1
|
Huang M, Wen Z, Huang T, Zhou X, Wang Z, Yang S, Zhao A. The Impact of Mutant EDNRB on the Two-End Black Coat Color Phenotype in Chinese Local Pigs. Animals (Basel) 2025; 15:478. [PMID: 40002960 PMCID: PMC11851453 DOI: 10.3390/ani15040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Endothelin Receptor Type B (EDNRB) is expressed in a variety of cells during embryonic stage, including melanocyte precursors cells. Our previous studies found that 11 bp deletion of EDNRB caused the two-end black (TEB) coat color in Chinese pigs. In this study, we aimed to explore the mutant EDNRB on the formation of TEB coat color in Chinese pigs. We constructed recombinant plasmid for wild and mutant EDNRB and EDN1, respectively, and transfected the recombinant plasmid into mouse B16 melanoma cells in groups. Real-time fluorescent quantitative PCR (RT-qPCR) was performed to detect expression of genes that participate in melanin pathway, including PLCγ, Raf, MITF. Comparing to the wild-type EDNRB cells, expression of the three genes in the cell line expressing mutant EDNRB cells was significantly reduced. We measured the melanin content produced by transfected recombinant granulocytes of wild and mutant EDNRB and found that the amount of melanin in mutant EDNRB cells was significantly lower than that of the wild. Wound-healing assay confirmed that the migration and mobility rate of mutant EDNRB cells were significantly lower than the wild. Co-immunoprecipitation further confirmed that mutant EDNRB could not interact with the EDN1 protein. In conclusion, this study revealed that the 11 bp deletion of EDNRB reduced the melanin production, which may be caused by inhibiting the expression of PLCγ, Raf, and MITF. The mutant EDNRB reduced melanocyte migration and could not interact with the EDN1 protein. We explored the effect of mutant EDNRB in Chinese pigs with TEB coat color, and the results provided a reference for exploring molecular mechanism of mutant EDNRB on the formation of TEB coat color pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ayong Zhao
- College of Animal Science and Technology · College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; (M.H.); (Z.W.); (T.H.); (X.Z.); (Z.W.); (S.Y.)
| |
Collapse
|
2
|
Gao Y, Feng X, Diao S, Liu Y, Zhong Z, Cai X, Li G, Teng J, Liu X, Li J, Zhang Z. Deciphering genetic characteristics of South China and North China indigenous pigs through selection signatures. BMC Genomics 2024; 25:1191. [PMID: 39695929 DOI: 10.1186/s12864-024-11119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Indigenous pig breeds in China have accumulated significant genetic diversity due to regional selection pressures. Investigating the selection signatures of these populations helps to understand their adaptive evolution and contributes to genetic improvement programs. RESULTS We collected whole-genome sequencing data from 133 individuals, including South China and North China indigenous pigs and Asian wild boars. After data filtering, we retained 31,521,978 high-quality SNPs. Population structure analysis using PCA revealed distinct genetic clustering among these populations. Selection signature detection identified 5,227 loci under selection in South China indigenous pigs and 5,800 in North China indigenous pigs compared to Asian wild boars. Candidate genes were enriched in immune response pathways, reproductive traits, and pigmentation pathways. South China indigenous pigs exhibited selection signals for fat deposition and immune responses, while North China indigenous pigs showed stronger signals related to growth, blood physiology, and reproductive performance. Additionally, key genes such as MC1R and KIT were associated with coat color variation, and IGF1R and IGF2R were linked to growth regulation. CONCLUSION Our results demonstrate that indigenous pigs in China have undergone selection for distinct traits aligned with their regional environments and farming systems. South China indigenous pigs have been selected for traits related to fat deposition and immunity, while North China indigenous pigs have been selected for growth and reproductive traits. The findings offer crucial insights into the genetic architecture of indigenous pig breeds, providing a valuable foundation for future genetic breeding programs.
Collapse
Affiliation(s)
- Yahui Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xueyan Feng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuqi Diao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuqiang Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhanming Zhong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaotian Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Guangzhen Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jinyan Teng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhe Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Du H, Zhou L, Liu Z, Zhuo Y, Zhang M, Huang Q, Lu S, Xing K, Jiang L, Liu JF. The 1000 Chinese Indigenous Pig Genomes Project provides insights into the genomic architecture of pigs. Nat Commun 2024; 15:10137. [PMID: 39578420 PMCID: PMC11584710 DOI: 10.1038/s41467-024-54471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Pigs play a central role in human livelihoods in China, but a lack of systematic large-scale whole-genome sequencing of Chinese domestic pigs has hindered genetic studies. Here, we present the 1000 Chinese Indigenous Pig Genomes Project sequencing dataset, comprising 1011 indigenous individuals from 50 pig populations covering approximately two-thirds of China's administrative divisions. Based on the deep sequencing (~25.95×) of these pigs, we identify 63.62 million genomic variants, and provide a population-specific reference panel to improve the imputation performance of Chinese domestic pig populations. Using a combination of methods, we detect an ancient admixture event related to a human immigration climax in the 13th century, which may have contributed to the formation of southeast-central Chinese pig populations. Analyzing the haplotypes of the Y chromosome shows that the indigenous populations residing around the Taihu Lake Basin exhibit a unique haplotype. Furthermore, we find a 13 kb region in the THSD7A gene that may relate to high-altitude adaptation, and a 0.47 Mb region on chromosome 7 that is significantly associated with body size traits. These results highlight the value of our genomic resource in facilitating genomic architecture and complex traits studies in pigs.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei Zhou
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Liu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Zhuo
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meilin Zhang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianqian Huang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyu Lu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Xing
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li Jiang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Feng Liu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Liu C, Ao N, Liang Y, Ma T, Wang Q, Wang Z, Wu F, Zhang Z, Fang Y, Wang M, Pan Y, Fu J. Analysis of cis-regulatory changes underlying phenotype divergence shaped by domestication in pigs. Front Genet 2024; 15:1421859. [PMID: 39582787 PMCID: PMC11581869 DOI: 10.3389/fgene.2024.1421859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/07/2024] [Indexed: 11/26/2024] Open
Abstract
Background Cis-regulatory elements (CREs) are regions of DNA that regulate the expression of nearby genes. Changes in these elements can lead to phenotypic variations and adaptations in different populations. However, the regulatory dynamics underlying the local adaptation of traits remain poorly understood in Chinese and Western pigs. By comparing the chromatin accessibility profiles of skeletal muscle, liver, and fat between these two pig populations, we aimed to identify key regulatory elements that could explain phenotypic differences observed between the two groups. Results Our results revealed that the genome-wide chromatin accessibility profiles were largely similar at a qualitative level within tissues. However, we also identified local regions that exhibited quantitative differences, most of which occurred in liver tissue. Interestingly, we found that most of the increased chromatin accessibility in the livers of Chinese pigs was associated with tissue-specific openness. Furthermore, we observed a positive correlation between the ATAC-seq signal at the transcript start site (TSS) and the expression levels of nearby genes. Motif enrichment analysis revealed NR2F1 as a key regulator in Chinese pigs. Differentially expressed genes (DEGs) in Chinese pigs showed enrichment for NR2F1 response targets. One of the genes regulated by NR2F1 in Chinese pigs, NPC1, harbored a high alternative allelic frequency in the intron region. Conclusion Overall, our study provides valuable insights into the regulatory dynamics underlying phenotypic variation in pigs. By elucidating the role of CREs in driving phenotypic variation, we can better understand the genetic basis of complex traits and potentially identify targets for genetic improvement in livestock breeding programs.
