1
|
Yoshida A, Takahashi H, Shimizu T. Morphology and functionality in biomimetic cultured meat produced from various cellular origins. BIOMATERIALS ADVANCES 2025; 169:214179. [PMID: 39809028 DOI: 10.1016/j.bioadv.2025.214179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/23/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Alternative meat production technologies offer the potential to alleviate many of the ethical, environmental, and public health concerns associated with conventional meat production. Cultured meat produced using cell culture technology promises to become a viable alternative to animal-raised meat for the future of the food industry. The process of cultured meat production relies on cell sources harvested from livestock such as bovine, swine, and chicken. Previously, we have developed a primary culture method allowing the efficient collection of myogenic cells from bovine cheek meat. Although the myogenic cells were used as a cell source to produce bovine muscle tissues with biomimetic morphological and functional characteristics in a "biomimetic cultured beef" product, it is not certain that the cells harvested from cheek meat are the best choice as a cell source for cultured meat. Moreover, there are no previous studies investigating the appropriate selection of cell sources for producing cultured meat on demand. In this study, myogenic cells were harvested from three different cuts of swine muscle (cheek, loin, and ham) to assess the impact of each cell type and understand how to best select from the various cuts of muscle. Although it was expected that the three types of swine myogenic cells have different characteristics based on each meat cut, they all proliferated similarly while maintaining the expression of myogenic markers (MyoD, Myf5) during repeated passages. They also had differentiation ability at the same level in the first step of differentiation (fusion of myogenic cells to form myotube) in vitro. Therefore, the myogenic cells from different cuts of muscle fundamentally expressed the same characteristics in normal 2D culture. On the other hand, since our tissue engineering method allowed us to produce morphologically and functionally biomimetic muscle tissues, we successfully produced contractile muscle tissues with native-like aligned structures from all types of the swine myogenic cells. Through the tissue maturation process, the three types of myogenic cells also showed site-specificity in the further differentiation step (maturation into contractile myofibers). The myogenic cells harvested from ham formed significantly thicker myofibers in "ham muscle tissues", compared with that in "cheek muscle tissues" and "loin muscle tissues". This suggested that swine myogenic cells have some unique characteristics depending on the different cuts of muscle. On the other hand, there was no significant difference in contractile functionality between the three types of muscle tissues. Although further experiments will be required to deepen our understanding of the similarities and differences of site-specific myogenic cells, we believe that the results of this study are important to selectively produce various types of cultured meat and ultimately become the conventional meat in the future.
Collapse
Affiliation(s)
- Azumi Yoshida
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
2
|
Cho IS, Shiomoto S, Yukawa N, Tanaka Y, Huh KM, Tanaka M. The Role of Intermediate Water in Enhancing Blood and Cellular Compatibility of Chitosan-Based Biomaterials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8301-8311. [PMID: 40036609 DOI: 10.1021/acs.langmuir.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Tissue engineering and regenerative medicine require biomaterials that balance blood compatibility with cell adhesion, proliferation, and differentiation. Chitosan and its derivatives, owing to their biocompatibility, biodegradability, and functional versatility, have been extensively explored for biomedical applications, including vascular grafts and tissue engineering scaffolds. This study investigates the effect of chemical modifications on the water state of chitosan derivatives─specifically, free water (FW), intermediate water (IW), and nonfreezing water (NFW)─and their implications for protein interactions, platelet adhesion, and mesenchymal stem cell (MSC) behavior. By incorporating hydrophilic and hydrophobic groups, the hydration of chitosan derivatives was precisely controlled, which significantly influenced blood compatibility and cell adhesion. Hexanoyl glycol chitosan (HGC) demonstrated reduced platelet adhesion, low fibrinogen denaturation, and favorable MSC adhesion, making it a promising candidate for applications requiring both enhanced blood compatibility and regenerative potential. These findings underscore the importance of hydration water modulation in designing advanced biomaterials for blood-contacting and regenerative medicine applications.
