1
|
Huang Y, Li B, Wu Z, Liu K, Min J. Inhibitors targeting the PWWP domain-containing proteins. Eur J Med Chem 2024; 280:116965. [PMID: 39413441 DOI: 10.1016/j.ejmech.2024.116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
PWWP domain-containing proteins play a pivotal role in chromatin-mediated biological processes, and their aberrant regulation is linked to various human diseases. Recent years have witnessed remarkable strides in unraveling the structural and functional features of PWWP domain-containing proteins, propelling significant advances in targeting the PWWP domain-containing proteins for drug discovery purposes. Several drugs have already been approved, while others are currently in clinical trials. This review offers a comprehensive overview of the latest developments on PWWP domain-containing proteins, including their structural characteristics and biological significance. It also provides detailed insights into the drug discovery process targeting these proteins, including screening, design, and structural optimization.
Collapse
Affiliation(s)
- Yunyuan Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Boyi Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Zhibin Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Wang W, Ou Z, Peng J, Wang N, Zhou Y. Bioinformatics-based analysis of potential candidates chromatin regulators for immune infiltration in osteoarthritis. BMC Musculoskelet Disord 2022; 23:1123. [PMID: 36550476 PMCID: PMC9783407 DOI: 10.1186/s12891-022-06098-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Through the bioinformatics analysis to screen out the potential chromatin regulators (CRs) under the immune infiltration of osteoarthritis (OA), thus providing some theoretical support for future studies of epigenetic mechanisms under OA immune infiltration. METHODS By integrating CRs and the OA gene expression matrix, we performed weighted gene co-expression network analysis (WGCNA), differential analysis, and further screened Hub genes by protein-protein interaction (PPI) analysis. Using the OA gene expression matrix, immune infiltration extraction and quantification were performed to analyze the correlations and differences between immune infiltrating cells and their functions. By virtue of these Hub genes, Hub gene association analysis was completed and their upstream miRNAs were predicted by the FunRich software. Moreover, a risk model was established to analyze the risk probability of associated CRs in OA, and the confidence of the results was validated by the validation dataset. RESULTS This research acquired a total of 32 overlapping genes, and 10 Hub genes were further identified. The strongest positive correlation between dendritic cells and mast cells and the strongest negative correlation between parainflammation and Type I IFN reponse. In the OA group DCs, iDCs, macrophages, MCs, APC co-inhibition, and CCR were significantly increased, whereas B cells, NK cells, Th2 cells, TIL, and T cell co-stimulation were significantly decreased. The risk model results revealed that BRD1 might be an independent risk factor for OA, and the validation dataset results are consistent with it. 60 upstream miRNAs of OA-related CRs were predicted by the FunRich software. CONCLUSION This study identified certain potential CRs and miRNAs that could regulate OA immunity, thus providing certain theoretical supports for future epigenetic mechanism studies on the immune infiltration of OA.
Collapse
Affiliation(s)
- Weiwei Wang
- Guilin Hospital of Traditional Chinese Medicine, Guilin, 541002 Guangxi China
| | - Zhixue Ou
- Guilin Hospital of Traditional Chinese Medicine, Guilin, 541002 Guangxi China
| | - Jianlan Peng
- grid.256609.e0000 0001 2254 5798Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530001 Guangxi China
| | - Ning Wang
- grid.511973.8The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, 530001 Guangxi China
| | - Yi Zhou
- grid.256609.e0000 0001 2254 5798Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530001 Guangxi China
| |
Collapse
|
3
|
Kuwik J, Wagner S, Sudhamalla B, Debiec R, Islam K. Hydrophobic cavity-directed azide-acetyllysine photochemistry for profiling non-histone interacting partners of bromodomain protein 1. RSC Chem Biol 2022; 3:1061-1068. [PMID: 35975005 PMCID: PMC9347360 DOI: 10.1039/d2cb00043a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/13/2022] [Indexed: 01/19/2023] Open
Abstract
Bromodomain containing protein 1 (BRD1) plays critical roles in chromatin acetylation, gene transcription, erythropoiesis, and brain development. BRD1 is also implicated in several human conditions and is a therapeutic target for cancer. Although, the bromodomain is known to bind acetylated histones, how the function of BRD1 is regulated via non-histone acetylation is unexplored. To identify the non-histone acetylome of BRD1, we develop an R585AzF variant carrying photo responsive 4-azido phenylalanine (AzF) via amber suppressor mutagenesis. We demonstrate biochemical integrity of the AzF-containing analogue and its ability to crosslink non-histone interacting partners present in human cells. Subsequent proteomic experiments led to the identification of the novel BRD1 interactome representing diverse signaling pathways. As a proof-of-concept demonstration, we validated acetylated PDIA1 protein as a bona fide binding partner of BRD1. Our work suggests that BRD1 interacts with additional acetyllysine motifs, beyond those characterized in histone proteins.
