1
|
Miron RJ, Pikos MA, Estrin NE, Kobayashi-Fujioka M, Espinoza AR, Basma H, Zhang Y. Extended platelet-rich fibrin. Periodontol 2000 2024; 94:114-130. [PMID: 37986559 DOI: 10.1111/prd.12537] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
Platelet-rich fibrin (PRF) has been characterized as a regenerative biomaterial that is fully resorbed within a typical 2-3 week period. Very recently, however, a novel heating process was shown to extend the working properties of PRP/PRF from a standard 2-3 week period toward a duration of 4-6 months. Numerous clinicians have now utilized this extended-PRF (e-PRF) membrane as a substitute for collagen barrier membranes in various clinical applications, such as guided tissue/bone regeneration. This review article summarizes the scientific work to date on this novel technology, including its current and future applications in periodontology, implant dentistry, orthopedics and facial aesthetics. A systematic review was conducted investigating key terms including "Bio-Heat," "albumin gel," "albumin-PRF," "Alb-PRF," "extended-PRF," "e-PRF," "activated plasma albumin gel," and "APAG" by searching databases such as MEDLINE, EMBASE and PubMed. Findings from preclinical studies demonstrate that following a simple 10-min heating process, the transformation of the liquid plasma albumin layer into a gel-like injectable albumin gel extends the resorption properties to at least 4 months according to ISO standard 10 993 (subcutaneous animal model). Several clinical studies have now demonstrated the use of e-PRF membranes as a replacement for collagen membranes in GTR/GBR procedures, closing lateral windows in sinus grafting procedures, for extraction site management, and as a stable biological membrane during recession coverage procedures. Furthermore, Alb-PRF may also be injected as a regenerative biological filler that lasts extended periods with advantages in joint injections, osteoarthritis and in the field of facial aesthetics. This article highlights the marked improvement in the stability and degradation properties of the novel Alb-PRF/e-PRF technology with its widespread future potential use as a potential replacement for collagen membranes with indications including extraction site management, GBR procedures, lateral sinus window closure, recession coverage among others, and further highlights its use as a biological regenerative filler for joint injections and facial aesthetics. It is hoped that this review will pioneer future opportunities and research development in the field, leading to further progression toward more natural and less costly biomaterials for use in medicine and dentistry.
Collapse
Affiliation(s)
- Richard J Miron
- Advanced PRF Education, Jupiter, Florida, USA
- Department of Periodontology, University of Bern, Bern, Switzerland
| | | | | | - Masako Kobayashi-Fujioka
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | | | | | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
2
|
Interpenetrating network expansion sponge based on chitosan and plasma for ultrafast hemostasis of arterial bleeding wounds. Carbohydr Polym 2023; 307:120590. [PMID: 36781269 DOI: 10.1016/j.carbpol.2023.120590] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Preventing arterial hemorrhage by intervening within the first few minutes is critical to the patient's life. Hemostatic materials have been developed over the last decades to address this issue, nevertheless these materials alone do not contribute to improve the survival effects in many extreme conditions, which is usually caused by penetrating arterial bleeding wounds that are incompressible and deep arterial bleeding with irregularly shapes. It is well known that, after calcium ion stimulation, many intriguing changes occurred in the major components of plasma, including the activation of several coagulation factors, such as the conversion of fibrinogen to fibrin, prothrombin to thrombin, and so on. Therefore, we constructed an expansion sponge with interpenetrating network based on chitosan and plasma, while various activated coagulation factors in plasma were also loaded into the pore structure of chitosan sponges. The prepared CS-PG sponge is capable of providing a simpler and more efficient method for treating high-pressure arterial bleeding wounds, which includes three steps: Rapid sealing and adhension, Thrombin catalysis and Activated autocoagulation. As the next generation bioactive materials, compared to conventional hemostatic materials, CS-PG sponge demonstrated superior hemostatic characteristics in both rabbit femoral artery damage and rat liver injury models.