Collapse
Affiliation(s)
- Ik Sung Cho
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shohei Shiomoto
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Naoki Yukawa
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukiko Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kang-Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Dhanawat G, Dey M, Singh A, Parveen N. Invagination of Giant Unilamellar Vesicles upon Membrane Mixing with Native Vesicles. ACS OMEGA 2024; 9:46615-46626. [PMID: 39583730 PMCID: PMC11579933 DOI: 10.1021/acsomega.4c08971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
We demonstrate rapid membrane mixing between GUVs of pure lipid compositions and membrane vesicles (MVs) isolated from the plasma membrane of Vero cells, resulting in the transfer of native lipids and proteins to the GUVs. The steps involved in the membrane mixing are docking followed by membrane fusion. We show that positively charged lipids of the GUVs are essential for the docking, and the native membrane components of MVs drive the fusion. The interleaflet and lateral asymmetry and a change in the membrane tension upon the membrane mixing trigger membrane invagination. We detected outward and inward invagination sites at the rim of the GUVs within 10-40 min of the membrane mixing. The extent of the invaginations depends on the cholesterol and sphingomyelin (SM) contents in the GUVs. Cholesterol content above a critical concentration disfavors membrane invaginations, and the SM lipid is an essential molecular factor for membrane invagination.
Collapse
Affiliation(s)
- Garvita Dhanawat
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Manorama Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Anirudh Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| |
Collapse
|
4
|
Arik N, Elcin E, Tezcaner A, Oktem HA. Biosensing of arsenic by whole-cell bacterial bioreporter immobilized on polycaprolactone (PCL) electrospun fiber. ENVIRONMENTAL TECHNOLOGY 2024; 45:4874-4886. [PMID: 37965791 DOI: 10.1080/09593330.2023.2283405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/19/2023] [Indexed: 11/16/2023]
Abstract
In recent years, heavy metals derived from several anthropogenic sources have both direct and indirect detrimental effects on the health of the environment and living organisms. Whole-cell bioreporters (WCBs) that can be used to monitor the levels of heavy metals in drinking and natural spring waters are important. In this study, whole-cell arsenic bacterial bioreporters were immobilized using polycaprolactone (PCL) electrospun fibers as the support material. The aim is to determine the properties of this immobilized bioreporter system by evaluating its performance in arsenic detection. Within the scope of the study, different growth media and fiber immobilization times were tested to determine the parameters affecting the fluorescent signals emitted by the immobilized bioreporter system in the presence of two dominant forms of arsenic, namely arsenite (As(III)) and arsenate (As(V)). In addition, the sensitivity, selectivity, response time, and shelf-life of the developed bioreporter system were evaluated. As far as the literature is concerned, this is the first study to investigate the potential of using PCL-electrospun fiber-immobilized fluorescent bacterial bioreporter for arsenic detection. This study will open new avenues in environmental arsenic monitoring.
Collapse
Affiliation(s)
- Nehir Arik
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Türkiye
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Aydın Adnan Menderes University, Aydın, Türkiye
| | - Aysen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara, Türkiye
- Center of Excellence in Biomaterials and Tissue Engineering (METU BIOMATEN), Ankara, Türkiye
| | - Huseyin A Oktem
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Türkiye
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| |
Collapse
|
5
|
Iyer A, Frallicciardi J, le Paige UBA, Narasimhan S, Luo Y, Sieiro PA, Syga L, van den Brekel F, Tran BM, Tjioe R, Schuurman-Wolters G, Stuart MCA, Baldus M, van Ingen H, Poolman B. The Structure and Function of the Bacterial Osmotically Inducible Protein Y. J Mol Biol 2024; 436:168668. [PMID: 38908784 DOI: 10.1016/j.jmb.2024.168668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
The ability to adapt to osmotically diverse and fluctuating environments is critical to the survival and resilience of bacteria that colonize the human gut and urinary tract. Environmental stress often provides cross-protection against other challenges and increases antibiotic tolerance of bacteria. Thus, it is critical to understand how E. coli and other microbes survive and adapt to stress conditions. The osmotically inducible protein Y (OsmY) is significantly upregulated in response to hypertonicity. Yet its function remains unknown for decades. We determined the solution structure and dynamics of OsmY by nuclear magnetic resonance spectroscopy, which revealed that the two Bacterial OsmY and Nodulation (BON) domains of the protein are flexibly linked under low- and high-salinity conditions. In-cell solid-state NMR further indicates that there are no gross structural changes in OsmY as a function of osmotic stress. Using cryo-electron and super-resolution fluorescence microscopy, we show that OsmY attenuates plasmolysis-induced structural changes in E. coli and improves the time to growth resumption after osmotic upshift. Structure-guided mutational and functional studies demonstrate that exposed hydrophobic residues in the BON1 domain are critical for the function of OsmY. We find no evidence for membrane interaction of the BON domains of OsmY, contrary to current assumptions. Instead, at high ionic strength, we observe an interaction with the water channel, AqpZ. Thus, OsmY does not play a simple structural role in E. coli but may influence a cascade of osmoregulatory functions of the cell.
