed in Ar-O2, Ar-N2, and Ar-O2-N2 mixture plasma is found to be 4.45, 2.93, and 4.35 W respectively, at 8 kV. Moreover, it is noted that by increasing applied voltage, the electron temperature, electron density, and reactive species production also increases. It is worth noting that electron temperature increases with increase in oxygen concentration in the mixture (, while it decreases with increase in nitrogen concentration in the mixture (Ar-N2). Similarly, a decreasing trend in electron temperature is noted for Ar-O2-N2 mixture plasma. On the other hand, a decreasing trend in electron density is noted for all the mixtures. Reduction in viable colonies of Pseudomonas aeruginosa, Staphylococcus Aureus, and Escherichia coli were confirmed by the serial dilution method. The inactivation efficiency of pulsed DC plasma generated, in the Ar-N2 mixture at 8 kV and 6 KHz, was evaluated against P. aeruginosa, S. aureus and E. coli bacteria by measuring the number of surviving cells versus plasma treatment time. Results showed that after 240 s of plasma treatment, the number of survival colonies of the mentioned bacteria was reduced to less than 30 CFU/mL.
Collapse
Affiliation(s)
- Naqib Ullah
- Department
of Physics, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
- Plasma
Research Lab. Department of Physics, COMSATS
University, Islamabad, 45550, Pakistan
| | - Muhammad Ibrahim Khan
- Department
of Physics, University of Science &
Technology, Bannu, Khyber Pakhtunkhwa 28100, Pakistan
| | - Anisa Qamar
- Department
of Physics, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Najeeb-Ur Rehman
- Plasma
Research Lab. Department of Physics, COMSATS
University, Islamabad, 45550, Pakistan
| | - ElSayed Tag elDin
- Electrical
Engineering Department, Faculty of Engineering & Technology, Future University in Egypt, New Cairo 11835, Egypt
| | - Mohammad Alkhedher
- Mechanical
and Industrial Engineering Department, Abu
Dhabi University, Abu Dhabi 111188, United Arab Emirates
| | - Abdul Majid
- Department
of Physics, University of Gujrat, Gujrat 50700, Pakistan
| |
Collapse
|
15
|
Negi M, Kaushik N, Nguyen LN, Choi EH, Kaushik NK. Argon gas plasma-treated physiological solutions stimulate immunogenic cell death and eradicates immunosuppressive CD47 protein in lung carcinoma. Free Radic Biol Med 2023; 201:26-40. [PMID: 36907254 DOI: 10.1016/j.freeradbiomed.2023.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Cold atmospheric plasma-treated liquids (PTLs) exhibit selective toxicity toward tumor cells and are provoked by a cocktail of reactive oxygen and nitrogen species in such liquids. Compared to the gaseous phase, these reactive species are more persistent in the aqueous phase. This indirect plasma treatment method has gradually gathered interest in the discipline of plasma medicine to treat cancer. PTL's motivated effect on immunosuppressive proteins and immunogenic cell death (ICD) in solid cancer cells is still not explored. In this study, we aimed to induce immunomodulation by plasma-treated Ringer's lactate (PT-RL) and phosphate-buffered saline (PT-PBS) solutions for cancer treatment. PTLs induced minimum cytotoxicity in normal lung cells and inhibited cancer cell growth. ICD is confirmed by the enhanced expression of damage-associated molecular patterns (DAMPs). We evidenced that PTLs induce intracellular nitrogen oxide species accumulation and elevate immunogenicity in cancer cells owing to the production of pro-inflammatory cytokines, DAMPs, and reduced immunosuppressive protein CD47 expression. In addition, PTLs influenced A549 cells to elevate the organelles (mitochondria and lysosomes) in macrophages. Taken together, we have developed a therapeutic approach to potentially facilitate the selection of a suitable candidate for direct clinical applications.
Collapse
Affiliation(s)
- Manorma Negi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea.
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea; Laboratory of Plasma Technology, Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea; Plasade Co. Ltd., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea; Plasade Co. Ltd., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, South Korea.
| |
Collapse
|
16
|
Gonzales LISA, Qiao JW, Buffier AW, Rogers LJ, Suchowerska N, McKenzie DR, Kwan AH. An omics approach to delineating the molecular mechanisms that underlie the biological effects of physical plasma. BIOPHYSICS REVIEWS 2023; 4:011312. [PMID: 38510160 PMCID: PMC10903421 DOI: 10.1063/5.0089831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 02/24/2023] [Indexed: 03/22/2024]
Abstract
The use of physical plasma to treat cancer is an emerging field, and interest in its applications in oncology is increasing rapidly. Physical plasma can be used directly by aiming the plasma jet onto cells or tissue, or indirectly, where a plasma-treated solution is applied. A key scientific question is the mechanism by which physical plasma achieves selective killing of cancer over normal cells. Many studies have focused on specific pathways and mechanisms, such as apoptosis and oxidative stress, and the role of redox biology. However, over the past two decades, there has been a rise in omics, the systematic analysis of entire collections of molecules in a biological entity, enabling the discovery of the so-called "unknown unknowns." For example, transcriptomics, epigenomics, proteomics, and metabolomics have helped to uncover molecular mechanisms behind the action of physical plasma, revealing critical pathways beyond those traditionally associated with cancer treatments. This review showcases a selection of omics and then summarizes the insights gained from these studies toward understanding the biological pathways and molecular mechanisms implicated in physical plasma treatment. Omics studies have revealed how reactive species generated by plasma treatment preferentially affect several critical cellular pathways in cancer cells, resulting in epigenetic, transcriptional, and post-translational changes that promote cell death. Finally, this review considers the outlook for omics in uncovering both synergies and antagonisms with other common cancer therapies, as well as in overcoming challenges in the clinical translation of physical plasma.