Collapse
|
3
|
Development of Surgically Transplantable Parathyroid Hormone-Releasing Microbeads. Biomedicines 2022; 10:biomedicines10020440. [PMID: 35203648 PMCID: PMC8962264 DOI: 10.3390/biomedicines10020440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
Hypoparathyroidism is an endocrine disorder that occurs because of the inability to produce parathyroid hormone (PTH) effectively. Previously, we reported the efficacy of tonsil-derived mesenchymal stem cells (TMSCs) differentiated into parathyroid-like cells for the treatment of hypoparathyroidism. Here, we investigated the feasibility of three-dimensional structural microbeads fabricated with TMSCs and alginate, a natural biodegradable polymer, to treat hypoparathyroidism. Alginate microbeads were fabricated by dropping a 2% (w/v) alginate solution containing TMSCs into a 5% CaCl2 solution and then differentiated into parathyroid-like cells using activin A and sonic hedgehog for 7 days. The protein expression of PTH, a specific marker of the parathyroid gland, was significantly higher in differentiated alginate microbeads with TMSCs (Al-dT) compared with in undifferentiated alginate microbeads with TMSCs. For in vivo experiments, we created the hypoparathyroidism animal model by parathyroidectomy (PTX) and implanted alginate microbeads in the dorsal interscapular region. The PTX rats with Al-dT (PTX+Al-dT) showed the highest survival rate and weight change and a gradual increase in serum intact PTH levels. We also detected a higher expression of PTH in retrieved tissues of PTX+Al-dT using immunofluorescence analysis. This study demonstrates that alginate microbeads are potential a new tool as a surgically scalable therapy for treating hypoparathyroidism.
Collapse
|
4
|
Anitua E, Troya M, Tierno R, Zalduendo M, Alkhraisat MH. The effectiveness of platelet-rich plasma as a carrier of stem cells in tissue regeneration: A systematic review of pre-clinical research. Cells Tissues Organs 2021; 210:339-350. [PMID: 34551408 DOI: 10.1159/000518994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022] Open
|
5
|
Li D, Guo B, Liang Q, Liu Y, Zhang L, Hu N, Zhang X, Yang F, Ruan C. Tissue-engineered parathyroid gland and its regulatory secretion of parathyroid hormone. J Tissue Eng Regen Med 2020; 14:1363-1377. [PMID: 32511868 DOI: 10.1002/term.3080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/11/2022]
Abstract
Parathyroid glands (PTGs) are important endocrine organs being mainly responsible for the secretion of parathyroid hormone (PTH) to regulate the balance of calcium (Ca) /phosphorus (P) ions in the body. Once PTGs get injured or removed, their resulting defect or loss of PTH secretion should disturb the level of Ca/P in blood, thus damaging other related organs (bone, kidney, etc.) and even causing death. Recently, tissue-engineered PTGs (TE-PTGs) have attracted lots of attention as a potential treatment for the related diseases of PTGs caused by hypoparathyroidism and hyperparathyroidism, including tetany, muscle cramp, nephrolithiasis, nephrocalcinosis, and osteoporosis. Although great progress has been made in the establishment of TE-PTGs with an effective strategy to integrate the key factors of cells and biomaterials, its regulatory secretion of PTH to mimic its natural rhythms in the body remains a huge challenge. This review comprehensively describes an overview of PTGs from physiology and pathology to cytobiology and tissue engineering. The state of the arts in TE-PTGs and the feasible strategies to regulate PTH secretion behaviors are highlighted to provide an important foundation for further investigation.