Collapse
Affiliation(s)
- Jordan Kuwik
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
| | - Shana Wagner
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
| | - Babu Sudhamalla
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
- Current address: Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur 741246 India
| | - Ronald Debiec
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
| |
Collapse
|
4
|
Lin KH, Rutter JC, Xie A, Killarney ST, Vaganay C, Benaksas C, Ling F, Sodaro G, Meslin PA, Bassil CF, Fenouille N, Hoj J, Washart R, Ang HX, Cerda-Smith C, Chaintreuil P, Jacquel A, Auberger P, Forget A, Itzykson R, Lu M, Lin J, Pierobon M, Sheng Z, Li X, Chilkoti A, Owzar K, Rizzieri DA, Pardee TS, Benajiba L, Petricoin E, Puissant A, Wood KC. P2RY2-AKT activation is a therapeutically actionable consequence of XPO1 inhibition in acute myeloid leukemia. NATURE CANCER 2022; 3:837-851. [PMID: 35668193 PMCID: PMC9949365 DOI: 10.1038/s43018-022-00394-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Selinexor is a first-in-class inhibitor of the nuclear exportin XPO1 that was recently approved by the US Food and Drug Administration for the treatment of multiple myeloma and diffuse large B-cell lymphoma. In relapsed/refractory acute myeloid leukemia (AML), selinexor has shown promising activity, suggesting that selinexor-based combination therapies may have clinical potential. Here, motivated by the hypothesis that selinexor's nuclear sequestration of diverse substrates imposes pleiotropic fitness effects on AML cells, we systematically catalog the pro- and anti-fitness consequences of selinexor treatment. We discover that selinexor activates PI3Kγ-dependent AKT signaling in AML by upregulating the purinergic receptor P2RY2. Inhibiting this axis potentiates the anti-leukemic effects of selinexor in AML cell lines, patient-derived primary cultures and multiple mouse models of AML. In a syngeneic, MLL-AF9-driven mouse model of AML, treatment with selinexor and ipatasertib outperforms both standard-of-care chemotherapy and chemotherapy with selinexor. Together, these findings establish drug-induced P2RY2-AKT signaling as an actionable consequence of XPO1 inhibition in AML.
Collapse
Affiliation(s)
- Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Justine C Rutter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Abigail Xie
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Shane T Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Camille Vaganay
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Chaima Benaksas
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Frank Ling
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Gaetano Sodaro
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Paul-Arthur Meslin
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | | | - Nina Fenouille
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Jacob Hoj
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Rachel Washart
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Hazel X Ang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | | | | | | | - Antoine Forget
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Raphael Itzykson
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Min Lu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Jiaxing Lin
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Zhecheng Sheng
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - David A Rizzieri
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Timothy S Pardee
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Lina Benajiba
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Alexandre Puissant
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France.