Collapse
Affiliation(s)
- Lou I. S. A. Gonzales
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Jessica W. Qiao
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Aston W. Buffier
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | | | | | | | - Ann H. Kwan
- Author to whom correspondence should be addressed:
| |
Collapse
|
17
|
Momeni S, Shanei A, Sazgarnia A, Attaran N, Aledavood SA. The Synergistic Effect of Cold Atmospheric Plasma Mediated Gold Nanoparticles Conjugated with Indocyanine Green as An Innovative Approach to Cooperation with Radiotherapy. CELL JOURNAL 2023; 25:51-61. [PMID: 36680484 PMCID: PMC9868434 DOI: 10.22074/cellj.2022.559078.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The multimodality treatment of cancer provides a secure and effective approach to improve the outcome of treatments. Cold atmospheric plasma (CAP) has got attention because of selectively target and kills cancer cells. Likewise, gold nanoparticles (GNP) have been introduced as a radiosensitizer and drug delivery with high efficacy and low toxicity in cancer treatment. Conjugating GNP with indocyanine green (ICG) can develop a multifunctional drug to enhance radio and photosensitivity. The purpose of this study is to evaluate the anticancer effects of GNP@ICG in radiotherapy (RT) and CAP on DFW melanoma cancer and HFF fibroblast normal cell lines. MATERIALS AND METHODS In this experimental study, the cells were irradiated to RT and CAP, alone and in combination with or without GNP@ICG at various time sequences between RT and CAP. Apoptosis Annexin V/PI, MTT, and colony formation assays evaluated the therapeutic effect. Finally, the index of synergism was calculated to compare the results. RESULTS Most crucially, the cell viability assay showed that RT was less toxic to tumors and normal cells, but CAP showed a significant anti-tumor effect on melanoma cells with selective toxicity. In addition, cold plasma sensitized melanoma cells to radiotherapy so increasing treatment efficiency. This effect is enhanced with GNP@ICG. In comparison to RT alone, the data showed that combination treatment greatly decreased monolayer cell colonization and boosted apoptotic induction. CONCLUSION The results provide new insights into the development of better approaches in radiotherapy of melanoma cells assisted plasma and nanomedicine.
Collapse
Affiliation(s)
- Sara Momeni
- . Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Shanei
- . Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,P.O.Box: 8174673461Department of Medical PhysicsSchool of MedicineIsfahan University of
Medical SciencesIsfahanIran
P.O.Box: 9177948564Medical Physics Research CenterMashhad University of Medical SciencesMashhadIran
Emails:,
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,P.O.Box: 8174673461Department of Medical PhysicsSchool of MedicineIsfahan University of
Medical SciencesIsfahanIran
P.O.Box: 9177948564Medical Physics Research CenterMashhad University of Medical SciencesMashhadIran
Emails:,
| | - Neda Attaran
- Department of Medical Nanotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amir Aledavood
- Cancer Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Production, characterization, microbial inhibition, and in vivo toxicity of cold atmospheric plasma activated water. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2022.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Afrasiabi M, Tahmasebi G, Eslami E, Seydi E, Pourahmad J. Cold Atmospheric Plasma Versus Cisplatin Against Oral Squamous Cell Carcinoma: A Mitochondrial Targeting Study. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e124106. [PMID: 36942058 PMCID: PMC10024331 DOI: 10.5812/ijpr-124106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Plasma therapy and the study of the effects of cold atmospheric plasma (CAP) on tissues and living cells have been considered by scientific researchers in recent years. CAP is used in the treatment of cancer, but its anti-cancer mechanism has not been fully studied. Therefore, we studied the toxicity effect of CAP by using argon as feed gas and the synergistic effects of CAP with cisplatin on tumor cells and mitochondria isolated from tumor legions of the rat model of oral squamous cell carcinoma (OSCC). For this reason, we determined the possible toxic alterations of CAP on mitochondrial upstream events and activation of caspase-3 as the key major downstream event of apoptosis. Also, the effects of cisplatin (10 µM) as a positive control and its synergistic effects with CAP (IC50 concentration) were investigated. The results showed that CAP reduced mitochondrial dysfunction by reduction in succinate dehydrogenase (SDH) activity. Also, CAP in concentrations of 1200, 2400, and 4800 a.u. has been able to increase the level of reactive oxygen species (ROS), mitochondrial swelling, damage to the mitochondrial membrane, cytochrome c release, and activation of the final mediator of apoptosis (caspase-3) only in the OSCC group. CAP at 4800 a.u concentration had similar effects to cisplatin (10 µM). Synergistic effects between CAP (2400 a.u) and cisplatin (10 µM) have also been reported. Based on all results CAP showed positive and promising results on mitochondrial upstream parameters leading to activation of caspase-3, the final mediator of apoptosis only on OSCC cells and mitochondria without any significant effect on normal cells and mitochondria.
Collapse
Affiliation(s)
- Mona Afrasiabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Tahmasebi
- Department of Atomic/Molecular Physics, Faculty of Physics, Iran University of Science and Technology, Tehran, Iran
| | - Esmaeil Eslami
- Department of Atomic/Molecular Physics, Faculty of Physics, Iran University of Science and Technology, Tehran, Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
- Corresponding Author: Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran; Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
20
|
Combined In Vitro Toxicity and Immunogenicity of Cold Plasma and Pulsed Electric Fields. Biomedicines 2022; 10:biomedicines10123084. [PMID: 36551840 PMCID: PMC9775231 DOI: 10.3390/biomedicines10123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
In modern oncology, therapies are based on combining monotherapies to overcome treatment resistance and increase therapy precision. The application of microsecond-pulsed electric fields (PEF) is approved to enhance local chemotherapeutic drug uptake within combination electrochemotherapy regimens. Reactive oxygen species (ROS) have been implicated in anticancer effects, and cold physical plasma produces vast amounts of ROS, which have recently been shown to benefit head and neck cancer patients. PEF and cold plasma technology have been linked to immunogenic cell death (ICD) induction, a regulated cell death accompanied by sterile inflammation that promotes antitumor immunity. To this end, we investigated the combined effect of both treatments regarding their intracellular ROS accumulation, toxicity, ICD-related marker expression, and optimal exposure sequence in a leukemia model cell line. The combination treatment substantially increased ROS and intracellular glutathione levels, leading to additive cytotoxic effects accompanied by a significantly increased expression of ICD markers, such as the eat-me signal calreticulin (CRT). Preconditioned treatment with cold plasma followed by PEF exposure was the most potent treatment sequence. The results indicate additive effects of cold plasma and PEF, motivating further studies in skin and breast tumor models for the future improvement of ECT in such patients.
Collapse
|
21
|
Kim SJ, Seong MJ, Mun JJ, Bae JH, Joh HM, Chung TH. Differential Sensitivity of Melanoma Cells and Their Non-Cancerous Counterpart to Cold Atmospheric Plasma-Induced Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2022; 23:ijms232214092. [PMID: 36430569 PMCID: PMC9698967 DOI: 10.3390/ijms232214092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Despite continuous progress in therapy, melanoma is one of the most aggressive and malignant human tumors, often relapsing and metastasizing to almost all organs. Cold atmospheric plasma (CAP) is a novel anticancer tool that utilizes abundant reactive oxygen and nitrogen species (RONS) being deposited on the target cells and tissues. CAP-induced differential effects between non-cancerous and cancer cells were comparatively examined. Melanoma and non-cancerous skin fibroblast cells (counterparts; both cell types were isolated from the same patient) were used for plasma-cell interactions. The production of intracellular RONS, such as nitric oxide (NO), hydroxyl radical (•OH), and hydrogen peroxide (H2O2), increased remarkably only in melanoma cancer cells. It was observed that cancer cells morphed from spread to round cell shapes after plasma exposure, suggesting that they were more affected than non-cancerous cells in the same plasma condition. Immediately after both cell types were treated with plasma, there were no differences in the amount of extracellular H2O2 production, while Hanks' balanced salt solution-containing cancer cells had lower concentrations of H2O2 than that of non-cancerous cells at 1 h after treatment. The melanoma cells seemed to respond to CAP treatment with a greater rise in RONS and a higher consumption rate of H2O2 than homologous non-cancerous cells. These results suggest that differential sensitivities of non-cancerous skin and melanoma cells to CAP-induced RONS can enable the applicability of CAP in anticancer therapy.
