1
|
Casteleijn MG, Abendroth U, Zemella A, Walter R, Rashmi R, Haag R, Kubick S. Beyond In Vivo, Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein. Chem Rev 2025; 125:1303-1331. [PMID: 39841856 PMCID: PMC11826901 DOI: 10.1021/acs.chemrev.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Throughout history, we have looked to nature to discover and copy pharmaceutical solutions to prevent and heal diseases. Due to the advances in metabolic engineering and the production of pharmaceutical proteins in different host cells, we have moved from mimicking nature to the delicate engineering of cells and proteins. We can now produce novel drug molecules, which are fusions of small chemical drugs and proteins. Currently we are at the brink of yet another step to venture beyond nature's border with the use of unnatural amino acids and manufacturing without the use of living cells using cell-free systems. In this review, we summarize the progress and limitations of the last decades in the development of pharmaceutical protein development, production in cells, and cell-free systems. We also discuss possible future directions of the field.
Collapse
Affiliation(s)
| | - Ulrike Abendroth
- VTT
Technical Research Centre of Finland Ltd, 02150 Espoo, Finland
| | - Anne Zemella
- Fraunhofer
Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics
and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany
| | - Ruben Walter
- Fraunhofer
Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics
and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany
| | - Rashmi Rashmi
- Freie
Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Rainer Haag
- Freie
Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Stefan Kubick
- Freie
Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
- Faculty
of Health Sciences, Joint Faculty of the
Brandenburg University of Technology Cottbus–Senftenberg, The
Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14469 Potsdam, Germany
- B4 PharmaTech
GmbH, Altensteinstraße
40, 14195 Berlin, Germany
| |
Collapse
|
2
|
Itkonen J, Ghemtio L, Pellegrino D, Jokela (née Heinonen) PJ, Xhaard H, Casteleijn MG. Analysis of Biologics Molecular Descriptors towards Predictive Modelling for Protein Drug Development Using Time-Gated Raman Spectroscopy. Pharmaceutics 2022; 14:1639. [PMID: 36015265 PMCID: PMC9413954 DOI: 10.3390/pharmaceutics14081639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Pharmaceutical proteins, compared to small molecular weight drugs, are relatively fragile molecules, thus necessitating monitoring protein unfolding and aggregation during production and post-marketing. Currently, many analytical techniques take offline measurements, which cannot directly assess protein folding during production and unfolding during processing and storage. In addition, several orthogonal techniques are needed during production and market surveillance. In this study, we introduce the use of time-gated Raman spectroscopy to identify molecular descriptors of protein unfolding. Raman spectroscopy can measure the unfolding of proteins in-line and in real-time without labels. Using K-means clustering and PCA analysis, we could correlate local unfolding events with traditional analytical methods. This is the first step toward predictive modeling of unfolding events of proteins during production and storage.
Collapse
Affiliation(s)
- Jaakko Itkonen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Leo Ghemtio
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Daniela Pellegrino
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Pia J. Jokela (née Heinonen)
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
- Orion Pharma, 02101 Espoo, Finland
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | | |
Collapse
|
3
|
Strategies for Optimizing the Production of Proteins and Peptides with Multiple Disulfide Bonds. Antibiotics (Basel) 2020; 9:antibiotics9090541. [PMID: 32858882 PMCID: PMC7558204 DOI: 10.3390/antibiotics9090541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteria can produce recombinant proteins quickly and cost effectively. However, their physiological properties limit their use for the production of proteins in their native form, especially polypeptides that are subjected to major post-translational modifications. Proteins that rely on disulfide bridges for their stability are difficult to produce in Escherichia coli. The bacterium offers the least costly, simplest, and fastest method for protein production. However, it is difficult to produce proteins with a very large size. Saccharomyces cerevisiae and Pichia pastoris are the most commonly used yeast species for protein production. At a low expense, yeasts can offer high protein yields, generate proteins with a molecular weight greater than 50 kDa, extract signal sequences, and glycosylate proteins. Both eukaryotic and prokaryotic species maintain reducing conditions in the cytoplasm. Hence, the formation of disulfide bonds is inhibited. These bonds are formed in eukaryotic cells during the export cycle, under the oxidizing conditions of the endoplasmic reticulum. Bacteria do not have an advanced subcellular space, but in the oxidizing periplasm, they exhibit both export systems and enzymatic activities directed at the formation and quality of disulfide bonds. Here, we discuss current techniques used to target eukaryotic and prokaryotic species for the generation of correctly folded proteins with disulfide bonds.
