1
|
Xu Q, Zhang Y. Research progress on the bioactivity of compound polysaccharides: A review. Int J Biol Macromol 2025; 306:141693. [PMID: 40043996 DOI: 10.1016/j.ijbiomac.2025.141693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/02/2025] [Accepted: 03/01/2025] [Indexed: 05/03/2025]
Abstract
Polysaccharides are an important biological response modifier. Due to their mild effects, low toxicity and small side effects, they are widely used. However, the pharmacological activity of compound polysaccharides (composed of two or more types of polysaccharides in a certain proportion) is stronger than that of single polysaccharides and has synergistic effects. Therefore, the research on compound polysaccharides is also increasing. This review systematically collated literature from four prominent databases-PubMed, Web of Science, Scopus, MDPI, and CNKI-up to 2024, encapsulating the current findings regarding the diverse biological activities of compound polysaccharides. Experimental investigations predominantly concentrate on immune activity, anti-tumor efficacy, modulation of gut microbiota, and antiviral activity. Among these areas, the synergistic effect of immune activity is particularly pronounced; however, research specifically addressing this phenomenon remains comparatively limited. Future research should continue to explore the ratio of compound polysaccharides and the factors affecting their biological activity through data sharing and multi-institutional cooperation. In addition, the synergistic effect of compound polysaccharides combined with other chemical components or drugs cannot be ignored.
Collapse
Affiliation(s)
- Qirui Xu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Sun N, Yan H, Liu X, Xu X, Zhao W, Zhang J, Wang M, Liu Y, Miao L. Polydatin Alleviates Cyclophosphamide-Induced Mouse Immunosuppression by Promoting Splenic Lymphocyte Proliferation and Thymic T Cell Development and Differentiation. Int J Mol Sci 2025; 26:2800. [PMID: 40141442 PMCID: PMC11943104 DOI: 10.3390/ijms26062800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
Immunosuppression increases disease risk, and the natural compound polydatin (PD) has been reported to modulate immune-related disorders. In cyclophosphamide-induced immunosuppressed mice, PD was evaluated for its immunomodulatory effects. Immune organ indices were measured, while H&E staining and ELISA assessed spleen pathology and serum cytokine levels. The proliferation of splenic lymphocytes, both total and subpopulation, was determined using concanavalin A or lipopolysaccharide stimulation, with flow cytometry analyzing peripheral blood and splenic lymphocytes, thymic T cell subtypes, cell cycling, and bromodeoxyuridine incorporation. Western blotting was used to assess Ki67, PCNA expression, and MAPK activation. PD significantly alleviated cyclophosphamide-induced reductions in spleen and thymus indices, improved the organization of red and white pulp in the spleen, and restored TNF-α and IFN-γ levels. It reversed cyclophosphamide-induced cell cycle arrest, characterized by increased PCNA and decreased Ki67, and corrected the diminished numbers of B and T cells and the reduced CD4+/CD8+ ratio in the thymus. In vitro, PD directly promoted splenic lymphocyte proliferation and cell cycling via MAPK activation. Overall, our findings demonstrated that PD alleviated mouse immunosuppression by activating splenic lymphocyte proliferation and re-organizing thymic T cell development and differentiation.
Collapse
Affiliation(s)
- Na Sun
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Huimin Yan
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Xiuping Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Xingdi Xu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Zhao
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Jing Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Meng Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Yuxuan Liu
- Key Laboratory of Immune Microenvironment and Disease, Immunology Department, Ministry of Education, Tianjin Medical University, Tianjin 301617, China;
| | - Lin Miao
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (N.S.); (H.Y.); (X.L.); (W.Z.); (J.Z.); (M.W.)
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Xu Y, Xu T, Huang C, Amakye WK, Liu L, Fan J, Zhu Y, Yao M, Ren J. Investigating immune-modulatory function of α-glucopyranose-rich compound polysaccharides by MC38-N4/OT-I co-culture system. Int J Biol Macromol 2024; 278:134941. [PMID: 39173810 DOI: 10.1016/j.ijbiomac.2024.134941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
The potential antitumor function of polysaccharides is well accepted, it is unclear whether polysaccharides have immunoregulatory effect on CD8+ T lymphocyte cells to attack tumor cells. To evaluate the CD8+ T function enhancing role of polysaccharide compounds, the MC38-N4/OT-I co-culture system was established. The synergistic and complementary immune effect of α-glucopyranose-rich compound polysaccharides can be achieved by manipulating the antigen-specific T-cell expansion capacity and efficacy. This study was designed to investigate the antitumor-enhancement activity of a α-glucopyranose-rich compound polysaccharides by determining the activation of CD8+ T cells in a co-culture system. Compared to the control group (42.5 % ± 0.72 %), the specific α-glucopyranose-rich compound polysaccharides, comprising Agaricus blazei Murill, Grifola frondosa and Pericarpium Citri Reticulatae, demonstrated a significant decrease (20.4 % ± 1.23 %, p < 0.05) in the survival rate of MC38-N4 cells in the co-culture system. Additionally, the α-glucopyranose-rich compound polysaccharides resulted in a substantial increase (p < 0.01) in the proportion of CD8+ T cells and CD62L+ central memory T cells, which is a less differentiated T cell subset with high immune activity. Collectively, we reported that specific polysaccharide combination, which remodel the function of cytotoxic T cells and provided a basis for improving immune functions by using the specific types of polysaccharides.