Collapse
|
22
|
Nonthermal Plasma Effects on Fungi: Applications, Fungal Responses, and Future Perspectives. Int J Mol Sci 2022; 23:ijms231911592. [PMID: 36232892 PMCID: PMC9569944 DOI: 10.3390/ijms231911592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The kingdom of Fungi is rich in species that live in various environments and exhibit different lifestyles. Many are beneficial and indispensable for the environment and industries, but some can threaten plants, animals, and humans as pathogens. Various strategies have been applied to eliminate fungal pathogens by relying on chemical and nonchemical antifungal agents and tools. Nonthermal plasma (NTP) is a potential tool to inactivate pathogenic and food-contaminating fungi and genetically improve fungal strains used in industry as enzyme and metabolite producers. The NTP mode of action is due to many highly reactive species and their interactions with biological molecules. The interaction of the NTP with living cells is believed to be synergistic yet not well understood. This review aims to summarize the current NTP designs, applications, and challenges that involve fungi, as well as provide brief descriptions of underlying mechanisms employed by fungi in interactions with the NTP components.
Collapse
|
23
|
Gunes S, He Z, Tsoukou E, Ng SW, Boehm D, Pinheiro Lopes B, Bourke P, Malone R, Cullen PJ, Wang W, Curtin J. Cell death induced in glioblastoma cells by Plasma-Activated-Liquids (PAL) is primarily mediated by membrane lipid peroxidation and not ROS influx. PLoS One 2022; 17:e0274524. [PMID: 36137100 PMCID: PMC9498962 DOI: 10.1371/journal.pone.0274524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/28/2022] [Indexed: 12/24/2022] Open
Abstract
Since first identified in 1879, plasma, the fourth state of matter, has been developed and utilised in many fields. Nonthermal atmospheric plasma, also known as cold plasma, can be applied to liquids, where plasma reactive species such as reactive Oxygen and Nitrogen species and their effects can be retained and mediated through plasma-activated liquids (PAL). In the medical field, PAL is considered promising for wound treatment, sterilisation and cancer therapy due to its rich and relatively long-lived reactive species components. This study sought to identify any potential antagonistic effect between antioxidative intracellularly accumulated platinum nanoparticles (PtNPs) and PAL. We found that PAL can significantly reduce the viability of glioblastoma U-251MG cells. This did not involve measurable ROS influx but instead lead to lipid damage on the plasma membrane of cells exposed to PAL. Although the intracellular antioxidative PtNPs showed no protective effect against PAL, this study contributes to further understanding of principle cell killing routes of PAL and discovery of potential PAL-related therapy and methods to inhibit side effects.
Collapse
Affiliation(s)
- Sebnem Gunes
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Dublin, Ireland
- * E-mail: (JC); (SG)
| | - Zhonglei He
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Evanthia Tsoukou
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Dublin, Ireland
| | - Sing Wei Ng
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Dublin, Ireland
- Plasma Research Group, School of Biosystems and Food Engineering, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Daniela Boehm
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Dublin, Ireland
| | - Beatriz Pinheiro Lopes
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Dublin, Ireland
| | - Paula Bourke
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Dublin, Ireland
- Plasma Research Group, School of Biosystems and Food Engineering, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Renee Malone
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Patrick J. Cullen
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - James Curtin
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Dublin, Ireland
- Faculty of Engineering and Built Environment, Technological University Dublin, Dublin, Ireland
- * E-mail: (JC); (SG)
| |
Collapse
|
24
|
Qin J, Zhang J, Fan G, Wang X, Zhang Y, Wang L, Zhang Y, Guo Q, Zhou J, Zhang W, Ma J. Cold Atmospheric Plasma Activates Selective Photothermal Therapy of Cancer. Molecules 2022; 27:molecules27185941. [PMID: 36144674 PMCID: PMC9502787 DOI: 10.3390/molecules27185941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the body’s systemic distribution of photothermal agents (PTAs), and to the imprecise exposure of lasers, photothermal therapy (PTT) is challenging to use in treating tumor sites selectively. Striving for PTT with high selectivity and precise treatment is nevertheless important, in order to raise the survival rate of cancer patients and lower the likelihood of adverse effects on other body sections. Here, we studied cold atmospheric plasma (CAP) as a supplementary procedure to enhance selectivity of PTT for cancer, using the classical photothermic agent’s gold nanostars (AuNSs). In in vitro experiments, CAP decreases the effective power of PTT: the combination of PTT with CAP at lower power has similar cytotoxicity to that using higher power irradiation alone. In in vivo experiments, combination therapy can achieve rapid tumor suppression in the early stages of treatment and reduce side effects to surrounding normal tissues, compared to applying PTT alone. This research provides a strategy for the use of selective PTT for cancer, and promotes the clinical transformation of CAP.
Collapse
Affiliation(s)
- Jiamin Qin
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jingqi Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Guojuan Fan
- Department of Skin, Weifang Hospital of Traditional Chinese Medicine, Weifang 261000, China
| | - Xiaoxia Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yuzhong Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Ling Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yapei Zhang
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Qingfa Guo
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| | - Jin Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| | - Weifen Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| | - Jinlong Ma
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| |
Collapse
|
25
|
Perrotti V, Caponio VCA, Muzio LL, Choi EH, Marcantonio MCD, Mazzone M, Kaushik NK, Mincione G. Open Questions in Cold Atmospheric Plasma Treatment in Head and Neck Cancer: A Systematic Review. Int J Mol Sci 2022; 23:ijms231810238. [PMID: 36142145 PMCID: PMC9498988 DOI: 10.3390/ijms231810238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022] Open
Abstract
Over the past decade, we witnessed a promising application of cold atmospheric plasma (CAP) in cancer therapy. The aim of this systematic review was to provide an exhaustive state of the art of CAP employed for the treatment of head and neck cancer (HNC), a tumor whose late diagnosis, local recurrence, distant metastases, and treatment failure are the main causes of patients’ death. Specifically, the characteristics and settings of the CAP devices and the in vitro and in vivo treatment protocols were summarized to meet the urgent need for standardization. Its molecular mechanisms of action, as well as the successes and pitfalls of current CAP applications in HNC, were discussed. Finally, the interesting emerging preclinical hypotheses that warrant further clinical investigation have risen. A total of 24 studies were included. Most studies used a plasma jet device (54.2%). Argon resulted as the mostly employed working gas (33.32%). Direct and indirect plasma application was reported in 87.5% and 20.8% of studies, respectively. In vitro investigations were 79.17%, most of them concerned with direct treatment (78.94%). Only eight (33.32%) in vivo studies were found; three were conducted in mice, and five on human beings. CAP showed pro-apoptotic effects more efficiently in tumor cells than in normal cells by altering redox balance in a way that oxidative distress leads to cell death. In preclinical studies, it exhibited efficacy and tolerability. Results from this systematic review pointed out the current limitations of translational application of CAP in the urge of standardization of the current protocols while highlighting promising effects as supporting treatment in HNC.