Collapse
Affiliation(s)
- Chunpeng Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Na Ao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yuwen Liang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Tingting Ma
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fen Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenyang Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Minghui Wang
- Center for Life Science Ventures, Cornell University, Ithaca, NY, United States
| | - Yuchun Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
5
|
Pius L, Huang S, Wanjala G, Bagi Z, Kusza S. African Local Pig Genetic Resources in the Context of Climate Change Adaptation. Animals (Basel) 2024; 14:2407. [PMID: 39199941 PMCID: PMC11350805 DOI: 10.3390/ani14162407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Africa is home to a wide diversity of locally adapted pig breeds whose genetic architecture offers important insights into livestock adaptation to climate change. However, the majority of these inherent traits have not been fully highlighted. This review presents an overview of the current state of African pig genetic resources, providing highlights on their population and production statistics, production system, population diversity indices, and genomic evidence underlying their evolutionary potential. The study results reveal an incomplete characterization of local pig genotypes across the continent. The characterized population, however, demonstrates moderate to high levels of genetic diversity, enough to support breeding and conservation programs. Owing to low genetic differentiation and limited evidence of distinct population structures, it appears that most local pig populations are strains within larger breeds. Genomic evidence has shown a higher number of selection signatures associated with various economically important traits, thus making them potential candidates for climate change adaptation. The reportedly early evidence of hybridization with wild suid groups further suggests untapped insights into disease resistance and resilience traits that need to be illuminated using higher-density markers. Nevertheless, gene introgression from commercial breeds is prevalent across Africa; thus, efforts to realize and utilize these traits must increase before they are permanently depleted.
Collapse
Affiliation(s)
- Lenox Pius
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.P.); (S.H.)
- Animal Breeding and Genetics Resource Section, Tanzania Livestock Research Institute (TALIRI), Dodoma 41207, Tanzania
| | - Shuntao Huang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.P.); (S.H.)
| | - George Wanjala
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.W.); (Z.B.)
- Doctoral School of Animal Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary
- Institute of Animal Sciences and Wildlife Management, University of Szeged, Andrássy út 15, 6800 Hódmezővásárhely, Hungary
| | - Zoltán Bagi
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.W.); (Z.B.)
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.W.); (Z.B.)
| |
Collapse
|
6
|
Yao H, Pan Z, Ma W, Zhao Z, Su Z, Yang J. Whole-Genome Resequencing Analysis of the Camelus bactrianus (Bactrian Camel) Genome Identifies Mutations and Genes Affecting Milk Production Traits. Int J Mol Sci 2024; 25:7836. [PMID: 39063078 PMCID: PMC11277051 DOI: 10.3390/ijms25147836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Milk production is an important trait that influences the economic value of camels. However, the genetic regulatory mechanisms underlying milk production in camels have not yet been elucidated. We aimed to identify candidate molecular markers that affect camel milk production. We classified Junggar Bactrian camels (9-10-year-old) as low-yield (<1.96 kg/d) or high-yield (>2.75 kg/d) based on milk production performance. Milk fat (5.16 ± 0.51 g/100 g) and milk protein (3.59 ± 0.22 g/100 g) concentrations were significantly lower in high-yielding camels than those in low-yielding camels (6.21 ± 0.59 g/100 g, and 3.93 ± 0.27 g/100 g, respectively) (p < 0.01). There were no apparent differences in gland tissue morphology between the low- and high-production groups. Whole-genome resequencing of 12 low- and 12 high-yield camels was performed. The results of selection mapping methods, performed using two methods (FST and θπ), showed that 264 single nucleotide polymorphism sites (SNPs) overlapped between the two methods, identifying 181 genes. These genes were mainly associated with the regulation of oxytocin, estrogen, ErbB, Wnt, mTOR, PI3K-Akt, growth hormone synthesis/secretion/action, and MAPK signaling pathways. A total of 123 SNPs were selected, based on significantly associated genomic regions and important pathways for SNP genotyping, for verification in 521 additional Bactrian camels. This analysis showed that 13 SNPs were significantly associated with camel milk production yield and 18 SNPs were significantly associated with camel milk composition percentages. Most of these SNPs were located in coding regions of the genome. However, five and two important mutation sites were found in the introns of CSN2 (β-casein) and CSN3 (κ-casein), respectively. Among the candidate genes, NR4A1, ADCY8, PPARG, CSN2, and CSN3 have previously been well studied in dairy livestock. These observations provide a basis for understanding the molecular mechanisms underlying milk production in camels as well as genetic markers for breeding programs aimed at improving milk production.
Collapse
Affiliation(s)
- Huaibing Yao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (H.Y.); (Z.Z.)
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi 830017, China
| | - Zhangyuan Pan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (W.M.); (Z.S.)
| | - Zhongkai Zhao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (H.Y.); (Z.Z.)
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi 830017, China
| | - Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (W.M.); (Z.S.)
| | - Jie Yang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (H.Y.); (Z.Z.)
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi 830017, China
| |
Collapse
|
7
|
Yang R, Jin S, Fang S, Yan D, Zhang H, Nie J, Liu J, Lv M, Zhang B, Dong X. Genetic introgression from commercial European pigs to the indigenous Chinese Lijiang breed and associated changes in phenotypes. Genet Sel Evol 2024; 56:24. [PMID: 38566006 PMCID: PMC10985947 DOI: 10.1186/s12711-024-00893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Gene flow is crucial for enhancing economic traits of livestock. In China, breeders have used hybridization strategies for decades to improve livestock performance. Here, we performed whole-genome sequencing of a native Chinese Lijiang pig (LJP) breed. By integrating previously published data, we explored the genetic structure and introgression of genetic components from commercial European pigs (EP) into the LJP, and examined the impact of this introgression on phenotypic traits. RESULTS Our analysis revealed significant introgression of EP breeds into the LJP and other domestic pig breeds in China. Using a haplotype-based approach, we quantified introgression levels and compared EP to LJP and other Chinese domestic pigs. The results show that EP introgression is widely prevalent in Chinese domestic pigs, although there are significant differences between breeds. We propose that LJP could potentially act as a mediator for the transmission of EP haplotypes. We also examined the correlation between EP introgression and the number of thoracic vertebrae in LJP and identified VRTN and STUM as candidate genes for this trait. CONCLUSIONS Our study provides evidence of introgressed European haplotypes in the LJP breed and describes the potential role of EP introgression on phenotypic changes of this indigenous breed.
Collapse
Affiliation(s)
- Ruifei Yang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Siqi Jin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Suyun Fang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dawei Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hao Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingru Nie
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinqiao Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Minjuan Lv
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bo Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Xinxing Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
8
|
Yan Z, Song K, Wang P, Gun S, Long X. Evaluation of the Genetic Diversity and Population Structure of Four Native Pig Populations in Gansu Province. Int J Mol Sci 2023; 24:17154. [PMID: 38138983 PMCID: PMC10743271 DOI: 10.3390/ijms242417154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Indigenous pig populations, including Bamei pigs (BM), Hezuo pigs (HZ), Huixian Qingni Black pigs (HX), and Minxian Black pigs (MX) in Gansu Province, live in a particular climate and a relatively closed geographical environment. These local pig breeds are characterized by excellent characteristics (e.g., cold tolerance, robust disease resistance, and superior meat quality). In the past few years, pig populations in Gansu Province have decreased significantly because of their poor lean meat percentage, high fat content, and slow growth rate. Maintaining the diversity of these four breeds can act as a source of new alleles to be incorporated into commercial breeds which are more susceptible to disease and less adaptable to changing conditions because of inbreeding. Genomic data analysis is adequate for determining the genetic diversity and livestock breeding population structure, even in local pig populations. However, the genetic diversity and population structure of the four native pig populations in Gansu Province are still unknown. Thus, we used "Zhongxin-I" porcine chip for the SNP detection of 102 individuals living on four pig conservation farms. A total of 57,466 SNPs were identified among the four pig breeds. The linkage disequilibrium (LD) plot showed that MX had the highest level of LD, followed by BM, HZ, and HX. The observed heterozygosity (Ho) in all four populations was higher than the expected heterozygosity (He). A principal component analysis (PCA) demonstrated that the four local pig populations were isolated. The identity displayed by the state matrix and G matrix heat map results indicated that small numbers of individuals among the four pig breeds had a high genetic distance and weak genetic relationships. The results of the population genetic structure of BM, HZ, HX, and MX pigs showed a slight genetic diversity loss. Our findings enabled us to better understand the genome characteristics of these four indigenous pig populations, which will provide novel insights for the future germplasm conservation and utilization of these indigenous pig populations.