Collapse
Affiliation(s)
- Yongzhao Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Tianxiong Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Chujun Huang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - William Kwame Amakye
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Lun Liu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Junhao Fan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Ying Zhu
- Infinitus (China) Ltd., Guangzhou, Guangdong 510665, PR China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China.
| |
Collapse
|
4
|
Liu D, Mueed A, Ma H, Wang T, Su L, Wang Q. Pleurocinus ostreatus Polysaccharide Alleviates Cyclophosphamide-Induced Immunosuppression through the Gut Microbiome, Metabolome, and JAK/STAT1 Signaling Pathway. Foods 2024; 13:2679. [PMID: 39272445 PMCID: PMC11394083 DOI: 10.3390/foods13172679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
This study investigated the structure of Pleurocinus ostreatus polysaccharide (POP-1) and its effect on immunocompromised mice induced by cyclophosphamide (CY). Novel POP-1 was α- and β-glucopyranose, its molecular weight was 4.78 × 104 Da, it was mainly composed of glucose (88.9%), and it also contained galactose (2.97%), mannose (5.02%), fucose (0.3%), arabinose (0.21%), ribose (0.04%), galactose acid (0.17%), and glucose acid (1.45%). After POP-1 was administered to immunosuppressed mice, results showed that POP-1 increased the body weight, spleen, and thymus index and enhanced T lymphocyte proliferation in mice. POP-1 up-regulated the expression of CD3+, CD4+, and CD8+ lymphocytes and the ratio of CD4+/CD8+ in the mouse spleen to increase immunoglobulin (IgM, IgG, and IgA) and secrete cytokines (IL-2, IL-6, TNF-α, and IFN-γ) through activation of the JAK/STAT1 signaling pathway. Moreover, POP-1 remarkably reversed the gut-microbiota dysbiosis in immunosuppressed mice by increasing the abundance of Muribaculaceae, Lactobacillaceae, Blautia, and Ligilactobacillus and altered the fecal metabolites by increasing hexahomomethionine, DG(8:0/20:4(5Z, 8Z, 11Z, 14Z)-OH(20)/0:0, 2-((3-aminopyridin-2-yl)methylene)hydrazinecarbothioamide, Ginkgoic acid, and carboxy-ethyl-hydroxychroman, which is closely related to the immunity function. This study indicates that P. ostreatus polysaccharide effectively restores immunosuppressive activity and can be a functional ingredient in food and pharmaceutical products.
Collapse
Affiliation(s)
- Daiyao Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - He Ma
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Tianci Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ling Su
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Qi Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Liu Y, Zhang X, Wang K, Li Q, Yan S, Shi H, Liu L, Liang S, Yang M, Su Z, Ge C, Jia J, Xu Z, Dou T. RNA-Seq Reveals Pathways Responsible for Meat Quality Characteristic Differences between Two Yunnan Indigenous Chicken Breeds and Commercial Broilers. Foods 2024; 13:2008. [PMID: 38998514 PMCID: PMC11241438 DOI: 10.3390/foods13132008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Poultry is a source of meat that is in great demand in the world. The quality of meat is an imperative point for shoppers. To explore the genes controlling meat quality characteristics, the growth and meat quality traits and muscle transcriptome of two indigenous Yunnan chicken breeds, Wuding chickens (WDs) and Daweishan mini chickens (MCs), were compared with Cobb broilers (CBs). The growth and meat quality characteristics of these two indigenous breeds were found to differ from CB. In particular, the crude fat (CF), inosine monophosphate content, amino acid (AA), and total fatty acid (TFA) content of WDs were significantly higher than those of CBs and MCs. In addition, it was found that MC pectoralis had 420 differentially expressed genes (DEGs) relative to CBs, and WDs had 217 DEGs relative to CBs. Among them, 105 DEGs were shared. The results of 10 selected genes were also confirmed by qPCR. The differentially expressed genes were six enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathways including lysosomes, phagosomes, PPAR signaling pathways, cell adhesion molecules, cytokine-cytokine receptor interaction, and phagosome sphingolipid metabolism. Interestingly, four genes (LPL, GK, SCD, and FABP7) in the PPAR signal pathway related to fatty acid (FA) metabolism were elevated in WD muscles, which may account for higher CF, inosine monophosphate content, and AA and FA contents, key factors affecting meat quality. This work laid the foundation for improving the meat quality of Yunnan indigenous chickens, especially WD. In future molecular breeding, the genes in this study can be used as molecular screening markers and applied to the molecular breeding of chicken quality characteristics.