Collapse
Affiliation(s)
- Vittoria Perrotti
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | | | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Mariangela Mazzone
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
26
|
Kumar Dubey S, Dabholkar N, Narayan Pal U, Singhvi G, Kumar Sharma N, Puri A, Kesharwani P. Emerging innovations in cold plasma therapy against cancer: A paradigm shift. Drug Discov Today 2022; 27:2425-2439. [PMID: 35598703 PMCID: PMC9420777 DOI: 10.1016/j.drudis.2022.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
Cancer is one of the major causes of mortality, accounting for ∼ 9.5 million deaths globally in 2018. The spectrum of conventional treatment for cancer includes surgery, chemotherapy and radiotherapy. Recently, cold plasma therapy surfaced as a novel technique in the treatment of cancer. The FDA approval of the first trial for the use of cold atmospheric plasma (CAP) in cancer therapy in 2019 is evidence of this. This review highlights the mechanisms of action of CAP. Additionally, its applications in anticancer therapy have been reviewed. In summary, this article will introduce the readers to the exciting field of plasma oncology and help them understand the current status and prospects of plasma oncology.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- R&D Healthcare Division, Emami, 13 BT Road, Belgharia, Kolkata 700056, India.
| | - Neha Dabholkar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Udit Narayan Pal
- Council of Scientific and Industrial Research (CSIR)-Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Navin Kumar Sharma
- School of Physics, Devi Ahilya Vishwavidyalaya, Indore, Madhya Pradesh 452001, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute - Frederick, Frederick, MD 21702, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
27
|
Miebach L, Freund E, Cecchini AL, Bekeschus S. Conductive Gas Plasma Treatment Augments Tumor Toxicity of Ringer's Lactate Solutions in a Model of Peritoneal Carcinomatosis. Antioxidants (Basel) 2022; 11:antiox11081439. [PMID: 35892641 PMCID: PMC9331608 DOI: 10.3390/antiox11081439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Reactive species generated by medical gas plasma technology can be enriched in liquids for use in oncology targeting disseminated malignancies, such as metastatic colorectal cancer. Notwithstanding, reactive species quantities depend on the treatment mode, and we recently showed gas plasma exposure in conductive modes to be superior for cancer tissue treatment. However, evidence is lacking that such a conductive mode also equips gas plasma-treated liquids to confer augmented intraperitoneal anticancer activity. To this end, employing atmospheric pressure argon plasma jet kINPen-treated Ringer's lactate (oxRilac) in a CT26-model of colorectal peritoneal carcinomatosis, we tested repeated intraabdominal injection of such remotely or conductively oxidized liquid for antitumor control and immunomodulation. Enhanced reactive species formation in conductive mode correlated with reduced tumor burden in vivo, emphasizing the advantage of conduction over the free mode for plasma-conditioned liquids. Interestingly, the infiltration of lymphocytes into the tumors was equally enhanced by both treatments. However, significantly lower levels of interleukin (IL)4 and IL13 and increased levels of IL2 argue for a shift in intratumoral T-helper cell subpopulations correlating with disease control. In conclusion, our data argue for using conductively over remotely prepared plasma-treated liquids for anticancer treatment.
Collapse
Affiliation(s)
- Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Alessandra Lourenço Cecchini
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil;
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (E.F.)
- Correspondence: ; Tel.: +49-3834-554-3948
| |
Collapse
|
28
|
Tan F, Wang Y, Zhang S, Shui R, Chen J. Plasma Dermatology: Skin Therapy Using Cold Atmospheric Plasma. Front Oncol 2022; 12:918484. [PMID: 35903680 PMCID: PMC9314643 DOI: 10.3389/fonc.2022.918484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Cold atmospheric plasma-based plasma medicine has been expanding the diversity of its specialties. As an emerging branch, plasma dermatology takes advantage of the beneficial complexity of plasma constituents (e.g., reactive oxygen and nitrogen species, UV photons, and electromagnetic emission), technical versatility (e.g., direct irradiation and indirect aqueous treatment), and practical feasibility (e.g., hand-held compact device and clinician-friendly operation). The objective of this comprehensive review is to summarize recent advances in the CAP-dominated skin therapy by broadly covering three aspects. We start with plasma optimisation of intact skin, detailing the effect of CAP on skin lipids, cells, histology, and blood circulation. We then conduct a clinically oriented and thorough dissection of CAP treatment of various skin diseases, focusing on the wound healing, inflammatory disorders, infectious conditions, parasitic infestations, cutaneous malignancies, and alopecia. Finally, we conclude with a brief analysis on the safety aspect of CAP treatment and a proposal on how to mitigate the potential risks. This comprehensive review endeavors to serve as a mini textbook for clinical dermatologists and a practical manual for plasma biotechnologists. Our collective goal is to consolidate plasma dermatology’s lead in modern personalized medicine.
Collapse
Affiliation(s)
- Fei Tan
- Department of Otorhinolaryngology and Head & Neck Surgery (ORL-HNS), Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
- *Correspondence: Fei Tan,
| | - Yang Wang
- Department of Pathology, Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Shiqun Zhang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Runying Shui
- Department of Surgery, Department of Dermatology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jianghan Chen
- Department of Surgery, Department of Dermatology, Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Solé-Martí X, Vilella T, Labay C, Tampieri F, Ginebra MP, Canal C. Thermosensitive hydrogels to deliver reactive species generated by cold atmospheric plasma: a case study with methylcellulose. Biomater Sci 2022; 10:3845-3855. [PMID: 35678531 DOI: 10.1039/d2bm00308b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydrogels have been recently proposed as suitable materials to generate reactive oxygen and nitrogen species (RONS) upon gas-plasma treatment, and postulated as promising alternatives to conventional cancer therapies. Acting as delivery vehicles that allow a controlled release of RONS to the diseased site, plasma-treated hydrogels can overcome some of the limitations presented by plasma-treated liquids in in vivo therapies. In this work, we optimized the composition of a methylcellulose (MC) hydrogel to confer it with the ability to form a gel at physiological temperatures while remaining in the liquid phase at room temperature to allow gas-plasma treatment with suitable formation of plasma-generated RONS. MC hydrogels demonstrated the capacity for generation, prolonged storage and release of RONS. This release induced cytotoxic effects on the osteosarcoma cancer cell line MG-63, reducing its cell viability in a dose-response manner. These promising results postulate plasma-treated thermosensitive hydrogels as good candidates to provide local anticancer therapies.