Collapse
Affiliation(s)
- Aditya Iyer
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Jacopo Frallicciardi
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Ulric B A le Paige
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Yanzhang Luo
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Patricia Alvarez Sieiro
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Lukasz Syga
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Floris van den Brekel
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Buu Minh Tran
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Rendy Tjioe
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Gea Schuurman-Wolters
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Marc C A Stuart
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
6
|
Jiang J, Keniya MV, Puri A, Zhan X, Cheng J, Wang H, Lin G, Lee YK, Jaber N, Hassoun Y, Shor E, Shi Z, Lee SH, Xu M, Perlin DS, Dai W. Structural and Biophysical Dynamics of Fungal Plasma Membrane Proteins and Implications for Echinocandin Action in Candida glabrata. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596243. [PMID: 38854035 PMCID: PMC11160696 DOI: 10.1101/2024.05.29.596243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Fungal plasma membrane proteins represent key therapeutic targets for antifungal agents, yet their structure and spatial distribution in the native context remain poorly characterized. Herein, we employ an integrative multimodal approach to elucidate the structural and functional organization of plasma membrane protein complexes in Candida glabrata , focusing on prominent and essential membrane proteins, the polysaccharide synthase β-(1,3)-glucan synthase (GS) and the proton pump Pma1. Cryo-electron tomography (cryo-ET) and live cell imaging reveal that GS and Pma1 are heterogeneously distributed into distinct plasma membrane microdomains. Treatment with caspofungin, an echinocandin antifungal that targets GS, alters the plasma membrane and disrupts the native distribution of GS and Pma1. Based on these findings, we propose a model for echinocandin action that considers how drug interactions with the plasma membrane environment lead to inhibition of GS. Our work underscores the importance of interrogating the structural and dynamic characteristics of fungal plasma membrane proteins in situ to understand function and facilitate precisely targeted development of novel antifungal therapies.
Collapse
|
7
|
Chaya T, Banerjee A, Rutter BD, Adekanye D, Ross J, Hu G, Innes RW, Caplan JL. The extracellular vesicle proteomes of Sorghum bicolor and Arabidopsis thaliana are partially conserved. PLANT PHYSIOLOGY 2024; 194:1481-1497. [PMID: 38048422 PMCID: PMC10904328 DOI: 10.1093/plphys/kiad644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
Plant extracellular vesicles (EVs) are membrane-bound organelles involved mainly in intercellular communications and defense responses against pathogens. Recent studies have demonstrated the presence of proteins, nucleic acids including small RNAs, and lipids along with other metabolites in plant EVs. Here, we describe the isolation and characterization of EVs from sorghum (Sorghum bicolor). Nanoparticle tracking analysis, dynamic light scattering, and cryo-electron tomography showed the presence of a heterogeneous population of EVs isolated from the apoplastic wash of sorghum leaves. Cryo-electron microscopy revealed that EVs had a median size of 110 nm and distinct populations of vesicles with single or multiple lipid bilayers and low or high amounts of contents. The heterogeneity was further supported by data showing that only a subset of EVs that were stained with a membrane dye, Potomac Gold, were also stained with the membrane-permeant esterase-dependent dye, calcein acetoxymethyl ester. Proteomic analysis identified 437 proteins that were enriched in multiple EV isolations, with the majority of these also found in the EV proteome of Arabidopsis (Arabidopsis thaliana). These data suggest a partial conservation of EV contents and function between the monocot, sorghum, and a distantly related eudicot, Arabidopsis.