Collapse
Affiliation(s)
- Yong Liu
- Yunnan Rural Revitalization Education Institute, Yunnan Open University, Kunming 650101, China; (Y.L.)
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (K.W.); (Q.L.); (C.G.); (J.J.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Bufialo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Xia Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (K.W.); (Q.L.); (C.G.); (J.J.)
- School of Biological and Food Engineering, Lvliang University, Lvliang 033000, China
| | - Kun Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (K.W.); (Q.L.); (C.G.); (J.J.)
| | - Qihua Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (K.W.); (Q.L.); (C.G.); (J.J.)
| | - Shixiong Yan
- Yunnan Rural Revitalization Education Institute, Yunnan Open University, Kunming 650101, China; (Y.L.)
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (K.W.); (Q.L.); (C.G.); (J.J.)
| | - Hongmei Shi
- Yunnan Rural Revitalization Education Institute, Yunnan Open University, Kunming 650101, China; (Y.L.)
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (K.W.); (Q.L.); (C.G.); (J.J.)
| | - Lixian Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (K.W.); (Q.L.); (C.G.); (J.J.)
- Institute of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China
| | - Shuangmin Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Yang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (K.W.); (Q.L.); (C.G.); (J.J.)
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, College of Computing and Informatics, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA;
| | - Changrong Ge
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (K.W.); (Q.L.); (C.G.); (J.J.)
| | - Junjing Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (K.W.); (Q.L.); (C.G.); (J.J.)
| | - Zhiqiang Xu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tengfei Dou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.Z.); (K.W.); (Q.L.); (C.G.); (J.J.)
| |
Collapse
|
6
|
Sur S, Bhartiya P, Steele R, Brennan M, DiPaolo RJ, Ray RB. Momordicine-I Suppresses Head and Neck Cancer Growth by Reprogrammimg Immunosuppressive Effect of the Tumor-Infiltrating Macrophages and B Lymphocytes. Mol Cancer Ther 2024; 23:672-682. [PMID: 38315993 PMCID: PMC11065610 DOI: 10.1158/1535-7163.mct-23-0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Head and neck cancer (HNC) is prevalent worldwide, and treatment options are limited. Momordicine-I (M-I), a natural component from bitter melon, shows antitumor activity against these cancers, but its mechanism of action, especially in the tumor microenvironment (TME), remains unclear. In this study, we establish that M-I reduces HNC tumor growth in two different immunocompetent mouse models using MOC2 and SCC VII cells. We demonstrate that the anticancer activity results from modulating several molecules in the monocyte/macrophage clusters in CD45+ populations in MOC2 tumors by single-cell RNA sequencing. Tumor-associated macrophages (TAM) often pose a barrier to antitumor effects, but following M-I treatment, we observe a significant reduction in the expression of Sfln4, a myeloid cell differentiation factor, and Cxcl3, a neutrophil chemoattractant, in the monocyte/macrophage populations. We further find that the macrophages must be in close contact with the tumor cells to inhibit Sfln4 and Cxcl3, suggesting that these TAMs are impacted by M-I treatment. Coculturing macrophages with tumor cells shows inhibition of Agr1 expression following M-I treatment, which is indicative of switching from M2 to M1 phenotype. Furthermore, the total B-cell population in M-I-treated tumors is significantly lower, whereas spleen cells also show similar results when cocultured with MOC2 cells. M-I treatment also inhibits PD1, PD-L1, and FoxP3 expression in tumors. Collectively, these results uncover the potential mechanism of M-I by modulating immune cells, and this new insight can help to develop M-I as a promising candidate to treat HNCs, either alone or as adjuvant therapy.