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
José Alcaraz M. New potential therapeutic approaches targeting synovial fibroblasts in rheumatoid arthritis. Biochem Pharmacol 2021; 194:114815. [PMID: 34715065 DOI: 10.1016/j.bcp.2021.114815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Synovial cells play a key role in joint destruction during chronic inflammation. In particular, activated synovial fibroblasts (SFs) undergo intrinsic alterations leading to an aggressive phenotype mediating cartilage destruction and bone erosion in rheumatoid arthritis (RA). Recent research has revealed a number of targets to control arthritogenic changes in SFs. Therefore, identification of SF phenotypes, control of epigenetic changes, modulation of cellular functions, or regulation of the activity of cation channels and different signaling pathways has been investigated. Although many of these approaches have shown efficacy in vitro and in animal models of RA, further research is needed to select the most relevant targets for drug development. This review is focused on the role of SFs as a potential strategy to discover novel therapeutic targets in RA aimed at preserving joint architecture and function.
Collapse
Affiliation(s)
- María José Alcaraz
- Department of Pharmacology, University of Valencia, and Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
6
|
Nahalka J. Theoretical Analysis of S, M and N Structural Proteins by the Protein-RNA Recognition Code Leads to Genes/proteins that Are Relevant to the SARS-CoV-2 Life Cycle and Pathogenesis. Front Genet 2021; 12:763995. [PMID: 34659373 PMCID: PMC8511677 DOI: 10.3389/fgene.2021.763995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
In this conceptual review, based on the protein-RNA recognition code, some theoretical sequences were detected in the spike (S), membrane (M) and capsid (N) proteins that may post-transcriptionally regulate the host genes/proteins in immune homeostasis, pulmonary epithelial tissue homeostasis, and lipid homeostasis. According to the review of literature, the spectrum of identified genes/proteins shows that the virus promotes IL1α/β-IL1R1 signaling (type 1 immunity) and immunity defense against helminths and venoms (type 2 immunity). In the alteration of homeostasis in the pulmonary epithelial tissue, the virus blocks the function of cilia and the molecular programs that are involved in wound healing (EMT and MET). Additionally, the protein-RNA recognition method described here identifies compatible sequences in the S1A-domain for the post-transcriptional promotion of PIKFYVE, which is one of the critical factors for SARS-CoV-2 entry to the host cell, and for the post-transcriptional repression of xylulokinase XYLB. A decrease in XYLB product (Xu5P) in plasma was proposed as one of the potential metabolomics biomarkers of COVID-19. In summary, the protein-RNA recognition code leads to protein genes relevant to the SARS-CoV-2 life cycle and pathogenesis.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
7
|
Roszkowski L, Ciechomska M. Tuning Monocytes and Macrophages for Personalized Therapy and Diagnostic Challenge in Rheumatoid Arthritis. Cells 2021; 10:cells10081860. [PMID: 34440629 PMCID: PMC8392289 DOI: 10.3390/cells10081860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Monocytes/macrophages play a central role in chronic inflammatory disorders, including rheumatoid arthritis (RA). Activation of these cells results in the production of various mediators responsible for inflammation and RA pathogenesis. On the other hand, the depletion of macrophages using specific antibodies or chemical agents can prevent their synovial tissue infiltration and subsequently attenuates inflammation. Their plasticity is a major feature that helps the switch from a pro-inflammatory phenotype (M1) to an anti-inflammatory state (M2). Therefore, understanding the precise strategy targeting pro-inflammatory monocytes/macrophages should be a powerful way of inhibiting chronic inflammation and bone erosion. In this review, we demonstrate potential consequences of different epigenetic regulations on inflammatory cytokines production by monocytes. In addition, we present unique profiles of monocytes/macrophages contributing to identification of new biomarkers of disease activity or predicting treatment response in RA. We also outline novel approaches of tuning monocytes/macrophages by biologic drugs, small molecules or by other therapeutic modalities to reduce arthritis. Finally, the importance of cellular heterogeneity of monocytes/macrophages is highlighted by single-cell technologies, which leads to the design of cell-specific therapeutic protocols for personalized medicine in RA in the future.