Collapse
Affiliation(s)
- Xavi Solé-Martí
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Tània Vilella
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
| | - Cédric Labay
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Francesco Tampieri
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixach 10-12, 08028 Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
30
|
Mihai CT, Mihaila I, Pasare MA, Pintilie RM, Ciorpac M, Topala I. Cold Atmospheric Plasma-Activated Media Improve Paclitaxel Efficacy on Breast Cancer Cells in a Combined Treatment Model. Curr Issues Mol Biol 2022; 44:1995-2014. [PMID: 35678664 PMCID: PMC9164030 DOI: 10.3390/cimb44050135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
The use of plasma-activated media (PAM), an alternative to direct delivery of cold atmospheric plasma to cancer cells, has recently gained interest in the plasma medicine field. Paclitaxel (PTX) is used as a chemotherapy of choice for various types of breast cancers, which is the leading cause of mortality in females due to cancer. In this study, we evaluated an alternative way to improve anti-cancerous efficiency of PTX by association with PAM, the ultimate achievement being a better outcome in killing tumoral cells at smaller doses of PTX. MCF-7 and MDA-MB-231 cell lines were used, and the outcome was measured by cell viability (MTT assay), the survival rate (clonogenic assay), apoptosis occurrence, and genotoxicity (COMET assay). Treatment consisted of the use of PAM in combination with under IC50 doses of PTX in short- and long-term models. The experimental data showed that PAM had the capacity to improve PTX's cytotoxicity, as viability of the breast cancer cells dropped, an effect maintained in long-term experiments. A higher frequency of apoptotic, dead cells, and DNA fragmentation was registered in cells treated with the combined treatment as compared with those treated only with PT. Overall, PAM had the capacity to amplify the anti-cancerous effect of PTX.
Collapse
Affiliation(s)
- Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Ilarion Mihaila
- Integrated Centre of Environmental Science Studies in the North-Eastern Development Region (CERNESIM), Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania;
| | - Maria Antoanela Pasare
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Robert Mihai Pintilie
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Mitica Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Ionut Topala
- Iasi Plasma Advanced Research Centre (IPARC), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I blvd., 700506 Iasi, Romania
| |
Collapse
|
31
|
Erfani R, Carmichael C, Sofokleous T, Wang Q. Nanosecond-pulsed DBD plasma treatment on human leukaemia Jurkat cells and monoblastic U937 cells in vitro. Sci Rep 2022; 12:6270. [PMID: 35428374 PMCID: PMC9012873 DOI: 10.1038/s41598-022-10056-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
Plasma therapy offers an exciting and novel way of cancer treatment. Specifically, it is shown that Jurkat death rates are closely governed by the plasma treatment time. However, apart from time, alterations to different parameters of treatment process may yield better results. Here, Dielectric barrier discharge (DBD) reactors excited by a nanosecond-pulse energy source are used to investigate cell viability for longer exposure times as well as the effects of polarity of reactor on treatment. Plasma discharge regimes are discussed and assessed using imaging and thermal imaging methods. We found that by changing the polarity of reactor i.e. changing the direction of plasma discharge, the plasma discharge regime changes influencing directly the effectiveness of treatment. Our results showed that ns-DBD- reactor could induce both apoptosis and necrosis of human Jurkat and U937 cells, and this cytotoxic effect of plasma was not completely antagonized by N-acetyl cysteine. It indicates that plasma could induce ROS-independent cell death. Gene expression analyses revealed that p53, BAD, BID and caspase 9 may play vital roles in plasma caused cell death. In addition, our findings demonstrate how different parameters can influence the effectiveness of our reactors. Our assay reveals the custom ability nature of plasma reactors for hematologic cancer therapy and our findings can be used for further development of such reactors using multi-objective optimisation techniques.
Collapse
Affiliation(s)
- Rasool Erfani
- Department of Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK. .,Department of Civil, Environmental and Geomatic Engineering, UCL, London, WC1E 6BT, UK.
| | - Cameron Carmichael
- Department of Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Thea Sofokleous
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Qiuyu Wang
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| |
Collapse
|
32
|
Comparison of the Biological Properties of Plasma-Treated Solution and Solution of Chemical Reagents. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Presently, plasma-treated solutions (PTS) are widely introduced into medicine. Plasma-activated solutions contain various reactive forms of oxygen and nitrogen which provide the desired biological effects. Yet it remains unclear exactly which components of the treated solution are the most important and what the difference is between the plasma-treated solution and a chemically prepared solution composed of the same components. In this work, we show that the chemically prepared mixture of nitrites, nitrates, and hydrogen peroxide with concentrations similar to the plasma-treated solution exerts a fundamentally different effect on a cell culture. The chemically prepared solution has higher cyto- and genotoxicity and causes necrosis, while under the action of the plasma-treated solution, apoptotic processes develop in the cells slowly.
Collapse
|
33
|
Choi EH, Kaushik NK, Hong YJ, Lim JS, Choi JS, Han I. Plasma bioscience for medicine, agriculture and hygiene applications. THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2022; 80:817-851. [PMID: 35261432 PMCID: PMC8895076 DOI: 10.1007/s40042-022-00442-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Nonthermal biocompatible plasma (NBP) sources operating in atmospheric pressure environments and their characteristics can be used for plasma bioscience, medicine, and hygiene applications, especially for COVID-19 and citizen. This review surveyed the various NBP sources, including a plasma jet, micro-DBD (dielectric barrier discharge) and nanosecond discharged plasma. The electron temperatures and the plasma densities, which are produced using dielectric barrier discharged electrode systems, can be characterized as 0.7 ~ 1.8 eV and (3-5) × 1014-15 cm-3, respectively. Herein, we introduce a general schematic view of the plasma ultraviolet photolysis of water molecules for reactive oxygen and nitrogen species (RONS) generation inside biological cells or living tissues, which would be synergistically important with RONS diffusive propagation into cells or tissues. Of the RONS, the hydroxyl radical [OH] and hydrogen peroxide H2O2 species would mainly result in apoptotic cell death with other RONS in plasma bioscience and medicines. The diseased biological protein, cancer, and mutated cells could be treated by using a NBP or plasma activated water (PAW) resulting in their apoptosis for a new paradigm of plasma medicine.