Collapse
Affiliation(s)
- Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (K.S.); (P.W.)
| | - Kelin Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (K.S.); (P.W.)
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (K.S.); (P.W.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (K.S.); (P.W.)
| | - Xi Long
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| |
Collapse
|
9
|
Deng X, Zhang Y, Song G, Fu Y, Chen Y, Gao H, Wang Q, Jin Z, Yin Y, Xu K. Integrative Analysis of Transcriptomic and Lipidomic Profiles Reveals a Differential Subcutaneous Adipose Tissue Mechanism among Ningxiang Pig and Berkshires, and Their Offspring. Animals (Basel) 2023; 13:3321. [PMID: 37958077 PMCID: PMC10647668 DOI: 10.3390/ani13213321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Adipose tissue composition contributes greatly to the quality and nutritional value of meat. Transcriptomic and lipidomic techniques were used to investigate the molecular mechanisms of the differences in fat deposition in Ningxiang pigs, Berkshires and F1 offspring. Transcriptomic analysis identified 680, 592, and 380 DEGs in comparisons of Ningxiang pigs vs. Berkshires, Berkshires vs. F1 offspring, and Ningxiang pigs vs. F1 offspring. The lipidomic analysis screened 423, 252, and 50 SCLs in comparisons of Ningxiang pigs vs. Berkshires, Berkshires vs. F1 offspring, and Ningxiang pigs vs. F1 offspring. Lycine, serine, and the threonine metabolism pathway, fatty acid biosynthesis and metabolism-related pathways were significantly enriched in comparisons of Berkshires vs. Ningxiang pigs and Berkshires vs. F1 offspring. The DEGs (PHGDH, LOC110256000) and the SCLs (phosphatidylserines) may have a great impact on the glycine, serine, and the threonine metabolism pathway. Moreover, the DEGs (FASN, ACACA, CBR4, SCD, ELOV6, HACD2, CYP3A46, CYP2B22, GPX1, and GPX3) and the SCLs (palmitoleic acid, linoleic acid, arachidonic acid, and icosadienoic acid) play important roles in the fatty acid biosynthesis and metabolism of fatty acids. Thus, the difference in fat deposition among Ningxiang pig, Berkshires, and F1 offspring may be caused by differences in the expression patterns of key genes in multiple enriched KEGG pathways. This research revealed multiple lipids that are potentially available biological indicators and screened key genes that are potential targets for molecular design breeding. The research also explored the molecular mechanisms of the difference in fat deposition among Ningxiang pig, Berkshires, and F1 pigs, and provided an insight into selection for backfat thickness and the fat composition of adipose tissue for future breeding strategies.
Collapse
Affiliation(s)
- Xiaoxiao Deng
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (X.D.); (Y.F.); (Y.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha 410125, China
| | - Yuebo Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| | - Gang Song
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| | - Yawei Fu
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (X.D.); (Y.F.); (Y.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha 410125, China
| | - Yue Chen
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (X.D.); (Y.F.); (Y.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha 410125, China
| | - Hu Gao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| | - Qian Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| | - Zhao Jin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| | - Yulong Yin
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (X.D.); (Y.F.); (Y.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha 410125, China
| | - Kang Xu
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (X.D.); (Y.F.); (Y.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.Z.); (G.S.); (H.G.); (Q.W.); (Z.J.)
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha 410125, China
| |
Collapse
|
10
|
Desire S, Johnsson M, Ros-Freixedes R, Chen CY, Holl JW, Herring WO, Gorjanc G, Mellanby RJ, Hickey JM, Jungnickel MK. A genome-wide association study for loin depth and muscle pH in pigs from intensely selected purebred lines. Genet Sel Evol 2023; 55:42. [PMID: 37322449 DOI: 10.1186/s12711-023-00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) aim at identifying genomic regions involved in phenotype expression, but identifying causative variants is difficult. Pig Combined Annotation Dependent Depletion (pCADD) scores provide a measure of the predicted consequences of genetic variants. Incorporating pCADD into the GWAS pipeline may help their identification. Our objective was to identify genomic regions associated with loin depth and muscle pH, and identify regions of interest for fine-mapping and further experimental work. Genotypes for ~ 40,000 single nucleotide morphisms (SNPs) were used to perform GWAS for these two traits, using de-regressed breeding values (dEBV) for 329,964 pigs from four commercial lines. Imputed sequence data was used to identify SNPs in strong ([Formula: see text] 0.80) linkage disequilibrium with lead GWAS SNPs with the highest pCADD scores. RESULTS Fifteen distinct regions were associated with loin depth and one with loin pH at genome-wide significance. Regions on chromosomes 1, 2, 5, 7, and 16, explained between 0.06 and 3.55% of the additive genetic variance and were strongly associated with loin depth. Only a small part of the additive genetic variance in muscle pH was attributed to SNPs. The results of our pCADD analysis suggests that high-scoring pCADD variants are enriched for missense mutations. Two close but distinct regions on SSC1 were associated with loin depth, and pCADD identified the previously identified missense variant within the MC4R gene for one of the lines. For loin pH, pCADD identified a synonymous variant in the RNF25 gene (SSC15) as the most likely candidate for the muscle pH association. The missense mutation in the PRKAG3 gene known to affect glycogen content was not prioritised by pCADD for loin pH. CONCLUSIONS For loin depth, we identified several strong candidate regions for further statistical fine-mapping that are supported in the literature, and two novel regions. For loin muscle pH, we identified one previously identified associated region. We found mixed evidence for the utility of pCADD as an extension of heuristic fine-mapping. The next step is to perform more sophisticated fine-mapping and expression quantitative trait loci (eQTL) analysis, and then interrogate candidate variants in vitro by perturbation-CRISPR assays.
Collapse
Affiliation(s)
- Suzanne Desire
- The Roslin Institute, The University of Edinburgh, Midlothian, UK.
| | - Martin Johnsson
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roger Ros-Freixedes
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio-CERCA Center, Lleida, Spain
| | - Ching-Yi Chen
- The Pig Improvement Company, Genus Plc, Hendersonville, TN, USA
| | - Justin W Holl
- The Pig Improvement Company, Genus Plc, Hendersonville, TN, USA
| | | | - Gregor Gorjanc
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Richard J Mellanby
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - John M Hickey
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | | |
Collapse
|
11
|
Wang F, Zha Z, He Y, Li J, Zhong Z, Xiao Q, Tan Z. Genome-Wide Re-Sequencing Data Reveals the Population Structure and Selection Signatures of Tunchang Pigs in China. Animals (Basel) 2023; 13:1835. [PMID: 37889708 PMCID: PMC10252034 DOI: 10.3390/ani13111835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 09/29/2023] Open
Abstract
Tunchang pig is one population of Hainan pig in the Hainan Province of China, with the characteristics of delicious meat, strong adaptability, and high resistance to diseases. To explore the genetic diversity and population structure of Tunchang pigs and uncover their germplasm characteristics, 10 unrelated Tunchang pigs were re-sequenced using the Illumina NovaSeq 150 bp paired-end platform with an average depth of 10×. Sequencing data from 36 individuals of 7 other pig breeds (including 4 local Chinese pig breeds (5 Jinhua, 5 Meishan, 5 Rongchang, and 6 Wuzhishan), and 3 commonly used commercial pig breeds (5 Duorc, 5 Landrace, and 5 Large White)) were downloaded from the NCBI public database. After analysis of genetic diversity and population structure, it has been found that compared to commercial pigs, Tunchang pigs have higher genetic diversity and are genetically close to native Chinese breeds. Three methods, FST, θπ, and XP-EHH, were used to detect selection signals for three breeds of pigs: Tunchang, Duroc, and Landrace. A total of 2117 significantly selected regions and 201 candidate genes were screened. Gene enrichment analysis showed that candidate genes were mainly associated with good adaptability, disease resistance, and lipid metabolism traits. Finally, further screening was conducted to identify potential candidate genes related to phenotypic traits, including meat quality (SELENOV, CBR4, TNNT1, TNNT3, VPS13A, PLD3, SRFBP1, and SSPN), immune regulation (CD48, FBL, PTPRH, GNA14, LOX, SLAMF6, CALCOCO1, IRGC, and ZNF667), growth and development (SYT5, PRX, PPP1R12C, and SMG9), reproduction (LGALS13 and EPG5), vision (SLC9A8 and KCNV2), energy metabolism (ATP5G2), cell migration (EPS8L1), and olfaction (GRK3). In summary, our research results provide a genomic overview of the genetic variation, genetic diversity, and population structure of the Tunchang pig population, which will be valuable for breeding and conservation of Tunchang pigs in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qian Xiao
- School of Animal Science and Technology, Hainan University, Haikou 570228, China; (F.W.)