Collapse
Affiliation(s)
- Timothy Chaya
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Aparajita Banerjee
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Brian D Rutter
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Deji Adekanye
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jean Ross
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Guobin Hu
- The Laboratory for Biomolecular Structures, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jeffrey L Caplan
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
8
|
Doyle B, Madden LA, Pamme N, Jones HS. Immobilised-enzyme microreactors for the identification and synthesis of conjugated drug metabolites. RSC Adv 2023; 13:27696-27704. [PMID: 37727313 PMCID: PMC10506384 DOI: 10.1039/d3ra03742h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
The study of naturally circulating drug metabolites has been a focus of interest, since these metabolites may have different therapeutic and toxicological effects compared to the parent drug. The synthesis of metabolites outside of the human body is vital in order to conduct studies into the pharmacological activities of drugs and bioactive compounds. Current synthesis methods require significant purification and separation efforts or do not provide sufficient quantities for use in pharmacology experiments. Thus, there is a need for simple methods yielding high conversions whilst bypassing the requirement for a separation. Here we have developed and optimised flow chemistry methods in glass microfluidic reactors utilising surface-immobilised enzymes for sulfonation (SULT1a1) and glucuronidation (UGT1a1). Conversion occurs in flow, the precursor and co-factor are pumped through the device, react with the immobilised enzymes and the product is then simply collected at the outlet with no separation from a complex biological matrix required. Conversion only occurred when both the correct co-factor and enzyme were present within the microfluidic system. Yields of 0.97 ± 0.26 μg were obtained from the conversion of resorufin into resorufin sulfate over 2 h with the SULT1a1 enzyme and 0.47 μg of resorufin glucuronide over 4 h for UGT1a1. This was demonstrated to be significantly more than static test tube reactions at 0.22 μg (SULT1a1) and 0.19 μg (UGT1a1) over 4 h. With scaling out and parallelising, useable quantities of hundreds of micrograms for use in pharmacology studies can be synthesised simply.
Collapse
Affiliation(s)
- Bradley Doyle
- School of Natural Sciences, University of Hull HU6 7RX UK
| | | | - Nicole Pamme
- School of Natural Sciences, University of Hull HU6 7RX UK
- Department of Materials and Environmental Chemistry, Stockholm University 106 91 Stockholm Sweden
| | - Huw S Jones
- Institute of Cancer Therapeutics, University of Bradford BD7 1DP UK
| |
Collapse
|
9
|
Takahashi H, Yoshida A, Gao B, Yamanaka K, Shimizu T. Harvest of quality-controlled bovine myogenic cells and biomimetic bovine muscle tissue engineering for sustainable meat production. Biomaterials 2022; 287:121649. [PMID: 35779482 DOI: 10.1016/j.biomaterials.2022.121649] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/19/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
Alternative technology for meat production holds the potential to alleviate ethical, environmental, and public health concerns associated with conventional meat production. Cultured meat produced using cell culture technology promises to become a viable alternative to animal-raised meat for the future of the food industry. In this study, biomimetic bovine muscle tissue was artificially fabricated from myogenic cells extracted from bovine meat. Our primary culture method relies on three key factors; a sequential digesting process, enzymatic treatment with pronase, and coating with laminin fragment on culture dishes. This method allows the efficient collection of large numbers of primary cells from bovine cheek meat, purifies the myogenic cells from the cell mixture, and then continuously grows the myogenic cells in vitro. In addition, using our "quality control" methods, we were able to determine the "cell quality", including the proliferative and differentiation capability in each step of the primary culture. Furthermore, to mimic native bovine meat, the quality-controlled bovine myogenic cells were cultured on a micropatterned thermoresponsive substrate stimulating a native-like aligned structure of cells, which were then transferred onto a fibrin-based gel. This gel-based culture environment promoted structural and functional maturation of the myogenic cells, resulting in the production of bovine muscle tissues with sarcomere structures, native-like membrane structures, and contractile ability. We believe that these biomimetic features of "tissue-engineered meat" are important for the production of future cultured meat, which will need native-like nutrients, texture and taste. Therefore, our meat production approach will provide a new platform to produce more native biomimetic tissue-engineered meat in the near future.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 Japan.
