1
|
Hou A, Mohamed Ali S, Png E, Hunziker W, Tong L. Transglutaminase-2 is critical for corneal epithelial barrier function via positive regulation of Claudin-1. Ocul Surf 2023; 28:155-164. [PMID: 37037393 DOI: 10.1016/j.jtos.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/18/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
PURPOSE Transglutaminase (TG)-2 is a ubiquitous multi-functional protein expressed in all living cells. The purpose of the current study was to investigate the role of TG-2 in corneal barrier function and its potential regulation of epithelial junctional proteins and transcription factors. METHODS Corneal barrier function to ions in TG-2-/- and TG-2+/+ mice was assessed by Ussing chamber assay. Hypo-osmolar water or FITC-dextran was applied on top of mouse eyes to evaluate the corneal barrier function to water and macromolecules. Western blots, qPCR and immunofluorescent staining were used to investigate the expression of tight junction proteins in TG-2-/- and TG-2+/+ mouse corneas, and also in TG-2 knockdown human corneal epithelial cells. RESULTS Corneal explants from TG-2-/- mice had a lower trans-epithelial electrical resistance compared to TG-2+/+ mice. When challenged by hypo-osmolar water, the central corneal thickness of TG-2-/- mice increased faster, and these mice had a faster rise of fluorescence in the anterior chamber after ocular exposure to FITC-dextran, compared to TG-2+/+. Claudin-1 protein and transcript levels were reduced in the cornea of TG-2-/- mice and in TG-2 knockdown human corneal epithelial cells. Slug which previously reported suppressing Claudin-1 transcription, was increased at both protein and transcript level in TG-2 knockdown cells. TG-2 and Claudin-1 protein levels were unchanged in shRNA and shTG cells after MG132 treatment, while Slug accumulated in treated cells. CONCLUSION TG-2 may positively regulate Claudin-1 through repressing Slug at transcript level, and thus it is critical for normal corneal barrier function.
Collapse
Affiliation(s)
- Aihua Hou
- Ocular Surface Research Group, Singapore Eye Research Institute, 169856, Singapore; Eye-Academic Clinical Programme, Duke-NUS Medical School, 169857, Singapore
| | - Safiah Mohamed Ali
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Evelyn Png
- Ocular Surface Research Group, Singapore Eye Research Institute, 169856, Singapore
| | - Walter Hunziker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; SERI-IMCB Program in Retinal Angiogenic Diseases, Singapore Eye Research Institute, 169856, Singapore; Department of Physiology, National University of Singapore, 117593, Singapore
| | - Louis Tong
- Ocular Surface Research Group, Singapore Eye Research Institute, 169856, Singapore; Eye-Academic Clinical Programme, Duke-NUS Medical School, 169857, Singapore; Corneal and External Eye Disease Service, Singapore National Eye Centre, 168751, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore.
| |
Collapse
|
2
|
Li W, Jiang C, Zhang E. Advances in the phase separation-organized membraneless organelles in cells: a narrative review. Transl Cancer Res 2022; 10:4929-4946. [PMID: 35116344 PMCID: PMC8797891 DOI: 10.21037/tcr-21-1111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Abstract
Membraneless organelles (MLOs) are micro-compartments that lack delimiting membranes, concentrating several macro-molecules with a high local concentration in eukaryotic cells. Recent studies have shown that MLOs have pivotal roles in multiple biological processes, including gene transcription, RNA metabolism, translation, protein modification, and signal transduction. These biological processes in cells have essential functions in many diseases, such as cancer, neurodegenerative diseases, and virus-related diseases. The liquid-liquid phase separation (LLPS) microenvironment within cells is thought to be the driving force for initiating the formation of micro-compartments with a liquid-like property, becoming an important organizing principle for MLOs to mediate organism responses. In this review, we comprehensively elucidated the formation of these MLOs and the relationship between biological functions and associated diseases. The mechanisms underlying the influence of protein concentration and valency on phase separation in cells are also discussed. MLOs undergoing the LLPS process have diverse functions, including stimulation of some adaptive and reversible responses to alter the transcriptional or translational processes, regulation of the concentrations of biomolecules in living cells, and maintenance of cell morphogenesis. Finally, we highlight that the development of this field could pave the way for developing novel therapeutic strategies for the treatment of LLPS-related diseases based on the understanding of phase separation in the coming years.