| | - Zhen Tan
- School of Animal Science and Technology, Hainan University, Haikou 570228, China; (F.W.)
| |
Collapse
|
12
|
Zhang L, Zhang S, Zhan F, Song M, Shang P, Zhu F, Li J, Yang F, Li X, Qiao R, Han X, Li X, Liu G, Wang K. Population Genetic Analysis of Six Chinese Indigenous Pig Meta-Populations Based on Geographically Isolated Regions. Animals (Basel) 2023; 13:ani13081396. [PMID: 37106959 PMCID: PMC10135051 DOI: 10.3390/ani13081396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The diversification of indigenous pig breeds in China has resulted from multiple climate, topographic, and human cultural influences. The numerous indigenous pig breeds can be geographically divided into six meta-populations; however, their genetic relationships, contributions to genetic diversity, and genetic signatures remain unclear. Whole-genome SNP data for 613 indigenous pigs from the six Chinese meta-populations were obtained and analyzed. Population genetic analyses confirmed significant genetic differentiation and a moderate mixture among the Chinese indigenous pig meta-populations. The North China (NC) meta-population had the largest contribution to genetic and allelic diversity. Evidence from selective sweep signatures revealed that genes related to fat deposition and heat stress response (EPAS1, NFE2L2, VPS13A, SPRY1, PLA2G4A, and UBE3D) were potentially involved in adaptations to cold and heat. These findings from population genetic analyses provide a better understanding of indigenous pig characteristics in different environments and a theoretical basis for future work on the conservation and breeding of Chinese indigenous pigs.
Collapse
Affiliation(s)
- Lige Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Songyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Fengting Zhan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingkun Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China
| | - Fangxian Zhu
- National Animal Husbandry Service, Beijing 100193, China
| | - Jiang Li
- National Supercomputing Center in Zhengzhou, Zhengzhou 450001, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Gang Liu
- National Animal Husbandry Service, Beijing 100193, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
13
|
Tao X, Kong FJ, Liang Y, Yang XM, Yang YK, Zhong ZJ, Wang Y, Hu ZH, Chen XH, Gong JJ, Pang JH, Zhu KP, Wang Y, Liao K, Lv XB, He ZP, Gu YR. Screening of candidate genes related to differences in growth and development between Chinese indigenous and Western pig breeds. Physiol Genomics 2023; 55:147-153. [PMID: 36847439 DOI: 10.1152/physiolgenomics.00157.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Neijiang (NJ) and Yacha (YC) are two indigenous pig breeds in the Sichuan basin of China, displaying higher resistance to diseases, lower lean ratio, and slower growth rate than the commercial Western pig breed Yorkshire (YS). The molecular mechanisms underlying the differences in growth and development between these pig breeds are still unknown. In the present study, five pigs from NJ, YC, and YS breeds were subjected to the whole genome resequencing, and then the differential single-nucleotide polymorphisms (SNPs) were screened using a 10-kb window sliding in 1-kb step using the Fst method. Finally, 48,924, 48,543, and 46,228 nonsynonymous single-nucleotide polymorphism loci (nsSNPs) were identified between NJ and YS, NJ and YC, and YC and YS, which highly or moderately affected 2,490, 800, and 444 genes, respectively. Moreover, three nsSNPs were detected in the genes of acetyl-CoA acetyltransferase 1 (ACAT1) insulin-like growth factor 2 receptor (IGF2R), insulin-like growth factor 2 and mRNA-binding protein 3 (IGF2BP3), which potentially affected the transformation of acetyl-CoA to acetoacetyl-CoA and the normal functions of the insulin signaling pathways. Moreover, serous determinations revealed significantly lower acetyl-CoA content in YC than in YS, supporting that ACAT1 might be a reason explaining the differences in growth and development between YC and YS breeds. Contents of phosphatidylcholine (PC) and phosphatidic acid (PA) significantly differed between the pig breeds, suggesting that glycerophospholipid metabolism might be another reason for the differences between Chinese and Western pig breeds. Overall, these results might contribute basic information to understand the genetic differences determining the phenotypical traits in pigs.
Collapse
Affiliation(s)
- Xuan Tao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Fan-Jing Kong
- Luzhou Modern Agriculture Development Promotion Center, Luzhou, China
| | - Yan Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xue-Mei Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yue-Kui Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhi-Jun Zhong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yan Wang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zi-Hui Hu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xiao-Hui Chen
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Jian-Jun Gong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | | | - Kang-Ping Zhu
- Sichuan Dekon Livestock Foodstuff Group, Zigong, China
| | - Yong Wang
- Luzhou Agricultural and Rural Bureau, Luzhou, China
| | - Kun Liao
- Tongjiang County Animal Husbandry Station, Bazhong, China
| | - Xue-Bin Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Zhi-Ping He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yi-Ren Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| |
Collapse
|
14
|
Fontanesi L. Genetics and genomics of pigmentation variability in pigs: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Assessing Genetic Diversity and Searching for Selection Signatures by Comparison between the Indigenous Livni and Duroc Breeds in Local Livestock of the Central Region of Russia. DIVERSITY 2022. [DOI: 10.3390/d14100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Indigenous pig breeds are mainly associated with the adaptive capacity that is necessary to respond adequately to climate change, food security, and livelihood needs, and natural resources conservation. Livni pigs are an indigenous fat-type breed farmed in a single farm in the Orel region and located in the Central European part of the Russian Federation. To determine the genomic regions and genes that are affected by artificial selection, we conducted the comparative study of two pig breeds with different breeding histories and breeding objectives, i.e., the native fat-type Livni and meat-type Duroc breeds using the Porcine GGP HD BeadChip, which contains ~80,000 SNPs. To check the Livni pigs for possible admixture, the Landrace and the Large White breeds were included into the study of genetic diversity as these breeds participated in the formation of the Livni pigs. We observed the highest level of genetic diversity in Livni pigs compared to commercial breeds (UHE = 0.409 vs. 0.319–0.359, p < 0.001; AR = 1.995 vs. 1.894–1.964, p < 0.001). A slight excess of heterozygotes was found in all of the breeds. We identified 291 candidate genes, which were localized within the regions under putative selection, including 22 and 228 genes, which were specific for Livni and Duroc breeds, respectively, and 41 genes common for both breeds. A detailed analysis of the molecular functions identified the genes, which were related to the formation of meat and fat traits, and adaptation to environmental stress, including extreme temperatures, which were different between breeds. Our research results are useful for conservation and sustainable breeding of Livni breed, which shows a high level of genetic diversity. This makes Livni one of the valuable national pig genetic resources.