Collapse
|
8
|
Nair N, Barton A, Wilson AG. Cell-specific epigenetic drivers of pathogenesis in rheumatoid arthritis. Epigenomics 2021; 13:549-560. [PMID: 33820439 DOI: 10.2217/epi-2020-0380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis is a complex, inflammatory autoimmune disease, which is characterized by pain, swelling and joint damage driven by the altered behavior of a number of different cell types such as synovial fibroblasts macrophages and lymphocytes. The mechanism underlying pathogenesis is unclear but increasing evidence points to altered epigenetic regulation within these cell types which promotes the activated destructive behavior that underlies disease pathogenesis. This review summarizes the key epigenetic modifications in the most important cells types in rheumatoid arthritis, which are associated with disease activity. We also discuss emerging avenues of research focusing on readers of epigenetic markers which may serve to be potential therapeutic targets.
Collapse
Affiliation(s)
- Nisha Nair
- Centre for Genetics & Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Anne Barton
- Centre for Genetics & Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PT, UK.,NIHR Manchester Musculoskeletal BRU, Central Manchester Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK
| | - Anthony G Wilson
- University College Dublin School of Medicine & Medical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
9
|
Location, location, location: how the tissue microenvironment affects inflammation in RA. Nat Rev Rheumatol 2021; 17:195-212. [PMID: 33526927 DOI: 10.1038/s41584-020-00570-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Current treatments for rheumatoid arthritis (RA) do not work well for a large proportion of patients, or at all in some individuals, and cannot cure or prevent this disease. One major obstacle to developing better drugs is a lack of complete understanding of how inflammatory joint disease arises and progresses. Emerging evidence indicates an important role for the tissue microenvironment in the pathogenesis of RA. Each tissue is made up of cells surrounded and supported by a unique extracellular matrix (ECM). These complex molecular networks define tissue architecture and provide environmental signals that programme site-specific cell behaviour. In the synovium, a main site of disease activity in RA, positional and disease stage-specific cellular diversity exist. Improved understanding of the architecture of the synovium from gross anatomy to the single-cell level, in parallel with evidence demonstrating how the synovial ECM is vital for synovial homeostasis and how dysregulated signals from the ECM promote chronic inflammation and tissue destruction in the RA joint, has opened up new ways of thinking about the pathogenesis of RA. These new ideas provide novel therapeutic approaches for patients with difficult-to-treat disease and could also be used in disease prevention.
Collapse
|
10
|
Zhang Q, Zheng M, Betancourt CE, Liu L, Sitikov A, Sladojevic N, Zhao Q, Zhang JH, Liao JK, Wu R. Increase in Blood-Brain Barrier (BBB) Permeability Is Regulated by MMP3 via the ERK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6655122. [PMID: 33859779 PMCID: PMC8026308 DOI: 10.1155/2021/6655122] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/24/2020] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The blood-brain barrier (BBB) regulates the exchange of molecules between the brain and peripheral blood and is composed primarily of microvascular endothelial cells (BMVECs), which form the lining of cerebral blood vessels and are linked via tight junctions (TJs). The BBB is regulated by components of the extracellular matrix (ECM), and matrix metalloproteinase 3 (MMP3) remodels the ECM's basal lamina, which forms part of the BBB. Oxidative stress is implicated in activation of MMPs and impaired BBB. Thus, we investigated whether MMP3 modulates BBB permeability. METHODS Experiments included in vivo assessments of isoflurane anesthesia and dye extravasation from brain in wild-type (WT) and MMP3-deficient (MMP3-KO) mice, as well as in vitro assessments of the integrity of monolayers of WT and MMP3-KO BMVECs and the expression of junction proteins. RESULTS Compared to WT mice, measurements of isoflurane usage and anesthesia induction time were higher in MMP3-KO mice and lower in WT that had been treated with MMP3 (WT+MMP3), while anesthesia emergence times were shorter in MMP3-KO mice and longer in WT+MMP3 mice than in WT. Extravasation of systemically administered dyes