1
|
Kumari P, Bhattacharjee S, Venkat Raman K, Tilgam J, Paul K, Senthil K, Baaniya M, Rama Prashat G, Sreevathsa R, Pattanayak D. Identification of methyltransferase and demethylase genes and their expression profiling under biotic and abiotic stress in pigeon pea ( Cajanus cajan [L.] Millspaugh). FRONTIERS IN PLANT SCIENCE 2025; 15:1521758. [PMID: 39886681 PMCID: PMC11779730 DOI: 10.3389/fpls.2024.1521758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025]
Abstract
The methylation- demethylation dynamics of RNA plays major roles in different biological functions, including stress responses, in plants. m6A methylation in RNA is orchestrated by a coordinated function of methyl transferases (writers) and demethylases (Erasers). Genome-wide analysis of genes involved in methylation and demethylation was performed in pigeon pea. Blast search, using Arabidopsis gene sequences, resulted in the identification of two methylation genes (CcMTA70, CcMTB70), two genes encoding adaptor proteins for methylation (CcFIPA and CcFIPB) and 10 demethylase (ALKBH) genes (CcALKBH1A, CcALKBH1B, CcALKBH1C, CcALKBH2, CcALKBH8, CcALKBH8A, CcALKBH8B, CcALKBH9, CcALKBH10A and CcALKBH10B) in the pigeon pea genome. The identified genes were analyzed through phylogenetic relationship, chromosomal position, gene structure, conserved motif, domain and subcellular location prediction etc. These structural analyses resulted in categorization of MTs and FIPs into one group, i.e., CcMTA/B and CcFIPA/B, respectively; and ALKBHs into four groups, viz. CcALKBH1/2, CcALKBH8, CcALKBH9 and CcALKBH10. Relative expression analysis of the identified genes in various tissues at different developmental stages revealed the highest level of expression in leaf and the least in root. CcMTs and CcFIPs had similar patterns of expression, and CcALKBH10B demonstrated the highest and CcALKBH2 the lowest level of expression in all the tissues analyzed. CcALKBH8 showed the highest induction in expression upon exposure to heat stress, and CcALKBH10B demonstrated the highest level of induction in expression during drought, salt and biotic (Helicoverpa armigera infestation) stresses. The present study would pave the way for detailed molecular characterization of m6A methylation in pigeon pea and its involvement in stress regulation.
Collapse
Affiliation(s)
- Priyanka Kumari
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
- Division of Molecular Biology and Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - Sougata Bhattacharjee
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
- Division of Molecular Biology and Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - K. Venkat Raman
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Jyotsana Tilgam
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
- Division of Molecular Biology and Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - Krishnayan Paul
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
- Division of Molecular Biology and Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - Kameshwaran Senthil
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Mahi Baaniya
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
- Division of Molecular Biology and Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - G. Rama Prashat
- Division of Genetics and Plant Breeding, Indian Agricultural Research Institute, New Delhi, India
| | - Rohini Sreevathsa
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Debasis Pattanayak
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| |
Collapse
|
2
|
Elbehiry A, Marzouk E, Abalkhail A, Sindi W, Alzahrani Y, Alhifani S, Alshehri T, Anajirih NA, ALMutairi T, Alsaedi A, Alzaben F, Alqrni A, Draz A, Almuzaini AM, Aljarallah SN, Almujaidel A, Abu-Okail A. Pivotal role of Helicobacter pylori virulence genes in pathogenicity and vaccine development. Front Med (Lausanne) 2025; 11:1523991. [PMID: 39850097 PMCID: PMC11756510 DOI: 10.3389/fmed.2024.1523991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025] Open
Abstract
One of the most prevalent human infections is Helicobacter pylori (H. pylori), which affects more than half of the global population. Although H. pylori infections are widespread, only a minority of individuals develop severe gastroduodenal disorders. The global resistance of H. pylori to antibiotics has reached concerning levels, significantly impacting the effectiveness of treatment. Consequently, the development of vaccines targeting virulence factors may present a viable alternative for the treatment and prevention of H. pylori infections. This review aims to provide a comprehensive overview of the current understanding of H. pylori infection, with a particular focus on its virulence factors, pathophysiology, and vaccination strategies. This review discusses various virulence factors associated with H. pylori, such as cytotoxin-associated gene A (cagA), vacuolating cytotoxin gene (vacA), outer membrane proteins (OMPs), neutrophil-activated protein (NAP), urease (ure), and catalase. The development of vaccines based on these virulence characteristics is essential for controlling infection and ensuring long-lasting protection. Various vaccination strategies and formulations have been tested in animal models; however, their effectiveness and reproducibility in humans remain uncertain. Different types of vaccines, including vector-based vaccines, inactivated whole cells, genetically modified protein-based subunits, and multiepitope nucleic acid (DNA) vaccines, have been explored. While some vaccines have demonstrated promising results in murine models, only a limited number have been successfully tested in humans. This article provides a thorough evaluation of recent research on H. pylori virulence genes and vaccination methods, offering valuable insights for future strategies to address this global health challenge.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Wael Sindi
- Department of Population, Public and Environmental Health, General Administration of Health Services, Ministry of Defense, Riyadh, Saudi Arabia
| | - Yasir Alzahrani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Salem Alhifani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Turki Alshehri
- Department of Dental, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Nuha Abdulaziz Anajirih
- Department of Medical Emergency Services, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Turki ALMutairi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ahmad Alsaedi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdullah Alqrni
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar N. Aljarallah
- Department of Pharmacy Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Abdulrahman Almujaidel
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
3
|
Wang X, Zhao G, Shao S, Yao Y. Helicobacter pylori triggers inflammation and oncogenic transformation by perturbing the immune microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189139. [PMID: 38897421 DOI: 10.1016/j.bbcan.2024.189139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The immune microenvironment plays a critical regulatory role in the pathogenesis of Helicobacter pylori (H. pylori). Understanding the mechanisms that drive the transition from chronic inflammation to cancer may provide new insights for early detection of gastric cancer. Although chronic inflammation is frequent in precancerous gastric conditions, the monitoring function of the inflammatory microenvironment in the progression from H. pylori-induced chronic inflammation to gastric cancer remains unclear. This literature review summarizes significant findings on how H. pylori triggers inflammatory responses and facilitates cancer development through the immune microenvironment. Furthermore, the implications for future research and clinical applications are also addressed. The review is divided into four main sections: inflammatory response and immune evasion mechanisms induced by H. pylori, immune dysregulation associated with gastric cancer, therapeutic implications, and future perspectives on H. pylori-induced gastric carcinogenesis with a focus on the immune microenvironment.