Collapse
|
16
|
Luo C, Sun G, Duan J, Han H, Zhong R, Chen L, Wangdui B, Zhu Y, Wang Z, Zhang H. Effects of high-altitude hypoxic environment on colonic inflammation, intestinal barrier and gut microbiota in three-way crossbred commercial pigs. Front Microbiol 2022; 13:968521. [PMID: 36160198 PMCID: PMC9493363 DOI: 10.3389/fmicb.2022.968521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
In recent years, the three-way crossbred commercial pigs are extensively cultured in Tibet. However, there have been few studies about the effect of high-altitude hypoxic environment on intestinal health of them. Therefore, we selected Tibetan pigs (TP) and the three-way crossbred commercial pigs (CP-H) living in the Tibet (3,500–3,700 m in altitude) as a positive control group and treatment group, respectively. The three-way crossbred commercial pigs (CP-L) living at altitudes 800–1,000 m sea level were selected as a negative control group. The colonic chyme, colonic mucosa, colonic tissue and serum samples were collected for the detection of gut microbiota and intestinal inflammation. The results showed that high-altitude hypoxic environment promoted the occurrence of colonic inflammation, disrupted the colonic barrier to some extent. And Hematoxylin–Eosin (HE) staining revealed that mild inflammatory cell infiltration was observed in colon of CP-H. 16S rRNA gene sequencing revealed that the microbial community composition of CP-H was changed compared with CP-L. Gut bacterial communities formed distinctly different clusters in principal coordinates analysis (PCoA) space, and Chao 1 index of CP-H was also decreased. At the genus level, Terrisporobacter showed greater enrichment in the CP-H than lower-altitude pigs. Colstridium-sensu-stricto-1 showed lower enrichment in the CP-H than lower-altitude pigs. However, the concentration of valeric acid in colonic chyme of CP-H was higher than CP-L and TP. Correlation analysis indicated that Terrisporobacter was positively associated with the relative mRNA expression level of IL-1β and the content of lipopolysaccharide (LPS), and was negatively correlated with the relative mRNA expression level of IL-10. The Streptococcus was positively associated with the concentrations of valerate. In summary, high-altitude hypoxic environment changed compositions of gut microbiota, promoted the occurrence of colonic inflammation, and disrupted intestinal barrier of the three-way crossbred commercial pigs.
Collapse
Affiliation(s)
- Chengzeng Luo
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangming Sun
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Jiujun Duan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyu Han
- Tibet Changdu Animal Husbandry General Station, Changdu, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Basang Wangdui
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
- *Correspondence: Yanbin Zhu,
| | - Zirong Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Zirong Wang,
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Wang X, Ran X, Niu X, Huang S, Li S, Wang J. Whole-genome sequence analysis reveals selection signatures for important economic traits in Xiang pigs. Sci Rep 2022; 12:11823. [PMID: 35821031 PMCID: PMC9276726 DOI: 10.1038/s41598-022-14686-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Xiang pig (XP) is one of the best-known indigenous pig breeds in China, which is characterized by its small body size, strong disease resistance, high adaptability, favorite meat quality, small litter sizes, and early sexual maturity. However, the genomic evidence that links these unique traits of XP is still poorly understood. To identify the genomic signatures of selection in XP, we performed whole-genome resequencing on 25 unrelated individual XPs. We obtained 876.70 Gb of raw data from the genomic libraries. The LD analysis showed that the lowest level of linkage disequilibrium was observed in Xiang pig. Comparative genomic analysis between XPs and other breeds including Tibetan, Meishan, Duroc and Landrace revealed 3062, 1228, 907 and 1519 selected regions, respectively. The genes identified in selected regions of XPs were associated with growth and development processes (IGF1R, PROP1, TBX19, STAC3, RLF, SELENOM, MSTN), immunity and disease resistance (ZCCHC2, SERPINB2, ADGRE5, CYP7B1, STAT6, IL2, CD80, RHBDD3, PIK3IP1), environmental adaptation (NR2E1, SERPINB8, SERPINB10, SLC26A7, MYO1A, SDR9C7, UVSSA, EXPH5, VEGFC, PDE1A), reproduction (CCNB2, TRPM6, EYA3, CYP7B1, LIMK2, RSPO1, ADAM32, SPAG16), meat quality traits (DECR1, EWSR1), and early sexual maturity (TAC3). Through the absolute allele frequency difference (ΔAF) analysis, we explored two population-specific missense mutations occurred in NR6A1 and LTBP2 genes, which well explained that the vertebrae numbers of Xiang pigs were less than that of the European pig breeds. Our results indicated that Xiang pigs were less affected by artificial selection than the European and Meishan pig breeds. The selected candidate genes were mainly involved in growth and development, disease resistance, reproduction, meat quality, and early sexual maturity. This study provided a list of functional candidate genes, as well as a number of genetic variants, which would provide insight into the molecular basis for the unique traits of Xiang pig.
Collapse
Affiliation(s)
- Xiying Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.,Tongren University, Tongren, 554300, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Xi Niu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Shihui Huang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Sheng Li
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jiafu Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
18
|
Chen Z, Zhang Z, Wang Z, Zhang Z, Wang Q, Pan Y. Heterozygosity and homozygosity regions affect reproductive success and the loss of reproduction: a case study with litter traits in pigs. Comput Struct Biotechnol J 2022; 20:4060-4071. [PMID: 35983229 PMCID: PMC9364102 DOI: 10.1016/j.csbj.2022.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/23/2022] Open
Abstract
Runs of heterozygosity (ROHet) and homozygosity (ROH) harbor useful information related to traits of interest. There is a lack of investigating the effect of ROHet and ROH on reproductive success and the loss of reproduction in mammals. Here, we detected and characterized the ROHet and ROH patterns in the genomes of Chinese indigenous pigs (i.e., Jinhua, Chun’an, Longyou Black, and Shengxian Spotted pigs), revealing the similar genetic characteristics of indigenous pigs. Later, we highlighted the underlying litter traits-related ROHet and ROH using association analysis with linear model in these four indigenous pig breeds. To pinpoint the promising candidate genes associated with litter traits, we further in-depth explore the selection patterns of other five pig breeds (i.e., Erhualian, Meishan, Minzhu, Rongchang, and Diqing pigs) with different levels of reproduction performance at the underlying litter traits-related ROHet and ROH using FST and genetic diversity ratio. Then, we identified a set of known and novel candidate genes associated with reproductive performance in pigs. For the novel candidate genes (i.e., CCDC91, SASH1, SAMD5, MACF1, MFSD2A, EPC2, and MBD5), we obtained public available datasets and performed multi-omics analyses integrating transcriptome-wide association studies and comparative single-cell RNA-seq analyses to uncover the roles of them in mammalian reproductive performance. The genes have not been widely reported to be fertility-related genes and can be complementally considered as prior biological information to modify genomic selections models that benefits pig genetic improvement of litter traits. Besides, our findings provide new insights into the function of ROHet and ROH in mammals.
Collapse
|
19
|
Chen Z, Ye X, Zhang Z, Zhao Q, Xiang Y, Xu N, Wang Q, Pan Y, Guo X, Wang Z. Genetic diversity and selection signatures of four indigenous pig breeds from eastern China. Anim Genet 2022; 53:506-509. [PMID: 35489815 DOI: 10.1111/age.13208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 12/01/2022]
Abstract
Chinese indigenous pig breeds have been undergoing selection for thousands of years, and have become invaluable genetic sources over the world. To investigate the population structure and genetic diversity of Jinhua (JH), Longyou Black (LYW), Shengxian Spotted (SXH), and Lanxi Spotted (LXH) breeds, a total of 200 pigs belonging to 10 diverse population were genotyped using SNP chips. The results showed that LYW pigs exhibited higher level of heterozygosity than the other indigenous pigs. In addition, gene introgression from intensively reared commercial pig breeds to LYW pigs was detected. Moreover, selection signature analysis revealed the possibility of differences between Chinese indigenous and intensively reared commercial pig breeds were mainly present for meat and carcass traits. Furthermore, we found that ANXA13, DISP1, and SRSF6 were the nearest genes located around the common selection signatures detected between each indigenous pig breed and Chinese wild boars. Our findings provide new insights into the selection signatures of Chinese indigenous pigs, and may contribute to future pig breeding.