Collapse
Affiliation(s)
- Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Young June Hong
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Jun Sup Lim
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Jin Sung Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| | - Ihn Han
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center and Applied Plasma Medicine Center, Kwangwoon University, Seoul, 01897 Korea
| |
Collapse
|
34
|
Zhong X, Yang Y, Li B, Liang P, Huang Y, Zheng Q, Wang Y, Xiao X, Mo Y, Zhang Z, Zhou X, Huang G, Zhao W. Downregulation of SLC27A6 by DNA Hypermethylation Promotes Proliferation but Suppresses Metastasis of Nasopharyngeal Carcinoma Through Modulating Lipid Metabolism. Front Oncol 2022; 11:780410. [PMID: 35047398 PMCID: PMC8761909 DOI: 10.3389/fonc.2021.780410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid is the building block and an important source of energy, contributing to the malignant behavior of tumor cells. Recent studies suggested that lipid droplets (LDs) accumulations were associated with nasopharyngeal carcinoma (NPC) progression. Solute carrier family 27 member 6 (SLC27A6) mediates the cellular uptake of long-chain fatty acid (LCFA), a necessary lipid component. However, the functions of SLC27A6 in NPC remain unknown. Here, we found a significant reduction of SLC27A6 mRNA in NPC tissues compared with normal nasopharyngeal epithelia (NNE). The promoter methylation ratio of SLC27A6 was greater in NPC than in non-cancerous tissues. The demethylation reagent 5-aza-2'-deoxycytidine (5-aza-dC) remarkably restored the mRNA expression of SLC27A6, suggesting that this gene was downregulated in NPC owing to DNA promoter hypermethylation. Furthermore, SLC27A6 overexpression level in NPC cell lines led to significant suppression of cell proliferation, clonogenicity in vitro, and tumorigenesis in vivo. Higher SLC27A6 expression, on the other hand, promoted NPC cell migration and invasion. In particular, re-expression of SLC27A6 faciliated epithelial-mesenchymal transition (EMT) signals in xenograft tumors. Furthermore, we observed that SLC27A6 enhanced the intracellular amount of triglyceride (TG) and total cholesterol (T-CHO) in NPC cells, contributing to lipid biosynthesis and increasing metastatic potential. Notably, the mRNA level of SLC27A6 was positively correlated with cancer stem cell (CSC) markers, CD24 and CD44. In summary, DNA promoter hypermethylation downregulated the expression of SLC27A6. Furthermore, re-expression of SLC27A6 inhibited the growth capacity of NPC cells but strengthened the CSC markers. Our findings revealed the dual role of SLC27A6 in NPC and shed novel light on the link between lipid metabolism and CSC maintenance.
Collapse
Affiliation(s)
- Xuemin Zhong
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Yanping Yang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Bo Li
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Yiying Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian Zheng
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Yifang Wang
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.,Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Weilin Zhao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
35
|
Aggelopoulos CA, Christodoulou AM, Tachliabouri M, Meropoulis S, Christopoulou ME, Karalis TT, Chatzopoulos A, Skandalis SS. Cold Atmospheric Plasma Attenuates Breast Cancer Cell Growth Through Regulation of Cell Microenvironment Effectors. Front Oncol 2022; 11:826865. [PMID: 35111687 PMCID: PMC8801750 DOI: 10.3389/fonc.2021.826865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer exists in multiple subtypes some of which still lack a targeted and effective therapy. Cold atmospheric plasma (CAP) has been proposed as an emerging anti-cancer treatment modality. In this study, we investigated the effects of direct and indirect CAP treatment driven by the advantageous nanosecond pulsed discharge on breast cancer cells of different malignant phenotypes and estrogen receptor (ER) status, a major factor in the prognosis and therapeutic management of breast cancer. The main CAP reactive species in liquid (i.e. H2O2, NO2−/NO3−) and gas phase were determined as a function of plasma operational parameters (i.e. treatment time, pulse voltage and frequency), while pre-treatment with the ROS scavenger NAC revealed the impact of ROS in the treatment. CAP treatment induced intense phenotypic changes and apoptosis in both ER+ and ER- cells, which is associated with the mitochondrial pathway as evidenced by the increased Bax/Bcl-2 ratio and cleavage of PARP-1. Interestingly, CAP significantly reduced CD44 protein expression (a major cancer stem cell marker and matrix receptor), while differentially affected the expression of proteases and inflammatory mediators. Collectively, the findings of the present study suggest that CAP suppresses breast cancer cell growth and regulates several effectors of the tumor microenvironment and thus it could represent an efficient therapeutic approach for distinct breast cancer subtypes.
Collapse
Affiliation(s)
- Christos A. Aggelopoulos
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
- *Correspondence: Christos A. Aggelopoulos, ; Spyros S. Skandalis,
| | - Anna-Maria Christodoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Myrsini Tachliabouri
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Stauros Meropoulis
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
| | - Maria-Elpida Christopoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Theodoros T. Karalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Athanasios Chatzopoulos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Spyros S. Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- *Correspondence: Christos A. Aggelopoulos, ; Spyros S. Skandalis,
| |
Collapse
|
36
|
Laroussi M, Bekeschus S, Keidar M, Bogaerts A, Fridman A, Lu XP, Ostrikov KK, Hori M, Stapelmann K, Miller V, Reuter S, Laux C, Mesbah A, Walsh J, Jiang C, Thagard SM, Tanaka H, Liu DW, Yan D, Yusupov M. Low Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3135118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Pavlik T, Gusein-Zade N. Characterizing the biological effects of plasma-activated physiological saline. PLASMA MEDICINE 2022. [DOI: 10.1615/plasmamed.2022042354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Zahedian S, Hekmat A, Tackallou SH, Ghoranneviss M. The Impacts of Prepared Plasma-Activated Medium (PAM) Combined with Doxorubicin on the Viability of MCF-7 Breast Cancer Cells: A New Cancer Treatment Strategy. Rep Biochem Mol Biol 2022; 10:640-652. [PMID: 35291609 PMCID: PMC8903366 DOI: 10.52547/rbmb.10.4.640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/26/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND For many years, the chemotherapeutic agent doxorubicin (DOX) has been used to treat various cancers; however, DOX initiates several critical adverse effects. Many studies have reported that non-thermal atmospheric pressure plasma can provide novel, but challenging, treatment strategies for cancer patients. To date, tissues and cells have been treated with plasma-activated medium (PAM) as a practical therapy. Consequently, due to the harmful adverse effects of DOX, we were motivated to elucidate the impact of PAM in the presence of DOX on MCF-7 cell proliferation. METHODS MTT assay, N-acetyl-L-cysteine (NAC) assay, and flow cytometry analysis were utilized in this research. RESULTS The results demonstrated that 0.45 µM DOX combined with 3-min PAM significantly induced apoptosis (p< 0.01) through intracellular ROS generation in MCF-7 when compared with 0.45 µM DOX alone or 3-min PAM alone. In contrast, after treatment with 0.45 µM DOX plus 4-min PAM, cell necrosis was increased. Hence, DOX combined with 4-min PAM has cytotoxic effects with different mechanisms than 4-min PAM alone, in which the number of apoptotic cells increases. CONCLUSION Although further investigations are crucial, low doses of DOX plus 3-min PAM could be a promising strategy for cancer therapy. The findings from this research may offer advantageous and innovative clinical strategies for cancer therapy using PAM.