| | - Azumi Yoshida
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 Japan
| | - Botao Gao
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 Japan
| | - Kumiko Yamanaka
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 Japan
| |
Collapse
|
10
|
Ahmed A, Mansouri M, Joshi IM, Byerley AM, Day SW, Gaborski TR, Abhyankar VV. Local extensional flows promote long-range fiber alignment in 3D collagen hydrogels. Biofabrication 2022; 14. [PMID: 35735228 DOI: 10.1088/1758-5090/ac7824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023]
Abstract
Randomly oriented type I collagen (COL1) fibers in the extracellular matrix are reorganized by biophysical forces into aligned domains extending several millimeters and with varying degrees of fiber alignment. These aligned fibers can transmit traction forces, guide tumor cell migration, facilitate angiogenesis, and influence tissue morphogenesis. To create aligned COL1 domains in microfluidic cell culture models, shear flows have been used to align thin COL1 matrices (<50µm in height) in a microchannel. However, there has been limited investigation into the role of shear flows in aligning 3D hydrogels (>130µm). Here, we show that pure shear flows do not induce fiber alignment in 3D atelo COL1 hydrogels, but the simple addition of local extensional flow promotes alignment that is maintained across several millimeters, with a degree of alignment directly related to the extensional strain rate. We further advance experimental capabilities by addressing the practical challenge of accessing a 3D hydrogel formed within a microchannel by introducing a magnetically coupled modular platform that can be released to expose the microengineered hydrogel. We demonstrate the platform's capability to pattern cells and fabricate multi-layered COL1 matrices using layer-by-layer fabrication and specialized modules. Our approach provides an easy-to-use fabrication method to achieve advanced hydrogel microengineering capabilities that combine fiber alignment with biofabrication capabilities.
Collapse
Affiliation(s)
- Adeel Ahmed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Indranil M Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Ann M Byerley
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Steven W Day
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Thomas R Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| |
Collapse
|
11
|
Marycz K, Kornicka-Garbowska K, Patej A, Sobierajska P, Kotela A, Turlej E, Kepska M, Bienko A, Wiglusz RJ. Aminopropyltriethoxysilane (APTES)-Modified Nanohydroxyapatite (nHAp) Incorporated with Iron Oxide (IO) Nanoparticles Promotes Early Osteogenesis, Reduces Inflammation and Inhibits Osteoclast Activity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2095. [PMID: 35329547 PMCID: PMC8953252 DOI: 10.3390/ma15062095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022]
Abstract
Due to its increased prevalence, osteoporosis (OP) represents a great challenge to health care systems and brings an economic burden. To overcome these issues, treatment plans that suit the need of patients should be developed. One of the approaches focuses on the fabrication of personalized biomaterials, which can restore the balance and homeostasis of disease-affected bone. In the presented study, we fabricated nanometer crystalline hydroxyapatite (nHAp) and iron oxide (IO) nanoparticles stabilized with APTES and investigated whether they can modulate bone cell metabolism and be useful in the fabrication of personalized materials for OP patients. Using a wide range of molecular techniques, we have shown that obtained nHAp@APTES promotes viability and RUNX-2 expression in osteoblasts, as well as reducing activity of critical proinflammatory cytokines while inhibiting osteoclast activity. Materials with APTES modified with nHAp incorporated with IO nanoparticles can be applied to support the healing of osteoporotic bone fractures as they enhance metabolic activity of osteoblasts and diminish osteoclasts' metabolism and inflammation.