Collapse
|
4
|
Abstract
Proteins are the main source of drug targets and some of them possess therapeutic potential themselves. Among them, membrane proteins constitute approximately 50% of the major drug targets. In the drug discovery pipeline, rapid methods for producing different classes of proteins in a simple manner with high quality are important for structural and functional analysis. Cell-free systems are emerging as an attractive alternative for the production of proteins due to their flexible nature without any cell membrane constraints. In a bioproduction context, open systems based on cell lysates derived from different sources, and with batch-to-batch consistency, have acted as a catalyst for cell-free synthesis of target proteins. Most importantly, proteins can be processed for downstream applications like purification and functional analysis without the necessity of transfection, selection, and expansion of clones. In the last 5 years, there has been an increased availability of new cell-free lysates derived from multiple organisms, and their use for the synthesis of a diverse range of proteins. Despite this progress, major challenges still exist in terms of scalability, cost effectiveness, protein folding, and functionality. In this review, we present an overview of different cell-free systems derived from diverse sources and their application in the production of a wide spectrum of proteins. Further, this article discusses some recent progress in cell-free systems derived from Chinese hamster ovary and Sf21 lysates containing endogenous translocationally active microsomes for the synthesis of membrane proteins. We particularly highlight the usage of internal ribosomal entry site sequences for more efficient protein production, and also the significance of site-specific incorporation of non-canonical amino acids for labeling applications and creation of antibody drug conjugates using cell-free systems. We also discuss strategies to overcome the major challenges involved in commercializing cell-free platforms from a laboratory level for future drug development.
Collapse
Affiliation(s)
- Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
5
|
Production of protein-loaded starch microspheres using water-in-water emulsion method. Carbohydr Polym 2020; 231:115692. [DOI: 10.1016/j.carbpol.2019.115692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/19/2022]
|
6
|
Kögler M, Itkonen J, Viitala T, Casteleijn MG. Assessment of recombinant protein production in E. coli with Time-Gated Surface Enhanced Raman Spectroscopy (TG-SERS). Sci Rep 2020; 10:2472. [PMID: 32051493 PMCID: PMC7015922 DOI: 10.1038/s41598-020-59091-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/23/2020] [Indexed: 01/18/2023] Open
Abstract
Time-Gated Surface-Enhanced Raman spectroscopy (TG-SERS) was utilized to assess recombinant protein production in Escherichia coli. TG-SERS suppressed the fluorescence signal from the biomolecules in the bacteria and the culture media. Characteristic protein signatures at different time points of the cell cultivation were observed and compared to conventional continuous wave (CW)-Raman with SERS. TG-SERS can distinguish discrete features of proteins such as the secondary structures and is therefore indicative of folding or unfolding of the protein. A novel method utilizing nanofibrillar cellulose as a stabilizing agent for nanoparticles and bacterial cells was used for the first time in order to boost the Raman signal, while simultaneously suppressing background signals. We evaluated the expression of hCNTF, hHspA1, and hHsp27 in complex media using the batch fermentation mode. HCNTF was also cultivated using EnBase in a fed-batch like mode. HspA1 expressed poorly due to aggregation problems within the cell, while hCNTF expressed in batch mode was correctly folded and protein instabilities were identified in the EnBase cultivation. Time-gated Raman spectroscopy showed to be a powerful tool to evaluate protein production and correct folding within living E. coli cells during the cultivation.
Collapse
Affiliation(s)
- Martin Kögler
- VTT Technical Research Centre of Finland, Oulu, Finland
| | - Jaakko Itkonen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Marco G Casteleijn
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. .,VTT Technical Research Centre of Finland, Espoo, Finland.
| |
Collapse
|