Collapse
Affiliation(s)
- Setareh Zahedian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Corresponding author: Azadeh Hekmat; Tel: +98 21 44865309; E-mail:
| | | | - Mahmood Ghoranneviss
- Department of Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
39
|
Tan J, Karwe MV. Inactivation of Enterobacter aerogenes on the surfaces of fresh-cut purple lettuce, kale, and baby spinach leaves using plasma activated mist (PAM). INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Ma M, Cheng H, Sun F, Lu X, He G, Laroussi M. Differences in Cytotoxicity Induced by Cold Atmospheric Plasma and Exogenous RONS Solutions on Human Keratinocytes and Melanoma Cells. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3043540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Freund E, Bekeschus S. Gas Plasma-Oxidized Liquids for Cancer Treatment: Preclinical Relevance, Immuno-Oncology, and Clinical Obstacles. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3029982] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Patient-Derived Human Basal and Cutaneous Squamous Cell Carcinoma Tissues Display Apoptosis and Immunomodulation following Gas Plasma Exposure with a Certified Argon Jet. Int J Mol Sci 2021; 22:ijms222111446. [PMID: 34768877 PMCID: PMC8584092 DOI: 10.3390/ijms222111446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) have been subject of increasing interest in the pathophysiology and therapy of cancers in recent years. In skin cancer, ROS are involved in UV-induced tumorigenesis and its targeted treatment via, e.g., photodynamic therapy. Another recent technology for topical ROS generation is cold physical plasma, a partially ionized gas expelling dozens of reactive species onto its treatment target. Gas plasma technology is accredited for its wound-healing abilities in Europe, and current clinical evidence suggests that it may have beneficial effects against actinic keratosis. Since the concept of hormesis dictates that low ROS levels perform signaling functions, while high ROS levels cause damage, we investigated herein the antitumor activity of gas plasma in non-melanoma skin cancer. In vitro, gas plasma exposure diminished the metabolic activity, preferentially in squamous cell carcinoma cell (SCC) lines compared to non-malignant HaCaT cells. In patient-derived basal cell carcinoma (BCC) and SCC samples treated with gas plasma ex vivo, increased apoptosis was found in both cancer types. Moreover, the immunomodulatory actions of gas plasma treatment were found affecting, e.g., the expression of CD86 and the number of regulatory T-cells. The supernatants of these ex vivo cultured tumors were quantitatively screened for cytokines, chemokines, and growth factors, identifying CCL5 and GM-CSF, molecules associated with skin cancer metastasis, to be markedly decreased. These findings suggest gas plasma treatment to be an interesting future technology for non-melanoma skin cancer topical therapy.
Collapse
|
43
|
Multi-Modal Biological Destruction by Cold Atmospheric Plasma: Capability and Mechanism. Biomedicines 2021; 9:biomedicines9091259. [PMID: 34572443 PMCID: PMC8465976 DOI: 10.3390/biomedicines9091259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/07/2023] Open
Abstract
Cold atmospheric plasma (CAP) is a near-room-temperature, partially ionized gas composed of reactive neutral and charged species. CAP also generates physical factors, including ultraviolet (UV) radiation and thermal and electromagnetic (EM) effects. Studies over the past decade demonstrated that CAP could effectively induce death in a wide range of cell types, from mammalian to bacterial cells. Viruses can also be inactivated by a CAP treatment. The CAP-triggered cell-death types mainly include apoptosis, necrosis, and autophagy-associated cell death. Cell death and virus inactivation triggered by CAP are the foundation of the emerging medical applications of CAP, including cancer therapy, sterilization, and wound healing. Here, we systematically analyze the entire picture of multi-modal biological destruction by CAP treatment and their underlying mechanisms based on the latest discoveries particularly the physical effects on cancer cells.
Collapse
|
44
|
Abstract
Cold atmospheric plasma (CAP) is an ionized gas, the product of a non-equilibrium discharge at atmospheric conditions. Both chemical and physical factors in CAP have been demonstrated to have unique biological impacts in cancer treatment. From a chemical-based perspective, the anti-cancer efficacy is determined by the cellular sensitivity to reactive species. CAP may also be used as a powerful anti-cancer modality based on its physical factors, mainly EM emission. Here, we delve into three CAP cancer treatment approaches, chemically based direct/indirect treatment and physical-based treatment by discussing their basic principles, features, advantages, and drawbacks. This review does not focus on the molecular mechanisms, which have been widely introduced in previous reviews. Based on these approaches and novel adaptive plasma concepts, we discuss the potential clinical application of CAP cancer treatment using a critical evaluation and forward-looking perspectives.
Collapse
|
45
|
Cold Atmospheric Plasma Changes the Amino Acid Composition of Solutions and Influences the Anti-Tumor Effect on Melanoma Cells. Int J Mol Sci 2021; 22:ijms22157886. [PMID: 34360651 PMCID: PMC8346059 DOI: 10.3390/ijms22157886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Cold Atmospheric Plasma (CAP) is an ionized gas near room temperature. Its anti-tumor effect can be transmitted either by direct treatment or mediated by a plasma-treated solution (PTS), such as treated standard cell culture medium, which contains different amino acids, inorganic salts, vitamins and other substances. Despite extensive research, the active components in PTS and its molecular or cellular mechanisms are not yet fully understood. The purpose of this study was the measurement of the reactive species in PTS and their effect on tumor cells using different plasma modes and treatment durations. The PTS analysis yielded mode- and dose-dependent differences in the production of reactive oxygen and nitrogen species (RONS), and in the decomposition and modification of the amino acids Tyrosine (Tyr) and Tryptophan (Trp). The Trp metabolites Formylkynurenine (FKyn) and Kynurenine (Kyn) were produced in PTS with the 4 kHz (oxygen) mode, inducing apoptosis in Mel Im melanoma cells. Nitrated derivatives of Trp and Tyr were formed in the 8 kHz (nitrogen) mode, elevating the p16 mRNA expression and senescence-associated ß-Galactosidase staining. In conclusion, the plasma mode has a strong impact on the composition of the active components in PTS and affects its anti-tumor mechanism. These findings are of decisive importance for the development of plasma devices and the effectiveness of tumor treatment.