Collapse
Affiliation(s)
- Zitao Chen
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaowei Ye
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Qingbo Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Xiang
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Ningying Xu
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Qishan Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China.,Hainan Institute, Zhejiang University, Sanya, China
| | - Xiaoling Guo
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhen Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Cavedon M, vonHoldt B, Hebblewhite M, Hegel T, Heppenheimer E, Hervieux D, Mariani S, Schwantje H, Steenweg R, Theoret J, Watters M, Musiani M. Genomic legacy of migration in endangered caribou. PLoS Genet 2022; 18:e1009974. [PMID: 35143486 PMCID: PMC8830729 DOI: 10.1371/journal.pgen.1009974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Wide-ranging animals, including migratory species, are significantly threatened by the effects of habitat fragmentation and habitat loss. In the case of terrestrial mammals, this results in nearly a quarter of species being at risk of extinction. Caribou are one such example of a wide-ranging, migratory, terrestrial, and endangered mammal. In populations of caribou, the proportion of individuals considered as "migrants" can vary dramatically. There is therefore a possibility that, under the condition that migratory behavior is genetically determined, those individuals or populations that are migratory will be further impacted by humans, and this impact could result in the permanent loss of the migratory trait in some populations. However, genetic determination of migration has not previously been studied in an endangered terrestrial mammal. We examined migratory behavior of 139 GPS-collared endangered caribou in western North America and carried out genomic scans for the same individuals. Here we determine a genetic subdivision of caribou into a Northern and a Southern genetic cluster. We also detect >50 SNPs associated with migratory behavior, which are in genes with hypothesized roles in determining migration in other organisms. Furthermore, we determine that propensity to migrate depends upon the proportion of ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies. If, as we report, migratory behavior is influenced by genes, caribou could be further impacted by the loss of the migratory trait in some isolated populations already at low numbers. Our results indicating an ancestral genetic component also suggest that the migratory trait and their associated genetic mutations could not be easily re-established when lost in a population.
Collapse
Affiliation(s)
- Maria Cavedon
- Faculty of Environmental Design, University of Calgary, Calgary, Alberta, Canada
| | - Bridgett vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mark Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - Troy Hegel
- Yukon Department of Environment, Whitehorse, Yukon, Canada
| | - Elizabeth Heppenheimer
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Dave Hervieux
- Fish and Wildlife Stewardship Branch, Alberta Environment and Parks, Grande Prairie, Alberta, Canada
| | - Stefano Mariani
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Helen Schwantje
- Wildlife and Habitat Branch, Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Government of British Columbia, Nanaimo, British Columbia, Canada
| | - Robin Steenweg
- Pacific Region, Canadian Wildlife Service, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Jessica Theoret
- Faculty of Environmental Design, University of Calgary, Calgary, Alberta, Canada
| | - Megan Watters
- Land and Resource Specialist, Fort St. John, British Columbia, Canada
| | - Marco Musiani
- Department of Biological Sciences, Faculty of Science and Veterinary Medicine (Joint Appointment), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Ma T, Liu Y, Wei X, Xue Q, Zheng Z, Xu X. Polymorphism of coupled indels in porcine TNNC2 alters its transcript splicing and is associated with meat quality traits. Anim Genet 2022; 53:175-182. [PMID: 34989011 DOI: 10.1111/age.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
The TNNC2 gene encodes the fast-skeletal C subunit of the troponin complex that plays a vital role in the regulation of striated muscle contraction and could be a candidate gene for pork quality. Here, we identified coupled insertion/deletion (indel) variants, a 17-bp insertion and an 11-bp deletion, in porcine TNNC2. The coupled indel variants provide an alternative splicing donor site and cause a 42-bp truncation in the first exon of TNNC2-201, leading to increased expression of TNNC2-201. Polymorphism of the two indel variants is associated with the average backfat thickness (p = 3.16 × 10-3 ), pH value 24 h post-slaughter (p = 4.31 × 10-4 ), intramuscular fat (IMF) content (p = 1.54 × 10-2 ), and myofiber cross-sectional area (p = 2.86 × 10-2 ) of longissimus dorsi in a population of 425 Duroc (♂) × Luchuan (♀) pigs. In an independent population of 1,304 commercial hybrid pigs, we further confirmed that it is associated with the IMF content (p = 1.75 × 10-4 ), pH value 45 min post-slaughter (p = 6.34 × 10-3 ), and drip loss (p = 2.88 × 10-2 ) of the longissimus dorsi muscle. An increased frequency of the mutant allele is linked to increased IMF content, smaller myofibers, and a relatively moderate pH value. Furthermore, we detected a mutant allele frequency of 96.67% in Luchuan pigs and 86.67% in Tongcheng pigs, whereas the frequency was 0.91% in Duroc pigs, 2.04% in Landrace pigs, and 0% in Yorkshire and Pietrain pigs, indicating its opposing distributions in lean-type and Chinese local pig breeds. The present results establish coupled indel variants of TNNC2 as a novel molecular marker for meat quality improvement.
Collapse
Affiliation(s)
- Tingting Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yan Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xingyu Wei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Qianjin Xue
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Zhiwei Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xuewen Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
22
|
Bakoev S, Getmantseva L, Kostyunina O, Bakoev N, Prytkov Y, Usatov A, Tatarinova TV. Genome-wide analysis of genetic diversity and artificial selection in Large White pigs in Russia. PeerJ 2021; 9:e11595. [PMID: 34249494 PMCID: PMC8256806 DOI: 10.7717/peerj.11595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
Breeding practices adopted at different farms are aimed at maximizing the profitability of pig farming. In this work, we have analyzed the genetic diversity of Large White pigs in Russia. We compared genomes of historic and modern Large White Russian breeds using 271 pig samples. We have identified 120 candidate regions associated with the differentiation of modern and historic pigs and analyzed genomic differences between the modern farms. The identified genes were associated with height, fitness, conformation, reproductive performance, and meat quality.
Collapse
Affiliation(s)
- Siroj Bakoev
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia.,Centre for Strategic Planning and Management of Biomedical Health Risks, Moscow, Russia
| | - Lyubov Getmantseva
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia
| | - Olga Kostyunina
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia
| | - Nekruz Bakoev
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia
| | - Yuri Prytkov
- Federal Research Center for Animal Husbandry named after Academy Member LK. Ernst, Dubrovitsy, Russia
| | | | - Tatiana V Tatarinova
- Department of Biology, University of La Verne, La Verne, CA, United States of America.,Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia.,Institute for Information Transmission Problems, Moscow, Russia.,Vavilov Institute for General Genetics, Moscow, Russia
| |
Collapse
|
23
|
Cai C, Li M, Zhang Y, Meng S, Yang Y, Gao P, Guo X, Cao G, Li B. Comparative Transcriptome Analyses of Longissimus thoracis Between Pig Breeds Differing in Muscle Characteristics. Front Genet 2020; 11:526309. [PMID: 33329687 PMCID: PMC7717936 DOI: 10.3389/fgene.2020.526309] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/15/2020] [Indexed: 01/23/2023] Open
Abstract
The two breeds, Mashen (MS; a northern China breed) and Large White (LW; a western lean breed) pigs, show important phenotypic differences in growth, adaptability, intramuscular fat (IMF) content, and energy metabolism since early developmental stage. The main aim of this study was the evaluation of longissimus thoracis muscle transcriptome profile of both genetic types to identify genes, pathways responsible for their differentiated phenotype. Longissimus thoracis of MS and LW pigs were sampled at 0 day (early stage), 90 days (middle stage), and 180 days (later stage) after birth. A total of 3,487 differentially expressed genes (DEGs) were identified at the three time points. Sample clustering analysis revealed the slower growth rate of MS than LW pigs. Gene expression pattern analysis revealed that multicellular organism growth genes (GHSR, EZR, FOXS1, DRD2, SH3PXD2B, CSF1, and TSHR) were involved in the fast growth rate of LW pigs at early stage. Furthermore, DEGs (ACACA, ACSF3, OXSM, CBR4, and HSD17B8) functionally related to fatty acid synthesis revealed that IMF accumulation occurred around 90 and up to 180 days. These DEGs provided valuable resource to study the phenotypic difference in longissimus thoracis muscle between MS and LW pigs.