Collapse
Affiliation(s)
- Subhayan Sur
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | - Pradeep Bhartiya
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | - Robert Steele
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | - Michelle Brennan
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri
| | - Richard J. DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri
| | - Ratna B. Ray
- Department of Pathology, Saint Louis University, St. Louis, Missouri
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
7
|
Chen XJ, Liu SY, Li SM, Feng JK, Hu Y, Cheng XZ, Hou CZ, Xu Y, Hu M, Feng L, Xiao L. The recent advance and prospect of natural source compounds for the treatment of heart failure. Heliyon 2024; 10:e27110. [PMID: 38444481 PMCID: PMC10912389 DOI: 10.1016/j.heliyon.2024.e27110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure is a continuously developing syndrome of cardiac insufficiency caused by diseases, which becomes a major disease endangering human health as well as one of the main causes of death in patients with cardiovascular diseases. The occurrence of heart failure is related to hemodynamic abnormalities, neuroendocrine hormones, myocardial damage, myocardial remodeling etc, lead to the clinical manifestations including dyspnea, fatigue and fluid retention with complex pathophysiological mechanisms. Currently available drugs such as cardiac glycoside, diuretic, angiotensin-converting enzyme inhibitor, vasodilator and β receptor blocker etc are widely used for the treatment of heart failure. In particular, natural products and related active ingredients have the characteristics of mild efficacy, low toxicity, multi-target comprehensive efficacy, and have obvious advantages in restoring cardiac function, reducing energy disorder and improving quality of life. In this review, we mainly focus on the recent advance including mechanisms and active ingredients of natural products for the treatment of heart failure, which will provide the inspiration for the development of more potent clinical drugs against heart failure.
Collapse
Affiliation(s)
- Xing-Juan Chen
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Si-Yuan Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Si-Ming Li
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | | | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xiao-Zhen Cheng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Cheng-Zhi Hou
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Yun Xu
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- Peking University International Hospital, Beijing, 102206, China
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Lu Xiao
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| |
Collapse
|
8
|
Zhang Z, Yang Y, Hu C, Zhang Z. Effect of pachymaran on oxidative stress and DNA damage induced by formaldehyde. Sci Rep 2023; 13:17465. [PMID: 37838763 PMCID: PMC10576801 DOI: 10.1038/s41598-023-44788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
To further explore the pharmacological effect of pachymaran, this article studied the inhibition of pachymaran on oxidative stress and genetic damage induced by formaldehyde. 40 adult Kunming male mice were randomly divided into four groups with different interventions. One week later, the contents of serum SOD, GR, MDA, DNA-protein crosslink (DPC), 8-hydroxydeoxyguanosine (8-OHDG) and DNA adduct were determined by ELISA. The results showed that there were statistically significant differences in the contents of SOD, GR and MDA among the four groups (P < 0.01). The activity of SOD and GR increased along with the increase of pachymaran dosage (SOD: rs = 0.912, P < 0.01; GR: rs = 0.857, P < 0.01), while the content of MDA showing a significant negative correlation (rs = - 0.893, P < 0.01). There were statistically significant differences in the levels of DPC, 8-OHDG and DNA adduct among the four groups (DPC and DNA adduct: P < 0.01, 8-OHDG: P < 0.05), the concentration decreased along with the increase of pachymaran dosage (DPC: rs = - 0.855, P < 0.01; 8-OHDG:rs = - 0.412, P < 0.05, DNA adduct: γs = - 0.869, P < 0.01). It can be inferred that pachymaran can inhibit oxidative stress and DNA damage induced by formaldehyde with the dose-effect relationship.
Collapse
Affiliation(s)
- Zhijun Zhang
- College of Public Health and Laboratory Medicine, Hunan University of Medicine, 492 Jinxi South Road, Huaihua, Hunan, 418000, People's Republic of China
| | - Yuan Yang
- College of Public Health and Laboratory Medicine, Hunan University of Medicine, 492 Jinxi South Road, Huaihua, Hunan, 418000, People's Republic of China
| | - Changjun Hu
- College of Public Health and Laboratory Medicine, Hunan University of Medicine, 492 Jinxi South Road, Huaihua, Hunan, 418000, People's Republic of China.