Collapse
Affiliation(s)
- Duo Li
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Baochun Guo
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, PR China.,Key Laboratory of Shenzhen Renal Diseases, Shenzhen, PR China
| | - Qingfei Liang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Yunhui Liu
- University of Chinese Academy of Sciences, Beijing, PR China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Lu Zhang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Nan Hu
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, PR China.,Key Laboratory of Shenzhen Renal Diseases, Shenzhen, PR China
| | - Xinzhou Zhang
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, PR China.,Key Laboratory of Shenzhen Renal Diseases, Shenzhen, PR China
| | - Fan Yang
- University of Chinese Academy of Sciences, Beijing, PR China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
6
|
Platelet-Rich Fibrin Can Neutralize Hydrogen Peroxide-Induced Cell Death in Gingival Fibroblasts. Antioxidants (Basel) 2020; 9:antiox9060560. [PMID: 32604944 PMCID: PMC7346145 DOI: 10.3390/antiox9060560] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Hydrogen peroxide is a damage signal at sites of chronic inflammation. The question arises whether platelet-rich fibrin (PRF), platelet-poor plasma (PPP), and the buffy coat can neutralize hydrogen peroxide toxicity and thereby counteract local oxidative stress. In the present study, gingival fibroblasts cells were exposed to hydrogen peroxide with and without lysates obtained from PRF membranes, PPP, heated PPP (75 °C for 10 min), and the buffy coat. Cell viability was examined by trypan blue staining, live-dead staining, and formazan crystal formation. Cell apoptosis was assessed by cleaved caspase-3 Western blot analysis. Reverse transcription-quantitative polymerase chain reaction (RT-PCR) was utilized to determine the impact of PRF lysates on the expression of catalase in fibroblasts. It was reported that lysates from PRF, PPP, and the buffy coat—but not heated PPP—abolished the hydrogen peroxide-induced toxicity in gingival fibroblasts. Necrosis was confirmed by a loss of membrane integrity and apoptosis was ruled out by the lack of cleavage of caspase-3. Aminotriazole, an inhibitor of catalase, reduced the cytoprotective activity of PRF lysates yet blocking of glutathione peroxidase by mercaptosuccinate did not show the same effect. PRF lysates had no impact on the expression of catalase in gingival fibroblasts. These findings suggest that PRF, PPP, and the buffy coat can neutralize hydrogen peroxide through the release of heat-sensitive catalase.
Collapse
|
7
|
Fujioka-Kobayashi M, Schaller B, Mourão CFDAB, Zhang Y, Sculean A, Miron RJ. Biological characterization of an injectable platelet-rich fibrin mixture consisting of autologous albumin gel and liquid platelet-rich fibrin (Alb-PRF). Platelets 2020; 32:74-81. [PMID: 31959025 DOI: 10.1080/09537104.2020.1717455] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelet-rich fibrin (PRF) has been proposed as an autologous membrane with the advantages of host accumulation of platelets and leukocytes with entrapment of growth factors. However, limitations include its faster resorption properties (~2 weeks). Interestingly, recent studies have demonstrated that by heating a liquid platelet-poor plasma (PPP) layer, the resorption properties of heated albumin (albumin gel) can be extended from 2 weeks to greater than 4 months (e-PRF). The aim of the present study was to characterize the biological properties of this novel regenerative modality. Whole blood collected from peripheral blood in 9-mL plastic tubes was centrifuged at 700 g for 8 minutes. Thereafter, the platelet-poor plasma layer was heated at 75°C for 10 minutes to create denatured albumin (albumin gel). The remaining cells and growth factor found within the buffy coat layer (liquid PRF) were thereafter mixed back together with the cooled albumin gel to form Alb-PRF. Histological analysis, including the distribution of cells within Alb-PRF, was then performed. Seven different growth factor release kinetics from Alb-PRF were characterized up to 10 days, including PDGF-AA, PDGF-AB, PDGF-BB, TGF-β1, VEGF, IGF and EGF. Thereafter, gingival fibroblast cell responses to Alb-PRF were investigated by means of a live/dead assay at 24 hours; migration assay at 24 hours; proliferation assay at 1, 3 and 5 days; real-time PCR for the expression of TGF-β and collagen 1a2 at 3 and 7 days; and collagen 1 immunostaining at 14 days. It was first observed histologically that viable cells were evenly distributed throughout the Alb-PRF formulation. Growth factor release demonstrated a slow and gradual release, particularly for TGF-β1 and PDGF-AA/AB, during the entire 10-day period. Alb-PRF also exhibited statistically significantly higher cell biocompatibility at 24 hours and statistically significantly induced greater fibroblast proliferation at 5 days when compared to those of control TCP. Alb-PRF further induced statistically significantly greater mRNA levels of TGF-β at 3 and 7 days, as well as collagen 1 at 7 days. The present results indicate that Alb-PRF possesses regenerative properties induced by the slow and gradual release of growth factors found in liquid PRF via albumin gel degradation. Future studies are thus warranted to fully characterize the degradation properties of Alb-PRF in vivo and explore future clinical applications in various fields of medicine.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern , Bern, Switzerland