Collapse
Affiliation(s)
- Krzysztof Marycz
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
- Collegium Medicum, Cardinal Stefan Wyszynski University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland;
| | - Katarzyna Kornicka-Garbowska
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
| | - Adrian Patej
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| | - Andrzej Kotela
- Collegium Medicum, Cardinal Stefan Wyszynski University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland;
| | - Eliza Turlej
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
| | - Martyna Kepska
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
| | - Alina Bienko
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie14 Street, 50-383 Wroclaw, Poland;
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| |
Collapse
|
12
|
Hwang C, Park N, Kim ES, Kim M, Kim SD, Park S, Kim NY, Kim JH. Ultra-fast and recyclable DNA biosensor for point-of-care detection of SARS-CoV-2 (COVID-19). Biosens Bioelectron 2021; 185:113177. [PMID: 33915435 PMCID: PMC7987504 DOI: 10.1016/j.bios.2021.113177] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/17/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022]
Abstract
Rapid diagnosis and case isolation are pivotal to controlling the current pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, a label-free DNA capacitive biosensor for the detection of SARS-CoV-2 that demonstrates real-time, low-cost, and high-throughput screening of nucleic acid samples is presented. Our novel biosensor composed of the interdigitated platinum/titanium electrodes on the glass substrate can detect the hybridization of analyte DNA with probe DNA. The hybridization signals of specific DNA sequences were verified through exhaustive physicochemical analytical techniques such as Fourier transform infrared (FT-IR) spectrometry, contact-angle analysis, and capacitance-frequency measurements. For a single-step hybridized reaction, the fabricated kit exhibited significant sensitivity (capacitance change, ΔC = ~2 nF) in detecting the conserved region of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) gene with high sensitivity of 0.843 nF/nM. In addition to capacitive measurements, this selective detection was confirmed by the fluorescence image and intensity from a SARS-CoV-2 gene labeled with a fluorescent dye. We also demonstrated that the kits are recyclable by surface ozone treatment using UV irradiation. Thus, these kits could potentially be applied to various types of label-free DNA, thereby acting as rapid, cost-effective biosensors for several diseases.
Collapse
Affiliation(s)
- Chuljin Hwang
- College of Pharmacy, Ajou University, Suwon 16499, South Korea
| | - Nakkyun Park
- College of Pharmacy, Ajou University, Suwon 16499, South Korea
| | - Eun Seong Kim
- Electronic Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Miran Kim
- Ajou University School of Medicine, Suwon 16499, South Korea
| | - Su Dong Kim
- Graduate School of Clinical Pharmacy and Pharmaceutics, Ajou University, Suwon,16499, South Korea
| | - Sungjun Park
- Department of Electrical and Computer Engineering, Ajou University, Suwon 16499, South Korea.
| | - Nam Young Kim
- Electronic Engineering, Kwangwoon University, Seoul 01897, South Korea; Graduate School of Clinical Pharmacy and Pharmaceutics, Ajou University, Suwon,16499, South Korea.
| | - Joo Hee Kim
- College of Pharmacy, Ajou University, Suwon 16499, South Korea; Graduate School of Clinical Pharmacy and Pharmaceutics, Ajou University, Suwon,16499, South Korea.
| |
Collapse
|
13
|
Ilyas AMO, Alam MK, Musah JD, Saw LO, Venkatesh S, Yeung CC, Yang M, Vellaisamy ALR, Lau C. Development of a carboxyl-terminated indium tin oxide electrode for improving cell adhesion and facilitating low noise, real-time impedance measurements. Am J Physiol Cell Physiol 2021; 320:C974-C986. [PMID: 33689477 DOI: 10.1152/ajpcell.00537.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The working electrode's surface property is crucial to cell adhesion and signal collection in electric cell-substrate impedance sensing (ECIS). To date, the indium tin oxide (ITO)-based working electrode is of interest in ECIS study due to its high transparency and biocompatibility. Of great concern is the impedance signal loss, distortion, and data interpretation conflict profoundly created by the movement of multiple cells during ECIS study. Here, a carboxyl-terminated ITO substrate was prepared by stepwise surface amino silanization, with N-hydroxy succinimide (NHS) and 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) treatment, respectively. We investigated the stepwise changes in the property of the treated ITO, cell-substrate adhesion, collective cell mobility, and time course of change in absolute impedance from multiple Chinese hamster ovary (CHO) cells [(Δt-Δ|Z|)CELLS]. The carboxyl-terminated ITO substrate with a surface roughness of 6.37 nm shows enhanced conductivity, 75% visible light transparency, improved cell adherence, reduced collective cell migration speed by approximately twofold, and diminished signal distortion in the [(Δt-Δ|Z|)CELLS]. Thus, our study provides an ITO surface-treatment strategy to reduce multiple cell movement effects and to obtain essential cell information from the ECIS study of multiple cells through undistorted (Δt-Δ|Z|)CELLS.