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, Hunan, 418000, People's Republic of China
| |
Collapse
|
9
|
Bayer IS. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics 2023; 15:pharmaceutics15051364. [PMID: 37242606 DOI: 10.3390/pharmaceutics15051364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are naturally occurring complex molecules with exceptional physicochemical properties and bioactivities. They originate from plant, animal, and microbial-based resources and processes and can be chemically modified. The biocompatibility and biodegradability of polysaccharides enable their increased use in nanoscale synthesis and engineering for drug encapsulation and release. This review focuses on sustained drug release studies from nanoscale polysaccharides in the fields of nanotechnology and biomedical sciences. Particular emphasis is placed on drug release kinetics and relevant mathematical models. An effective release model can be used to envision the behavior of specific nanoscale polysaccharide matrices and reduce impending experimental trial and error, saving time and resources. A robust model can also assist in translating from in vitro to in vivo experiments. The main aim of this review is to demonstrate that any study that establishes sustained release from nanoscale polysaccharide matrices should be accompanied by a detailed analysis of drug release kinetics by modeling since sustained release from polysaccharides not only involves diffusion and degradation but also surface erosion, complicated swelling dynamics, crosslinking, and drug-polymer interactions. As such, in the first part, we discuss the classification and role of polysaccharides in various applications and later elaborate on the specific pharmaceutical processes of polysaccharides in ionic gelling, stabilization, cross-linking, grafting, and encapsulation of drugs. We also document several drug release models applied to nanoscale hydrogels, nanofibers, and nanoparticles of polysaccharides and conclude that, at times, more than one model can accurately describe the sustained release profiles, indicating the existence of release mechanisms running in parallel. Finally, we conclude with the future opportunities and advanced applications of nanoengineered polysaccharides and their theranostic aptitudes for future clinical applications.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
10
|
Comparative tissue proteomics reveals unique action mechanisms of vaccine adjuvants. iScience 2022; 26:105800. [PMID: 36619976 PMCID: PMC9813788 DOI: 10.1016/j.isci.2022.105800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Radiofrequency adjuvant (RFA) was recently developed to boost influenza vaccination without the safety concerns of chemical adjuvants due to their physical nature. Yet, the action mechanisms of RFA remain largely unknown. Omics techniques offer new opportunities to identify molecular mechanisms of RFA. This study utilized comparative tissue proteomics to explore molecular mechanisms of the physical RFA. Comparison of RFA and chemical adjuvant (Alum, AddaVax, MPL, MPL/Alum)-induced tissue proteome changes identified 14 exclusively induced proteins by RFA, among which heat shock protein (HSP) 70 was selected for further analysis due to its known immune-modulating functions. RFA showed much weakened ability to boost ovalbumin and pandemic influenza vaccination in HSP70 knockout than wild-type mice, hinting crucial roles of HSP70 in RFA effects. This study supports comparative tissue proteomics to be an effective tool to study molecular mechanisms of vaccine adjuvants.
Collapse
|
11
|
Standing S, Tran S, Murguia-Favela L, Kovalchuk O, Bose P, Narendran A. Identification of Altered Primary Immunodeficiency-Associated Genes and Their Implications in Pediatric Cancers. Cancers (Basel) 2022; 14:5942. [PMID: 36497424 PMCID: PMC9741011 DOI: 10.3390/cancers14235942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Cancer is the leading cause of disease-related mortality in children and malignancies are more frequently observed in individuals with primary immunodeficiencies (PIDs). This study aimed to identify and highlight the molecular mechanisms, such as oncogenesis and immune evasion, by which PID-related genes may lead to the development of pediatric cancers. METHOD We implemented a novel bioinformatics framework using patient data from the TARGET database and performed a comparative transcriptome analysis of PID-related genes in pediatric cancers between normal and cancer tissues, gene ontology enrichment, and protein-protein interaction analyses, and determined the prognostic impacts of commonly mutated and differentially expressed PID-related genes. RESULTS From the Fulgent Genetics Comprehensive Primary Immunodeficiency panel of 472 PID-related genes, 89 genes were significantly differentially expressed between normal and cancer tissues, and 20 genes were mutated in two or more patients. Enrichment analysis highlighted many immune system processes as well as additional pathways in the mutated PID-related genes related to oncogenesis. Survival outcomes for patients with altered PID-related genes were significantly different for 75 of the 89 DEGs, often resulting in a poorer prognosis. CONCLUSIONS Overall, multiple PID-related genes demonstrated the connection between PIDs and cancer development and should be studied further, with hopes of identifying new therapeutic targets.