Collapse
Affiliation(s)
- Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Meng Li
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Yanwei Zhang
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Shan Meng
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| |
Collapse
|
24
|
Oyelami FO, Zhao Q, Xu Z, Zhang Z, Sun H, Zhang Z, Ma P, Wang Q, Pan Y. Haplotype Block Analysis Reveals Candidate Genes and QTLs for Meat Quality and Disease Resistance in Chinese Jiangquhai Pig Breed. Front Genet 2020; 11:752. [PMID: 33101353 PMCID: PMC7498712 DOI: 10.3389/fgene.2020.00752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/23/2020] [Indexed: 11/19/2022] Open
Abstract
The Jiangquhai (JQ) pig breed is one of the most widely recognized pig populations in China due to its unique and dominant characteristics. In this study, we examined the extent of Linkage disequilibrium (LD) and haplotype block structure of the JQ pig breed, and scanned the blocks for possible genes underlying important QTLs that could either be responsible for some adaptive features in these pigs or might have undergone some selection pressure. We compared some of our results with other Chinese and Western pig breeds. The results show that the JQ breed had the highest total block length (349.73 Mb ≈ 15% of its genome), and the coverage rate of blocks in most of its chromosomes was larger than those of other breeds except for Sus scrofa chromosome 4 (SSC4), SSC6, SSC7, SSC8, SSC10, SSC12, SSC13, SSC14, SSC17, SSC18, and SSCX. Moreover, the JQ breed had more SNPs that were clustered into haplotype blocks than the other breeds examined in this study. Our shared and unique haplotype block analysis revealed that the Hongdenglong (HD) breed had the lowest percentage of shared haplotype blocks while the Shanzhu (SZ) breed had the highest. We found that the JQ breed had an average r2 > 0.2 at SNPs distances 10–20 kb and concluded that about 120,000–240,000 SNPs would be needed for a successful GWAS in the breed. Finally, we detected a total of 88 genes harbored by selected haplotype blocks in the JQ breed, of which only 4 were significantly enriched (p-value ≤ 0.05). These genes were significantly enriched in 2 GO terms (p-value < 0.01), and 2 KEGG pathways (p-value < 0.02). Most of these enriched genes were related to health. Also, most of the overlapping QTLs detected in the haplotype blocks were related to meat and carcass quality, as well as health, with a few of them relating to reproduction and production. These results provide insights into the genetic architecture of some adaptive and meat quality traits observed in the JQ pig breed and also revealed the pattern of LD in the genome of the pig. Our result provides significant guidance for improving the statistical power of GWAS and optimizing the conservation strategy for this JQ pig breed.
Collapse
Affiliation(s)
- Favour Oluwapelumi Oyelami
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingbo Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhang
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyang Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qishan Wang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Bovo S, Ribani A, Muñoz M, Alves E, Araujo JP, Bozzi R, Čandek-Potokar M, Charneca R, Di Palma F, Etherington G, Fernandez AI, García F, García-Casco J, Karolyi D, Gallo M, Margeta V, Martins JM, Mercat MJ, Moscatelli G, Núñez Y, Quintanilla R, Radović Č, Razmaite V, Riquet J, Savić R, Schiavo G, Usai G, Utzeri VJ, Zimmer C, Ovilo C, Fontanesi L. Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems. Genet Sel Evol 2020; 52:33. [PMID: 32591011 PMCID: PMC7318759 DOI: 10.1186/s12711-020-00553-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Background Natural and artificial directional selection in cosmopolitan and autochthonous pig breeds and wild boars have shaped their genomes and resulted in a reservoir of animal genetic diversity. Signatures of selection are the result of these selection events that have contributed to the adaptation of breeds to different environments and production systems. In this study, we analysed the genome variability of 19 European autochthonous pig breeds (Alentejana, Bísara, Majorcan Black, Basque, Gascon, Apulo-Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda, Krškopolje pig, Black Slavonian, Turopolje, Moravka, Swallow-Bellied Mangalitsa, Schwäbisch-Hällisches Schwein, Lithuanian indigenous wattle and Lithuanian White old type) from nine countries, three European commercial breeds (Italian Large White, Italian Landrace and Italian Duroc), and European wild boars, by mining whole-genome sequencing data obtained by using a DNA-pool sequencing approach. Signatures of selection were identified by using a single-breed approach with two statistics [within-breed pooled heterozygosity (HP) and fixation index (FST)] and group-based FST approaches, which compare groups of breeds defined according to external traits and use/specialization/type. Results We detected more than 22 million single nucleotide polymorphisms (SNPs) across the 23 compared populations and identified 359 chromosome regions showing signatures of selection. These regions harbour genes that are already known or new genes that are under selection and relevant for the domestication process in this species, and that affect several morphological and physiological traits (e.g. coat colours and patterns, body size, number of vertebrae and teats, ear size and conformation, reproductive traits, growth and fat deposition traits). Wild boar related signatures of selection were detected across all the genome of several autochthonous breeds, which suggests that crossbreeding (accidental or deliberate) occurred with wild boars. Conclusions Our findings provide a catalogue of genetic variants of many European pig populations and identify genome regions that can explain, at least in part, the phenotypic diversity of these genetic resources.
Collapse
Affiliation(s)
- Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Maria Muñoz
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Estefania Alves
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Jose P Araujo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Refóios do Lima, 4990-706, Ponte de Lima, Portugal
| | - Riccardo Bozzi
- DAGRI - Animal Science Section, Università di Firenze, Via delle Cascine 5, 50144, Florence, Italy
| | | | - Rui Charneca
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Polo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| | - Graham Etherington
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| | - Ana I Fernandez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Fabián García
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Juan García-Casco
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Danijel Karolyi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000, Zagreb, Croatia
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, 00198, Rome, Italy
| | - Vladimir Margeta
- Faculty of Agrobiotechnical Sciences, University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia
| | - José Manuel Martins
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Polo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - Marie J Mercat
- IFIP Institut du porc, La Motte au Vicomte, BP 35104, 35651, Le Rheu Cedex, France
| | - Giulia Moscatelli
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Yolanda Núñez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Raquel Quintanilla
- Programa de Genética y Mejora Animal, IRTA, Torre Marimon, 08140, Caldes de Montbui, Barcelona, Spain
| | - Čedomir Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, Belgrade-Zemun, 11080, Serbia
| | - Violeta Razmaite
- Animal Science Institute, Lithuanian University of Health Sciences, Baisogala, Lithuania
| | - Juliette Riquet
- GenPhySE, INRAE, Université de Toulouse, Chemin de Borde-Rouge 24, Auzeville Tolosane, 31326, Castanet Tolosan, France
| | - Radomir Savić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade-Zemun, 11080, Serbia
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Graziano Usai
- AGRIS SARDEGNA, Loc. Bonassai, 07100, Sassari, Italy
| | - Valerio J Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Christoph Zimmer
- Bäuerliche Erzeugergemeinschaft Schwäbisch Hall, Schwäbisch Hall, Germany
| | - Cristina Ovilo
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
26
|
Tang Z, Fu Y, Xu J, Zhu M, Li X, Yu M, Zhao S, Liu X. Discovery of selection-driven genetic differences of Duroc, Landrace, and Yorkshire pig breeds by EigenGWAS and F st analyses. Anim Genet 2020; 51:531-540. [PMID: 32400898 DOI: 10.1111/age.12946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2020] [Indexed: 01/08/2023]
Abstract
Pigs are one of the earliest domesticated animals and multiple breeds have been developed to meet the various demands of consumers. EigenGWAS is a novel strategy to identify candidate genes that underlying population genetic differences and to infer candidate regions under selection as well. In this study, EigenGWAS and Fst analyses were performed using the public re-sequencing data of three typical commercial pig breeds, Duroc, Landrace and Yorkshire. The intersection of genome-wide significant SNPs detected by EigenGWAS and top-ranked 1% SNPs of Fst results were treated as signals under selection. Using the data of all three breeds, 3062 signals under selection were detected and the nearby genomic regions within 300 kb upstream and downstream covered 6.54% of whole genome. Pairs of breeds were analysed along with the pathway analysis. The gene function enrichment results indicated that many candidate genes located in the genomic regions of the signals under selection were associated with biological processes related to growth, metabolism, reproduction, sensory perception, etc. Among the candidate genes, the FSHB, AHR, PTHLH, KDR and FST genes were reported to be associated with reproductive performance; the KIT, KITLG, MITF, MC1R and EDNRB genes were previously identified to affect coat colour; the RETREG1, TXNIP, BMP5, PPARD and RBP4 genes were reported to be associated with lipid metabolism and growth traits. The identified genetic differences across the three commercial breeds will advance understanding of the artificial selection history of pigs and the signals under selection will suggest potential uses in pig genomic breeding programmes.