Collapse
Affiliation(s)
- Weihan Li
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Chenwei Jiang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Erhao Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.,Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
3
|
Kurt-Celep İ, Nihan Kilinc A, Griffin M, Telci D. Nitrosylation of Tissue Transglutaminase enhances fibroblast migration and regulates MMP activation. Matrix Biol 2021; 105:1-16. [PMID: 34763097 DOI: 10.1016/j.matbio.2021.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
In wound healing, the TG2 enzyme plays a dual functional role. TG2 has been shown to regulate extracellular matrix (ECM) stabilization by its transamidase activity while increasing cell migration by acting as a cell adhesion molecule. In this process, nitric oxide (NO) plays a particularly important role by nitrosylation of free cysteine residues on TG2, leading to the irreversible inactivation of the catalytic activity. In this study, transfected fibroblasts expressing TG2 under the control of the tetracycline-off promoter were treated with NO donor s-nitroso-n-acetyl penicillamine (SNAP) to analyze the interplay between NO and TG2 in the regulation of cell migration/invasion as well as TGF-β1-dependent MMP activation. Our results demonstrated that inhibition of TG2 cross-linking activity by SNAP promoted the migration and invasion capacity of fibroblasts by hindering TG2-mediated TGF-β1 activation. While the inhibition of TG2 activity by NO downregulated the biosynthesis and activity of MMP-2 and MMP-9, that of MMP-1a and MMP-13 shown to be upregulated in a TGF-β1-dependent manner under the same conditions. In the presence of SNAP, interaction of TG2 with its cell surface binding partners Integrin-β1 and Syndecan-4 was reduced, which was paralleled by an increase in TG2 and PDGF association. These findings suggests that migratory phenotype of fibroblasts can be regulated by the interplay between nitric oxide and TG2 activity.
Collapse
Affiliation(s)
- İnci Kurt-Celep
- Department of Genetics and Bioengineering, Yeditepe University, 26 August Campus, Kayisdagi, Atasehir, Istanbul 34755, Turkey
| | - Ayse Nihan Kilinc
- Department of Genetics and Bioengineering, Yeditepe University, 26 August Campus, Kayisdagi, Atasehir, Istanbul 34755, Turkey; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Martin Griffin
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Dilek Telci
- Department of Genetics and Bioengineering, Yeditepe University, 26 August Campus, Kayisdagi, Atasehir, Istanbul 34755, Turkey.
| |
Collapse
|
4
|
Benoit B, Baillet A, Poüs C. Cytoskeleton and Associated Proteins: Pleiotropic JNK Substrates and Regulators. Int J Mol Sci 2021; 22:8375. [PMID: 34445080 PMCID: PMC8395060 DOI: 10.3390/ijms22168375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
This review extensively reports data from the literature concerning the complex relationships between the stress-induced c-Jun N-terminal kinases (JNKs) and the four main cytoskeleton elements, which are actin filaments, microtubules, intermediate filaments, and septins. To a lesser extent, we also focused on the two membrane-associated cytoskeletons spectrin and ESCRT-III. We gather the mechanisms controlling cytoskeleton-associated JNK activation and the known cytoskeleton-related substrates directly phosphorylated by JNK. We also point out specific locations of the JNK upstream regulators at cytoskeletal components. We finally compile available techniques and tools that could allow a better characterization of the interplay between the different types of cytoskeleton filaments upon JNK-mediated stress and during development. This overview may bring new important information for applied medical research.
Collapse
Affiliation(s)
- Béatrice Benoit
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
| | - Anita Baillet
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
| | - Christian Poüs
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
- Biochimie-Hormonologie, AP-HP Université Paris-Saclay, Site Antoine Béclère, 157 Rue de la Porte de Trivaux, 92141 Clamart, France
| |
Collapse
|
5
|
Neuronal and Endothelial Transglutaminase-2 Expression during Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Neuroscience 2020; 461:140-154. [PMID: 33253822 DOI: 10.1016/j.neuroscience.2020.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Transglutiminase-2 (TG2) is a multifunctional enzyme that has been implicated in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS) using global knockout mice and TG2 selective inhibitors. Previous studies have identified the expression of TG2 in subsets of macrophages-microglia and astrocytes after EAE. The aims of the current investigation were to examine neuronal expression of TG2 in rodent models of chronic-relapsing and non-relapsing EAE and through co-staining with intracellular and cell death markers, provide insight into the putative role of TG2 in neuronal pathology during disease progression. Here we report that under normal physiological conditions there is a low basal expression of TG2 in the nucleus of neurons, however following EAE or MS, robust induction of cytoplasmic TG2 occurs in most neurons surrounding perivascular lesion sites. Importantly, TG2-positive neurons also labeled for phosphorylated Extracellular signal-regulated kinase 1/2 (ERK1/2) and the apoptotic marker cleaved caspase-3. In white and gray matter lesions, high levels of TG2 were also found within the vasculature and endothelial cells as well as in tissue migrating pericytes or fibroblasts, though rarely did TG2 colocalize with cells identified with glial cell markers (astrocytes, oligodendrocytes and microglia). TG2 induction occurred concurrently with the upregulation of the blood vessel permeability factor and angiogenic molecule Vascular Endothelial Growth Factor (VEGF). Extracellular TG2 was found to juxtapose with fibronectin, within and surrounding blood vessels. Though molecular and pharmacological studies have implicated TG2 in the induction and severity of EAE, the cell autonomous functions of this multifunctional enzyme during disease progression remains to be elucidated.