Collapse
Affiliation(s)
- Shaelene Standing
- Section of Pediatric Oncology and Blood and Marrow Transplantation, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Son Tran
- Section of Pediatric Oncology and Blood and Marrow Transplantation, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Luis Murguia-Favela
- Section of Pediatric Hematology and Immunology, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Pinaki Bose
- Departments of Oncology, Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Aru Narendran
- Section of Pediatric Oncology and Blood and Marrow Transplantation, Division of Pediatrics, Alberta Children’s Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| |
Collapse
|
12
|
Wang X, Chen J, Yang F, Ali F, Mao Y, Hu A, Xu T, Yang Y, Wang F, Zhou G, Guo X, Cao H. Two kinds of traditional Chinese medicine prescriptions reduce thymic inflammation levels and improve humoral immunity of finishing pigs. Front Vet Sci 2022; 9:929112. [PMID: 36148471 PMCID: PMC9486467 DOI: 10.3389/fvets.2022.929112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
In animal husbandry, traditional Chinese medicine (TCM) as a reasonable alternative to antibiotics has attracted more and more concerns to reduce microbial resistance. This study was aimed to investigate the effects of dietary supplementation with TCM prescriptions on serum parameters and thymus inflammation responses in finishing pigs. Thirty finishing pigs were randomly divided into three groups, which included the Con group (basal diet), the TCM1 group (basal diet supplemented with Xiao Jian Zhong prescriptions), and the TCM2 group (basal diet supplemented with Jingsananli-sepsis). The results showed that the contents of C3 and C4 in the serum were significantly increased in both the TCM1 and TCM2 groups compared to the Con group on day 30. Similarly, the levels of IgA, IgG, and IgM were increased in the TCM2 group, and only the level of IgM in TCM1 was increased on day 30. Meanwhile, the levels of classical swine fever virus (CSFV) and respiratory syndrome virus (PRRSV) antibodies had a notable increase in the TCM1 and TCM2 groups. Both TCM1 and TCM2 inhibited the levels of TLR4/MyD88/NF-κB signaling pathway-related mRNA (TLR4, MyD88, NF-κB, IL6, IL8, and TNF-α) and protein (p-IκBα and p-P65) expression levels in the thymus. In conclusion, dietary supplementation with TCM could reduce thymic inflammation levels and improve humoral immunity of finishing pigs.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang, China
| | - Jiajia Chen
- Department of Animal Science and Technology, Jiangxi Biotech Vocational College, Nanchang, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang, China
| | - Farah Ali
- Department of Theriogenology, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Pakistan, Bahawalpur, Pakistan
| | - Yaqin Mao
- China Institute of Veterinary Drug Control, MOA Center for Veterinary Drug Evaluation, Beijing, China
| | - Aiming Hu
- Jian City Livestock and Veterinary Bureau, Jiangxi, China
| | - Tianfang Xu
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Yan Yang
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Feibing Wang
- Agricultural Technology Extension Center, Jinxi County Agriculture and Rural Bureau, Fuzhou, China
| | - Guangbin Zhou
- Animal Epidemic Prevention and Quarantine Unit, Fengcheng Agricultural and Rural Bureau, Fengcheng, China
| | - Xiaowang Guo
- Yichun Agriculture and Rural Affairs Bureau, Yichun, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Huabin Cao
| |
Collapse
|
13
|
Sun M, Bu R, Zhang B, Cao Y, Liu C, Zhao W. Lentinan Inhibits Tumor Progression by Immunomodulation in a Mouse Model of Bladder Cancer. Integr Cancer Ther 2021; 19:1534735420946823. [PMID: 32735179 PMCID: PMC7401035 DOI: 10.1177/1534735420946823] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Lentinan (LNT), an isolated traditional Chinese herbal component, has antitumor potential. In the current study, the intrinsic mechanism of LNT-induced immunity against bladder cancer was explored in a mouse model. Methods: In the mouse model of bladder cancer, we used flow cytometry to detect the LNT caused population changes of T cells, macrophages, MDSC cells, and Treg cells. ELISA was used to evaluate cytokines expression in the supernatant of splenocytes. Results: We found that the administration of LNT increased the proportions of CD3+CD4+ and CD3+CD8+ T cell subsets as well as CD11b+F480+ macrophages, whereas it diminished the subpopulations of CD4+CD25+Foxp3+ regulatory T cells (Tregs) and Gr-1+CD11b+ myeloid-derived suppressor cells (MDSCs). LNT also upregulated the expression of interferon (IFN)-γ and interleukin (IL)-12, accompanied by a significant reduction in IL-10 and tumor growth factor (TGF)-β (P < .05). Our research further confirmed the synergy between LNT and gemcitabine (GEM) to activate immunity and inhibit the growth of bladder tumors in mouse model. Conclusions: LNT induced macrophage activation, followed by the enhanced proliferation of CD4+ and CD8+ T cells, and the upregulated expression of IFN-γ and IL-2. Meanwhile, the proportions of MDSCs and Tregs were downregulated, leading to a reduced expression of the anti-inflammatory cytokines IL-10 and TGF-β. The synergy between LNT and GEM provides additional evidence supporting the application of this traditional Chinese herbal component for bladder cancer therapy.