was also lower in MMP3-KO mouse brains and higher in WT+MMP3 mouse brains, than in the brains of WT mice. The results from both TEER and Transwell assays indicated that MMP3 deficiency (or inhibition) increased, while MMP3 upregulation reduced barrier integrity in either BMVEC or the coculture. MMP3 deficiency also increased the abundance of TJs and VE-cadherin proteins in BMVECs, and the protein abundance declined when MMP3 activity was upregulated in BMVECs, but not when the cells were treated with an inhibitor of extracellular signal related-kinase (ERK). CONCLUSION MMP3 increases BBB permeability following the administration of isoflurane by upregulating the ERK signaling pathway, which subsequently reduces TJ and VE-cadherin proteins in BMVECs.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Mei Zheng
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | | | - Lifeng Liu
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Albert Sitikov
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Nikola Sladojevic
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Qiong Zhao
- Division of Cardiology, Department of Medicine, Inova Heart and Vascular Institute, USA
| | - John H. Zhang
- Center for Neuroscience Research, Loma Linda University, School of Medicine, USA
| | - James K. Liao
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| | - Rongxue Wu
- Department of Biological Sciences Division-Cardiology, University of Chicago, USA
| |
Collapse
|
11
|
Iyer H, Wahul AB, P K A, Sawant BS, Kumar A. A BRD's (BiRD's) eye view of BET and BRPF bromodomains in neurological diseases. Rev Neurosci 2021; 32:403-426. [PMID: 33661583 DOI: 10.1515/revneuro-2020-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/11/2020] [Indexed: 01/18/2023]
Abstract
Neurological disorders (NLDs) are among the top leading causes for disability worldwide. Dramatic changes in the epigenetic topography of the brain and nervous system have been found in many NLDs. Histone lysine acetylation has prevailed as one of the well characterised epigenetic modifications in these diseases. Two instrumental components of the acetylation machinery are the evolutionarily conserved Bromodomain and PHD finger containing (BRPF) and Bromo and Extra terminal domain (BET) family of proteins, also referred to as acetylation 'readers'. Several reasons, including their distinct mechanisms of modulation of gene expression and their property of being highly tractable small molecule targets, have increased their translational relevance. Thus, compounds which demonstrated promising results in targeting these proteins have advanced to clinical trials. They have been established as key role players in pathologies of cancer, cardiac diseases, renal diseases and rheumatic diseases. In addition, studies implicating the role of these bromodomains in NLDs are gaining pace. In this review, we highlight the findings of these studies, and reason for the plausible roles of all BET and BRPF members in NLDs. A comprehensive understanding of their multifaceted functions would be radical in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Harish Iyer
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Abhipradnya B Wahul
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Annapoorna P K
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bharvi S Sawant
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
12
|
Isaacs JD, Iqbal K. Potential Pharmacologic Targets for the Prevention of Rheumatoid Arthritis. Clin Ther 2019; 41:1312-1322. [DOI: 10.1016/j.clinthera.2019.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/15/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
|
13
|
Klein K. Bromodomain protein inhibition: a novel therapeutic strategy in rheumatic diseases. RMD Open 2018; 4:e000744. [PMID: 30564450 PMCID: PMC6269638 DOI: 10.1136/rmdopen-2018-000744] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/28/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
The reading of acetylation marks on histones by bromodomain (BRD) proteins is a key event in transcriptional activation. Small molecule inhibitors targeting bromodomain and extra-terminal (BET) proteins compete for binding to acetylated histones. They have strong anti-inflammatory properties and exhibit encouraging effects in different cell types in vitro and in animal models resembling rheumatic diseases in vivo. Furthermore, recent studies that focus on BRD proteins beyond BET family members are discussed.
Collapse
Affiliation(s)
- Kerstin Klein
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|