Collapse
Affiliation(s)
- A M Olabisi Ilyas
- Department of Physics, City University of Hong Kong, Kowloon, Special Administrative Region of China.,Department of Physics, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| | - Md Kowsar Alam
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Special Administrative Region of China.,Department of Physics, University of Chittagong, Chittagong, Bangladesh
| | - Jamal-Deen Musah
- State Key Laboratory of Terahertz and Millimeter Waves, Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Special Administrative Region of China
| | - Lin Oo Saw
- State Key Laboratory of Terahertz and Millimeter Waves, Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Special Administrative Region of China
| | - Shishir Venkatesh
- State Key Laboratory of Terahertz and Millimeter Waves, Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Special Administrative Region of China
| | - Chi-Chung Yeung
- Department of Chemistry, City University of Hong Kong, Kowloon, Special Administrative Region of China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Special Administrative Region of China
| | - A L R Vellaisamy
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Kowloon, Special Administrative Region of China
| |
Collapse
|
14
|
Jennings CS, Rossman JS, Hourihan BA, Marshall RJ, Forgan RS, Blight BA. Immobilising giant unilamellar vesicles with zirconium metal-organic framework anchors. SOFT MATTER 2021; 17:2024-2027. [PMID: 33599656 DOI: 10.1039/d0sm02188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipid bilayer vesicles have provided a window into the function and fundamental properties of cells. However, as is the case for most living and soft matter, vesicles do not remain still. This necessitates some microscopy experiments to include a preparatory immobilisation step. Here, we describe a straightforward method to immobilise giant unilamellar vesicles (GUVs) using zirconium-based metal-organic frameworks (MOFs) and demonstrate that GUVs bound in this way will stay in position on a timescale of minutes to hours.
Collapse
Affiliation(s)
- Christopher S Jennings
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Jeremy S Rossman
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - Braeden A Hourihan
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Ross J Marshall
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Ross S Forgan
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Barry A Blight
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
15
|
Zhang H, Bai Y, Zhu N, Xu J. Microfluidic reactor with immobilized enzyme-from construction to applications: A review. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Bu Y, Hu Q, Zhang X, Li T, Xie X, Wang S. A novel cell membrane-cloaked magnetic nanogripper with enhanced stability for drug discovery. Biomater Sci 2020; 8:673-681. [PMID: 31769454 DOI: 10.1039/c9bm01411j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell membrane-cloaked nanotechnology has attracted increasing attention owing to its unique bionic properties, such as specific recognition and biocompatibility conferred by the integrated membrane structure and receptors. However, this technology is limited by the dissociation of the cell membrane from its carrier. Here, we report a novel type of cell membrane-cloaked modified magnetic nanoparticle with good stability in drug discovery. High α1A-adrenergic receptor (α1A-AR) expressing HEK293 cell membrane-cloaked magnetic nanogrippers (α1A/MNGs) were used as a platform for the specific targeting and binding of α1A-AR antagonists as candidate bioactive compounds from traditional Chinese medicine (TCM). Furthermore, using a dynamic covalent bonding approach, α1A/MNGs showed great stability with positive control drug recoveries of α1A/MNGs showing almost no decline after use in five adsorption-desorption cycles. Moreover, the α1A/MNGs possessed a unilamellar membrane with magnetic features and exhibited good binding capacity and selectivity. Ultimately, TCM and pharmacological studies of the bioactivity of the screened compounds confirmed the considerable targeting and binding capability of α1A/MNGs. Application of aldehyde group modification in this drug-targeting concept further improved biomaterial stability and paves the way for the development of new drug discovery strategies. More importantly, the successful application of α1A/MNGs provides new insights into methodologies to improve the integration of cell membranes with the nanoparticle platform.
Collapse
Affiliation(s)
- Yusi Bu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | | | | | | | | | | |
Collapse
|
17
|
Syga Ł, de Vries RH, van Oosterhout H, Bartelds R, Boersma AJ, Roelfes G, Poolman B. A Trifunctional Linker for Palmitoylation and Peptide and Protein Localization in Biological Membranes. Chembiochem 2020; 21:1320-1328. [PMID: 31814256 PMCID: PMC7317724 DOI: 10.1002/cbic.201900655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 01/09/2023]
Abstract
Attachment of lipophilic groups is an important post-translational modification of proteins, which involves the coupling of one or more anchors such as fatty acids, isoprenoids, phospholipids, or glycosylphosphatidyl inositols. To study its impact on the membrane partitioning of hydrophobic peptides or proteins, we designed a tyrosine-based trifunctional linker. The linker allows the facile incorporation of two different functionalities at a cysteine residue in a single step. We determined the effect of the lipid modification on the membrane partitioning of the synthetic α-helical model peptide WALP with or without here and in all cases below; palmitoyl groups in giant unilamellar vesicles that contain a liquid-ordered (Lo ) and liquid-disordered (Ld ) phase. Introduction of two palmitoyl groups did not alter the localization of the membrane peptides, nor did the membrane thickness or lipid composition. In all cases, the peptide was retained in the Ld phase. These data demonstrate that the Lo domain in model membranes is highly unfavorable for a single membrane-spanning peptide.