Collapse
Affiliation(s)
- Ming Sun
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Renge Bu
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Zhang
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Yaming Cao
- College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Chengyang Liu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenyan Zhao
- Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Mulberry leaf-derived polysaccharide modulates the immune response and gut microbiota composition in immunosuppressed mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Yan D, Chen Y. Tumor mutation burden (TMB)-associated signature constructed to predict survival of lung squamous cell carcinoma patients. Sci Rep 2021; 11:9020. [PMID: 33907270 PMCID: PMC8079676 DOI: 10.1038/s41598-021-88694-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a common type of lung cancer with high incidence and mortality rate. Tumor mutational burden (TMB) is an emerging biomarker for selecting patients with non-small cell lung cancer (NSCLC) for immunotherapy. This study aimed to reveal TMB involved in the mechanisms of LUSC and develop a model to predict the overall survival of LUSC patients. The information of patients with LUSC were obtained from the cancer genome atlas database (TCGA). Differentially expressed genes (DEGs) between low- and the high-TMB groups were identified and taken as nodes for the protein-protein interaction (PPI) network construction. Gene oncology (GO) enrichment analysis and gene set enrichment analysis (GSEA) were used to investigate the potential molecular mechanism. Then, we identified the factors affecting the prognosis of LUSC through cox analysis, and developed a risk score signature. Kaplan-Meier method was conducted to analyze the difference in survival between the high- and low-risk groups. We constructed a nomogram based on the risk score model and clinical characteristics to predict the overall survival of patients with LUSC. Finally, the signature and nomogram were further validated by using the gene expression data downloaded from the Gene Expression Omnibus (GEO) database. 30 DEGs between high- and low-TMB groups were identified. PPI analysis identified CD22, TLR10, PIGR and SELE as the hub genes. Cox analysis indicated that FAM107A, IGLL1, SELE and T stage were independent prognostic factors of LUSC. Low-risk scores group lived longer than that of patients with high-risk scores in LUSC. Finally, we built a nomogram that integrated the clinical characteristics (TMN stage, age, gender) with the three-gene signature to predict the survival probability of LUSC patients. Further verification in the GEO dataset. TMB might contribute to the pathogenesis of LUSC. TMB-associated genes can be used to develope a model to predict the OS of lung squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Dan Yan
- Department of Respiratory, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, No. 365, East Renmin Road, Jinhua, 321000, Zhejiang Province, People's Republic of China.
| | - Yi Chen
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
16
|
Liu Y, Jing J, Yu H, Zhang J, Cao Q, Zhang X, Liu J, Zhang S, Cheng W. Expression profiles of long non-coding RNAs in the cartilage of patients with knee osteoarthritis and normal individuals. Exp Ther Med 2021; 21:365. [PMID: 33732338 PMCID: PMC7903471 DOI: 10.3892/etm.2021.9796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022] Open
Abstract
Knee osteoarthritis is caused by a multifactorial imbalance in the synthesis and degradation of knee chondrocytes, subchondral bone and extracellular matrix. Abnormal expression of long non-coding RNAs (lncRNAs) affects the metabolism, synovitis, autophagy and apoptosis of chondrocytes, as well as the production of cartilage matrix. The aim of the present study was to identify novel targets for the treatment of osteoarthritis and to examine the pathogenesis of the disease. The lncRNA expression profiles of seven patients with knee osteoarthritis and six healthy controls were examined by RNA-sequencing. Differentially expressed lncRNAs were selected for bioinformatics analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Reverse transcription-quantitative PCR (RT-qPCR) was used to further investigate the differential expression of the lncRNAs. A total of 23,583 lncRNAs were identified in osteoarthritis cartilage, including 5,255 upregulated and 5,690 downregulated lncRNAs, compared with normal cartilage. Although there were more downregulated lncRNAs compared with upregulated lncRNAs, among the changed lncRNAs (fold-change >6), there were more upregulated lncRNAs compared with downregulated lncRNAs. Several lncRNAs exhibiting differences were identified as potential therapeutic targets in knee osteoarthritis. GO and KEGG pathway analyses were performed for the target genes of the differentially expressed lncRNAs. RT-qPCR validation was performed on three randomly selected upregulated and downregulated lncRNAs. The results of RT-qPCR were consistent with the findings obtained by RNA-sequencing analysis. The findings from the present study may contribute to the diagnosis of osteoarthritis and may predict the development of osteoarthritis. Furthermore, the differentially expressed lncRNAs may aid in the identification of novel candidate targets for the treatment of knee osteoarthritis.