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern , Bern, Switzerland
| | | | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan , Wuhan, China
| | - Anton Sculean
- Department of Periodontology, University of Bern , Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, University of Bern , Bern, Switzerland
| |
Collapse
|
8
|
Zhang P, Zhang H, Dong W, Wang Z, Qin Y, Wu C, Dong Q. Differentiation of Rat Adipose-Derived Stem Cells into Parathyroid-Like Cells. Int J Endocrinol 2020; 2020:1860842. [PMID: 32612651 PMCID: PMC7306084 DOI: 10.1155/2020/1860842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/08/2019] [Accepted: 07/04/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The current treatment for postoperative hypoparathyroidism has shortcomings, such as repeated blood monitoring for dosage adjustment, uncertain long-term efficacy, and the high price of recombinant parathyroid hormone therapy. Adipose-derived stem cells can undergo adipogenic and osteogenic differentiation in vitro and are considered a novel source of parathyroid-like cells, but the idea lacks theoretical basis and feasibility. We aimed at establishing a protocol for differentiating adipose-derived stem cells into parathyroid-like cells for treating hypoparathyroidism. MATERIALS /. METHODS Adipose-derived stem cells were isolated and purified from the inguinal adipose tissue of Sprague Dawley rats. Adipogenic differentiation and osteogenic differentiation of the cells were identified by oil red O and alizarin red S staining, respectively. The adipose-derived stem cells were stimulated by sonic hedgehog (SHH) and activin A. The differentiation of the adipose-derived stem cells to parathyroid-like cells was confirmed by the detection of parathyroid hormone and the related parathyroid markers. RESULTS Adipose-derived stem cells were successfully isolated and purified from the rat adipocytes. The adipogenic and osteogenic differentiation capabilities of the adipose-derived stem cells were determined. SHH and activin A stimulated parathyroid hormone secretion by the adipose-derived stem cells and significantly increased the expression of calcium-sensing receptor (CaSR), parathyroid hormone, and glial cells missing homolog 2 (GCM2) in the cells in a time- and concentration-dependent manner. CONCLUSION We successfully differentiated rat adipose-derived stem cells into parathyroid-like cells, which will pave a new route to curing hypoparathyroidism.
Collapse
Affiliation(s)
- Ping Zhang
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Hao Zhang
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Wenwu Dong
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Zhihong Wang
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Yuan Qin
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Changhao Wu
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Qi Dong
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
- Department of General Surgery, The People's Hospital of China Medical University, Shenyang, Liaoning Province 110016, China
| |
Collapse
|
9
|
Oh SY, Choi YM, Kim HY, Park YS, Jung SC, Park JW, Woo SY, Ryu KH, Kim HS, Jo I. Application of Tonsil-Derived Mesenchymal Stem Cells in Tissue Regeneration: Concise Review. Stem Cells 2019; 37:1252-1260. [PMID: 31287931 PMCID: PMC6852396 DOI: 10.1002/stem.3058] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/23/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Since the discovery of stem cells and multipotency characteristics of mesenchymal stem cells (MSCs), there has been tremendous development in regenerative medicine. MSCs derived from bone marrow have been widely used in various research applications, yet there are limitations such as invasiveness of obtaining samples, low yield and proliferation rate, and questions regarding their practicality in clinical applications. Some have suggested that MSCs from other sources, specifically those derived from palatine tonsil tissues, that is, tonsil‐derived MSCs (TMSCs), could be considered as a new potential therapeutic tool in regenerative medicine due to their superior proliferation rate and differentiation capabilities with low immunogenicity and ease of obtaining. Several studies have determined that TMSCs have differentiation potential not only into the mesodermal lineage but also into the endodermal as well as ectodermal lineages, expanding their potential usage and placing them as an appealing option to consider for future studies in regenerative medicine. In this review, the differentiation capacities of TMSCs and their therapeutic competencies from past studies are addressed. stem cells2019;37:1252–1260
Collapse
Affiliation(s)
- Se-Young Oh
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Young Min Choi
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ha Yeong Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Shin Park
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|