Collapse
|
46
|
Head and Neck Cancer Cell Death due to Mitochondrial Damage Induced by Reactive Oxygen Species from Nonthermal Plasma-Activated Media: Based on Transcriptomic Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9951712. [PMID: 34306318 PMCID: PMC8281449 DOI: 10.1155/2021/9951712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
Mitochondrial targeted therapy is a next-generation therapeutic approach for cancer that is refractory to conventional treatments. Mitochondrial damage caused by the excessive accumulation of reactive oxygen species (ROS) is a principle of mitochondrial targeted therapy. ROS in nonthermal plasma-activated media (NTPAM) are known to mediate anticancer effects in various cancers including head and neck cancer (HNC). However, the signaling mechanism of HNC cell death via NTPAM-induced ROS has not been fully elucidated. This study evaluated the anticancer effects of NTPAM in HNC and investigated the mechanism using transcriptomic analysis. The viability of HNC cells decreased after NTPAM treatment due to enhanced apoptosis. A human fibroblast cell line and three HNC cell lines were profiled by RNA sequencing. In total, 1 610 differentially expressed genes were identified. Pathway analysis showed that activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) were upstream regulators. Mitochondrial damage was induced by NTPAM, which was associated with enhancements of mitochondrial ROS (mtROS) and ATF4/CHOP regulation. These results suggest that NTPAM induces HNC cell death through the upregulation of ATF4/CHOP activity by damaging mitochondria via excessive mtROS accumulation, similar to mitochondrial targeted therapy.
Collapse
|
47
|
Tomić S, Petrović A, Puač N, Škoro N, Bekić M, Petrović ZL, Čolić M. Plasma-Activated Medium Potentiates the Immunogenicity of Tumor Cell Lysates for Dendritic Cell-Based Cancer Vaccines. Cancers (Basel) 2021; 13:1626. [PMID: 33915703 PMCID: PMC8037863 DOI: 10.3390/cancers13071626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/03/2023] Open
Abstract
Autologous dendritic cells (DCs)-based vaccines are considered quite promising for cancer immunotherapy due to their exquisite potential to induce tumor antigen-specific cytotoxic T cells. However, a lack of efficient protocols for inducing immunogenic tumor antigens limits the efficacy of DC-based cancer vaccines. Here, we found that a plasma-activated medium (PAM) induces immunogenic cell death (ICD) in tumor cells but not in an immortalized L929 cell line or human peripheral blood mononuclear cells. PAM induced an accumulation of reactive oxygen species (ROS), autophagy, apoptosis, and necrosis in a concentration-dependent manner. The tumor lysates prepared after PAM treatment displayed increased immunogenicity in a model of human monocyte-derived DCs, compared to the lysates prepared by a standard freezing/thawing method. Mature DCs loaded with PAM lysates showed an increased maturation potential, as estimated by their increased expression of CD83, CD86, CD40, IL-12/IL-10 production, and attenuated PDL1 and ILT-4 expression, compared to the DCs treated with control tumor lysates. Moreover, in co-culture with allogeneic T cells, DCs loaded with PAM-lysates increased the proportion of cytotoxic IFN-γ+ granzyme A+ CD8+ T cells and IL-17A-producing T cells and preserved the Th1 response. In contrast, control tumor lysates-treated DCs increased the frequency of Th2 (CD4+IL-4+), CD4, and CD8 regulatory T cell subtypes, none of which was observed with DCs loaded with PAM-lysates. Cumulatively, these results suggest that the novel method for preparing immunogenic tumor lysates with PAM could be suitable for improved DC-based immunotherapy of cancer patients.
Collapse
Affiliation(s)
- Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
| | - Anđelija Petrović
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Nevena Puač
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Nikola Škoro
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
| | - Zoran Lj. Petrović
- Serbian Academy for Sciences and Arts, 11000 Belgrade, Serbia;
- School of Engineering, Ulster University, Jordanstown, Co. Antrim BT37 0QB, UK
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
- Serbian Academy for Sciences and Arts, 11000 Belgrade, Serbia;
- Medical Faculty Foca, University of East Sarajevo, 73 300 Foča, Bosnia and Herzegovina
| |
Collapse
|
48
|
Enhancement of the Cytotoxic Effect of Doxorubicin on Tumor Cells Upon Exposure to Atmospheric Cold Plasma. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Zhang H, Zhang J, Guo B, Chen H, Xu D, Kong MG. The Antitumor Effects of Plasma-Activated Saline on Muscle-Invasive Bladder Cancer Cells In Vitro and In Vivo Demonstrate Its Feasibility as a Potential Therapeutic Approach. Cancers (Basel) 2021; 13:1042. [PMID: 33801297 PMCID: PMC7958317 DOI: 10.3390/cancers13051042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
Muscle-invasive bladder cancer (MIBC) is a fast-growing and aggressive malignant tumor in urinary system. Since chemotherapy and immunotherapy are only useable with a few MIBC patients, the clinical treatment of MIBC still faces challenges. Here, we examined the feasibility of plasma-activated saline (PAS) as a fledgling therapeutic strategy for MIBC treatment. Our data showed that plasma irradiation could generate a variety of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in saline. In vivo tests revealed that pericarcinomatous tissue injection with PAS was effective at preventing subcutaneous bladder tumor growth, with no side effects to the visceral organs after long-term administration, as well as having no obvious influence on the various biochemistry indices of the blood in mice. The in vitro studies indicated that adding 30% PAS in cell culture media causes oxidative damage to the bladder transitional cells T24 and J82 through enhancing the intracellular ROS level, and eventually induces cancer cells' apoptosis by activating the ROS-mediated Fas/CD95 pathway. Therefore, for an intracavity tumor, these initial observations suggest that the soaking of the tumor tissue with PAS by intravesical perfusion may be a novel treatment option for bladder cancer.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (H.Z.); (J.Z.); (B.G.)
| | - Jishen Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (H.Z.); (J.Z.); (B.G.)
| | - Bo Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (H.Z.); (J.Z.); (B.G.)
| | - Hailan Chen
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA;
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (H.Z.); (J.Z.); (B.G.)
| | - Michael G. Kong
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA;
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
50
|
Mateu-Sanz M, Tornín J, Ginebra MP, Canal C. Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy. J Clin Med 2021; 10:893. [PMID: 33672274 PMCID: PMC7926371 DOI: 10.3390/jcm10040893] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| |
Collapse
|