Collapse
Affiliation(s)
- Z Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, 430070, China.,Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Y Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, 430070, China.,Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,School of Computer Science and Technology, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - J Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, 430070, China.,Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - M Zhu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, 430070, China.,Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - X Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, 430070, China.,Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - M Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, 430070, China.,Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - S Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, 430070, China.,Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - X Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, 430070, China.,Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
27
|
Hlongwane NL, Hadebe K, Soma P, Dzomba EF, Muchadeyi FC. Genome Wide Assessment of Genetic Variation and Population Distinctiveness of the Pig Family in South Africa. Front Genet 2020; 11:344. [PMID: 32457791 PMCID: PMC7221027 DOI: 10.3389/fgene.2020.00344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic diversity is of great importance and a prerequisite for genetic improvement and conservation programs in pigs and other livestock populations. The present study provides a genome wide analysis of the genetic variability and population structure of pig populations from different production systems in South Africa relative to global populations. A total of 234 pigs sampled in South Africa and consisting of village (n = 91), commercial (n = 60), indigenous (n = 40), Asian (n = 5) and wild (n = 38) populations were genotyped using Porcine SNP60K BeadChip. In addition, 389 genotypes representing village and commercial pigs from America, Europe, and Asia were accessed from a previous study and used to compare population clustering and relationships of South African pigs with global populations. Moderate heterozygosity levels, ranging from 0.204 for Warthogs to 0.371 for village pigs sampled from Capricorn municipality in Eastern Cape province of South Africa were observed. Principal Component Analysis of the South African pigs resulted in four distinct clusters of (i) Duroc; (ii) Vietnamese; (iii) Bush pig and Warthog and (iv) a cluster with the rest of the commercial (SA Large White and Landrace), village, Wild Boar and indigenous breeds of Koelbroek and Windsnyer. The clustering demonstrated alignment with genetic similarities, geographic location and production systems. The PCA with the global populations also resulted in four clusters that where populated with (i) all the village populations, wild boars, SA indigenous and the large white and landraces; (ii) Durocs (iii) Chinese and Vietnamese pigs and (iv) Warthog and Bush pig. K = 10 (The number of population units) was the most probable ADMIXTURE based clustering, which grouped animals according to their populations with the exception of the village pigs that showed presence of admixture. AMOVA reported 19.92%-98.62% of the genetic variation to be within populations. Sub structuring was observed between South African commercial populations as well as between Indigenous and commercial breeds. Population pairwise F ST analysis showed genetic differentiation (P ≤ 0.05) between the village, commercial and wild populations. A per marker per population pairwise F ST analysis revealed SNPs associated with QTLs for traits such as meat quality, cytoskeletal and muscle development, glucose metabolism processes and growth factors between both domestic populations as well as between wild and domestic breeds. Overall, the study provided a baseline understanding of porcine diversity and an important foundation for porcine genomics of South African populations.
Collapse
Affiliation(s)
- Nompilo Lucia Hlongwane
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermartizburg, South Africa
| | - Khanyisile Hadebe
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
| | - Pranisha Soma
- Animal Production Institute, Agricultural Research Council, Irene, South Africa
| | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermartizburg, South Africa
| | | |
Collapse
|
28
|
Moscatelli G, Bovo S, Schiavo G, Mazzoni G, Bertolini F, Dall'Olio S, Fontanesi L. Genome-wide association studies for iris pigmentation and heterochromia patterns in Large White pigs. Anim Genet 2020; 51:409-419. [PMID: 32232994 DOI: 10.1111/age.12930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 01/13/2023]
Abstract
Eye colour genetics have been extensively studied in humans since the rediscovery of Mendel's laws. This trait was first interpreted using simplistic genetic models but soon it was realised that it is more complex. In this study, we analysed eye colour variability in a Large White pig population (n = 897) and report the results of GWASs based on several comparisons including pigs having four main eye colour categories (three with both pigmented eyes of different brown grades: pale, 17.9%; medium, 14.8%; and dark, 54.3%; another one with both eyes completely depigmented, 3.8%) and heterochromia patterns (heterochromia iridis - depigmented iris sectors in pigmented irises, 3.2%; heterochromia iridum - one whole eye iris of depigmented phenotype and the other eye with the iris completely pigmented, 5.9%). Pigs were genotyped with the Illumina PorcineSNP60 BeadChip and GEMMA was used for the association analyses. The results indicated that SLC45A2 (on chromosome 16, SSC16), EDNRB (SSC11) and KITLG (SSC5) affect the different grades of brown pigmentation of the eyes, the bilateral eye depigmentation defect and the heterochromia iridis defect recorded in this white pig population respectively. These genes are involved in several mechanisms affecting pigmentation. Significant associations for the eye depigmented patterns were also identified for SNPs on two SSC4 regions (including two candidate genes: NOTCH2 and PREX2) and on SSC6, SSC8 and SSC14 (including COL17A1 as candidate gene). This study provided useful information to understand eye pigmentation mechanisms, further valuing the pig as animal model to study complex phenotypes in humans.
Collapse
Affiliation(s)
- G Moscatelli
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - S Bovo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - G Schiavo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - G Mazzoni
- Department of Health Technology, Technical University of Denmark, Lyngby, 2800, Denmark
| | - F Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, 2800, Denmark
| | - S Dall'Olio
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - L Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| |
Collapse
|
29
|
A machine learning approach for the identification of population-informative markers from high-throughput genotyping data: application to several pig breeds. Animal 2019; 14:223-232. [PMID: 31603060 DOI: 10.1017/s1751731119002167] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) able to describe population differences can be used for important applications in livestock, including breed assignment of individual animals, authentication of mono-breed products and parentage verification among several other applications. To identify the most discriminating SNPs among thousands of markers in the available commercial SNP chip tools, several methods have been used. Random forest (RF) is a machine learning technique that has been proposed for this purpose. In this study, we used RF to analyse PorcineSNP60 BeadChip array genotyping data obtained from a total of 2737 pigs of 7 Italian pig breeds (3 cosmopolitan-derived breeds: Italian Large White, Italian Duroc and Italian Landrace, and 4 autochthonous breeds: Apulo-Calabrese, Casertana, Cinta Senese and Nero Siciliano) to identify breed informative and reduced SNP panels using the mean decrease in the Gini Index and the Mean Decrease in Accuracy parameters with stability evaluation. Other reduced informative SNP panels were obtained using Delta, Fixation index and principal component analysis statistics, and their performances were compared with those obtained using the RF-defined panels using the RF classification method and its derived Out Of Bag rates and correct prediction proportions. Therefore, the performances of a total of six reduced panels were evaluated. The correct assignment of the animals to its breed was close to 100% for all tested approaches. Porcine chromosome 8 harboured the largest number of selected SNPs across all panels. Many SNPs were included in genomic regions in which previous studies identified signatures of selection or genes (e.g. ESR1, KITL and LCORL) that could contribute to explain, at least in part, phenotypically or economically relevant traits that might differentiate cosmopolitan and autochthonous pig breeds. Random forest used as preselection statistics highlighted informative SNPs that were not the same as those identified by other methods. This might be due to specific features of this machine learning methodology. It will be interesting to explore if the adaptation of RF methods for the identification of selection signature regions could be able to describe population-specific features that are not captured by other approaches.
Collapse
|