Collapse
Affiliation(s)
- Yanchang Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Juehua Jing
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Haoran Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jisen Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Qiliang Cao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Xin Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jianjun Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Shuo Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Wendan Cheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
17
|
Bantle CM, French CT, Cummings JE, Sadasivan S, Tran K, Slayden RA, Smeyne RJ, Tjalkens RB. Manganese exposure in juvenile C57BL/6 mice increases glial inflammatory responses in the substantia nigra following infection with H1N1 influenza virus. PLoS One 2021; 16:e0245171. [PMID: 33493177 PMCID: PMC7833173 DOI: 10.1371/journal.pone.0245171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/22/2020] [Indexed: 01/22/2023] Open
Abstract
Infection with Influenza A virus can lead to the development of encephalitis and subsequent neurological deficits ranging from headaches to neurodegeneration. Post-encephalitic parkinsonism has been reported in surviving patients of H1N1 infections, but not all cases of encephalitic H1N1 infection present with these neurological symptoms, suggesting that interactions with an environmental neurotoxin could promote more severe neurological damage. The heavy metal, manganese (Mn), is a potential interacting factor with H1N1 because excessive exposure early in life can induce long-lasting effects on neurological function through inflammatory activation of glial cells. In the current study, we used a two-hit model of neurotoxin-pathogen exposure to examine whether exposure to Mn during juvenile development would induce a more severe neuropathological response following infection with H1N1 in adulthood. To test this hypothesis, C57BL/6 mice were exposed to MnCl2 in drinking water (50 mg/kg/day) for 30 days from days 21–51 postnatal, then infected intranasally with H1N1 three weeks later. Analyses of dopaminergic neurons, microglia and astrocytes in basal ganglia indicated that although there was no significant loss of dopaminergic neurons within the substantia nigra pars compacta, there was more pronounced activation of microglia and astrocytes in animals sequentially exposed to Mn and H1N1, as well as altered patterns of histone acetylation. Whole transcriptome Next Generation Sequencing (RNASeq) analysis was performed on the substantia nigra and revealed unique patterns of gene expression in the dual-exposed group, including genes involved in antioxidant activation, mitophagy and neurodegeneration. Taken together, these results suggest that exposure to elevated levels of Mn during juvenile development could sensitize glial cells to more severe neuro-immune responses to influenza infection later in life through persistent epigenetic changes.
Collapse
Affiliation(s)
- Collin M. Bantle
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - C. Tenley French
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jason E. Cummings
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Shankar Sadasivan
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Kevin Tran
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard A. Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard J. Smeyne
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Ronald B. Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
18
|
Mohammed ASA, Naveed M, Jost N. Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities). JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 29:2359-2371. [PMID: 33526994 PMCID: PMC7838237 DOI: 10.1007/s10924-021-02052-2] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 05/06/2023]
Abstract
Polysaccharides are essential macromolecules which almost exist in all living forms, and have important biological functions, they are getting more attention because they exhibit a wide range of biological and pharmacological activities, such as anti-tumour, immunomodulatory, antimicrobial, antioxidant, anticoagulant, antidiabetic, antiviral, and hypoglycemia activities, making them one of the most promising candidates in biomedical and pharmaceutical fields. Polysaccharides can be obtained from many different sources, such as plants, microorganisms, algae, and animals. Due to their physicochemical properties, they are susceptible to physical and chemical modifications leading to enhanced properties, which is the basic concept for their diverse applications in biomedical and pharmaceutical fields. In this review, we will give insight into the most recent updated applications of polysaccharides and their potentialities as alternatives for traditional and conventional therapies. Challenges and limitations for polysaccharides in pharmaceutical utilities are discussed as well.
Collapse
Affiliation(s)
- Aiman Saleh A. Mohammed
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, 6720 Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Aden, Aden, Yemen
| | - Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, 6720 Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, 6720 Hungary
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, 6720 Hungary
| |
Collapse
|
19
|
Xu M, Yan T, Gong G, Wu B, He B, Du Y, Xiao F, Jia Y. Purification, structural characterization, and cognitive improvement activity of a polysaccharides from Schisandra chinensis. Int J Biol Macromol 2020; 163:497-507. [DOI: 10.1016/j.ijbiomac.2020.06.275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/28/2023]
|