Collapse
|
6
|
Ye X, Wang J, Qiao Z, Yang D, Wang J, Abudureyimu A, Yang K, Feng Y, Ma Z, Liu Z. Quantitative proteomic analysis of MDCK cell adhesion. Mol Omics 2020; 17:121-129. [PMID: 33201162 DOI: 10.1039/d0mo00055h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MDCK cells are a key reagent in modern vaccine production. As MDCK cells are normally adherent, creation of suspension cells for vaccine production using genetic engineering approaches is highly desirable. However, little is known regarding the mechanisms and effectors underlying MDCK cell adhesion. In this study, we performed a comparative analysis of whole protein levels between MDCK adhesion and suspension cells using an iTRAQ-based (isobaric tags for relative and absolute quantitation) proteomics approach. We found that expression of several proteins involved in cell adhesion exhibit reduced expression in suspension cells, including at the mRNA level. Proteins whose expression was reduced in suspension cells include cadherin 1 (CDH1), catenin beta-1 (CTNNB1), and catenin alpha-1 (CTNNA1), which are involved in intercellular adhesion; junction plakoglobin (JUP), desmoplakin (DSP), and desmoglein 3 (DSG3), which are desmosome components; and transglutaminase 2 (TGM2) and alpha-actinin-1 (ACTN1), which regulate the adhesion between cells and the extracellular matrix. A functional verification experiment showed that inhibition of E-cadherin significantly reduced intercellular adhesion of MDCK cells. E-Cadherin did not significantly affect the proliferation of MDCK cells and the replication of influenza virus. These findings reveal possible mechanisms underlying adhesion of MDCK cells and will guide the creation of MDCK suspension cells by genetic engineering.
Collapse
Affiliation(s)
- Xuanqing Ye
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nikoloudaki G, Brooks S, Peidl AP, Tinney D, Hamilton DW. JNK Signaling as a Key Modulator of Soft Connective Tissue Physiology, Pathology, and Healing. Int J Mol Sci 2020; 21:E1015. [PMID: 32033060 PMCID: PMC7037145 DOI: 10.3390/ijms21031015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
In healthy individuals, the healing of soft tissues such as skin after pathological insult or post injury follows a relatively predictable and defined series of cell and molecular processes to restore tissue architecture and function(s). Healing progresses through the phases of hemostasis, inflammation, proliferation, remodeling, and concomitant with re-epithelialization restores barrier function. Soft tissue healing is achieved through the spatiotemporal interplay of multiple different cell types including neutrophils, monocytes/macrophages, fibroblasts, endothelial cells/pericytes, and keratinocytes. Expressed in most cell types, c-Jun N-terminal kinases (JNK) are signaling molecules associated with the regulation of several cellular processes involved in soft tissue wound healing and in response to cellular stress. A member of the mitogen-activated protein kinase family (MAPK), JNKs have been implicated in the regulation of inflammatory cell phenotype, as well as fibroblast, stem/progenitor cell, and epithelial cell biology. In this review, we discuss our understanding of JNKs in the regulation of cell behaviors related to tissue injury, pathology, and wound healing of soft tissues. Using models as diverse as Drosophila, mice, rats, as well as human tissues, research is now defining important, but sometimes conflicting roles for JNKs in the regulation of multiple molecular processes in multiple different cell types central to wound healing processes. In this review, we focus specifically on the role of JNKs in the regulation of cell behavior in the healing of skin, cornea, tendon, gingiva, and dental pulp tissues. We conclude that while parallels can be drawn between some JNK activities and the control of cell behavior in healing, the roles of JNK can also be very specific modes of action depending on the tissue and the phase of healing.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada;
| | - Sarah Brooks
- Biomedical Engineering Graduate Program, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada; (S.B.); (D.T.)
| | - Alexander P. Peidl
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada;
| | - Dylan Tinney
- Biomedical Engineering Graduate Program, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada; (S.B.); (D.T.)
| | - Douglas W. Hamilton
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada;
- Biomedical Engineering Graduate Program, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada; (S.B.); (D.T.)
- Division of Oral Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada
| |
Collapse
|