Collapse
Affiliation(s)
- Łukasz Syga
- Department of BiochemistryGroningen Biomolecular Sciences andBiotechnology Institute and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Reinder H. de Vries
- Department of Biomolecular Chemistry and CatalysisStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Hugo van Oosterhout
- Department of Biomolecular Chemistry and CatalysisStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Rianne Bartelds
- Department of BiochemistryGroningen Biomolecular Sciences andBiotechnology Institute and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Arnold J. Boersma
- DWI Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| | - Gerard Roelfes
- Department of Biomolecular Chemistry and CatalysisStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Bert Poolman
- Department of BiochemistryGroningen Biomolecular Sciences andBiotechnology Institute and Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
18
|
Functionalized Leather: a Novel and Effective Hazardous Solid Waste Adsorbent for the Removal of the Diazo Dye Congo Red from Aqueous Solution. WATER 2019. [DOI: 10.3390/w11091906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The leather industry produces a high yield of solid hazardous wastes that generate a major impact on the environment. At the same time, the use of dyes by different manufacturing industries, including the footwear industry, creates large amounts of colored wastewater that is hard to treat. In this paper, potential adsorbents based on the functionalization of solid waste from leather in the removal of anionic dye Congo Red were studied. Twelve different functionalized adsorbents were analyzed in terms of dye removal. From those, the best adsorbents were characterized and tested to determine their life cycle, pH dependency and the resulting phytotoxicity of the treated dye baths. Different kinetic models were evaluated to describe this adsorption process. It was found that functionalized leather adsorbents presented multi-linearity behavior when removing Congo Red. Life cycle analysis showed that the adsorbents presented a high yield of absorption until the third cycle of operation, while phytotoxicity tested showed reductions up to 50% in the toxicity of the treated dye baths.
Collapse
|
19
|
Cook ZT, Brockway NL, Tobias ZJC, Pajarla J, Boardman IS, Ippolito H, Nkombo Nkoula S, Weissman TA. Combining near-infrared fluorescence with Brainbow to visualize expression of specific genes within a multicolor context. Mol Biol Cell 2019; 30:491-505. [PMID: 30586321 PMCID: PMC6594444 DOI: 10.1091/mbc.e18-06-0340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Fluorescent proteins are a powerful experimental tool, allowing the visualization of gene expression and cellular behaviors in a variety of systems. Multicolor combinations of fluorescent proteins, such as Brainbow, have expanded the range of possible research questions and are useful for distinguishing and tracking cells. The addition of a separately driven color, however, would allow researchers to report expression of a manipulated gene within the multicolor context to investigate mechanistic effects. A far-red or near-infrared protein could be particularly suitable in this context, as these can be distinguished spectrally from Brainbow. We investigated five far-red/near-infrared proteins in zebrafish: TagRFP657, mCardinal, miRFP670, iRFP670, and mIFP. Our results show that both mCardinal and iRFP670 are useful fluorescent proteins for zebrafish expression. We also introduce a new transgenic zebrafish line that expresses Brainbow under the control of the neuroD promoter. We demonstrate that mCardinal can be used to track the expression of a manipulated bone morphogenetic protein receptor within the Brainbow context. The overlay of near-infrared fluorescence onto a Brainbow background defines a clear strategy for future research questions that aim to manipulate or track the effects of specific genes within a population of cells that are delineated using multicolor approaches.
Collapse
Affiliation(s)
- Zoe T. Cook
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | | | - Joy Pajarla
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | - Helen Ippolito
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | | |
Collapse
|