Collapse
Affiliation(s)
- Xiuping Wang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Guang Zhao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China; Department of Emergency Medicine, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Yongliang Yao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China.
| |
Collapse
|
4
|
Liu Q, Li B, Lu J, Zhang Y, Shang Y, Li Y, Gong T, Zhang C. Recombinant outer membrane vesicles delivering eukaryotic expression plasmid of cytokines act as enhanced adjuvants against Helicobacter pylori infection in mice. Infect Immun 2023; 91:e0031323. [PMID: 37889003 PMCID: PMC10652931 DOI: 10.1128/iai.00313-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 10/28/2023] Open
Abstract
The widespread prevalence of Helicobacter pylori (H. pylori) infection remains a great challenge to human health. The existing vaccines are not ideal for preventing H. pylori infection; thus, exploring highly effective adjuvants may improve the immunoprotective efficacy of H. pylori vaccines. In a previous study, we found that the outer membrane vesicles (OMVs), a type of nanoscale particle spontaneously produced by Gram-negative bacteria, could act as adjuvants to boost the immune responses to vaccine antigens. In this study, we explored the potential application of OMVs as delivery vectors for adjuvant development. We constructed recombinant OMVs containing eukaryotic expression plasmid of cytokines, including interleukin 17A or interferon-γ, and evaluated their function as adjuvants in combination with inactivated whole-cell vaccine (WCV) or UreB as vaccine antigens. Our results showed that recombinant OMVs as adjuvants could induce stronger humoral and mucosal immune responses in mice than wild-type H. pylori OMVs and the cholera toxin (CT) adjuvant. Additionally, the recombinant OMVs significantly promoted Th1/Th2/Th17-type immune responses. Furthermore, the recombinant OMV adjuvant induced more potent clearance of H. pylori than CT and wild-type OMVs. Our findings suggest that the recombinant OMVs coupled with cytokines may become potent adjuvants for the development of novel and effective vaccines against H. pylori infection.
Collapse
Affiliation(s)
- Qiong Liu
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Biaoxian Li
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Jiahui Lu
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yejia Zhang
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yinpan Shang
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yi Li
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Tian Gong
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengsheng Zhang
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Yamaoka Y, Saruuljavkhlan B, Alfaray RI, Linz B. Pathogenomics of Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:117-155. [PMID: 38231217 DOI: 10.1007/978-3-031-47331-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human stomach bacterium Helicobacter pylori, the causative agent of gastritis, ulcers and adenocarcinoma, possesses very high genetic diversity. H. pylori has been associated with anatomically modern humans since their origins over 100,000 years ago and has co-evolved with its human host ever since. Predominantly intrafamilial and local transmission, along with genetic isolation, genetic drift, and selection have facilitated the development of distinct bacterial populations that are characteristic for large geographical areas. H. pylori utilizes a large arsenal of virulence and colonization factors to mediate the interaction with its host. Those include various adhesins, the vacuolating cytotoxin VacA, urease, serine protease HtrA, the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system and its effector protein CagA, all of which contribute to disease development. While many pathogenicity-related factors are present in all strains, some belong to the auxiliary genome and are associated with specific phylogeographic populations. H. pylori is naturally competent for DNA uptake and recombination, and its genome evolution is driven by extraordinarily high recombination and mutation rates that are by far exceeding those in other bacteria. Comparative genome analyses revealed that adaptation of H. pylori to individual hosts is associated with strong selection for particular protein variants that facilitate immune evasion, especially in surface-exposed and in secreted virulence factors. Recent studies identified single-nucleotide polymorphisms (SNPs) in H. pylori that are associated with the development of severe gastric disease, including gastric cancer. Here, we review the current knowledge about the pathogenomics of H. pylori.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, 60286, East Java, Indonesia
| | - Bodo Linz
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
6
|
Zhao Y, Guo Q, Cao S, Tian Y, Han K, Sun Y, Li J, Yang Q, Ji Q, Sederoff R, Li Y. Genome-wide identification of the AlkB homologs gene family, PagALKBH9B and PagALKBH10B regulated salt stress response in Populus. FRONTIERS IN PLANT SCIENCE 2022; 13:994154. [PMID: 36204058 PMCID: PMC9530910 DOI: 10.3389/fpls.2022.994154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The AlkB homologs (ALKBH) gene family regulates N6-methyladenosine (m6A) RNA methylation and is involved in plant growth and the abiotic stress response. Poplar is an important model plant for studying perennial woody plants. Poplars typically have a long juvenile period of 7-10 years, requiring long periods of time for studies of flowering or mature wood properties. Consequently, functional studies of the ALKBH genes in Populus species have been limited. Based on AtALKBHs sequence similarity with Arabidopsis thaliana, 23 PagALKBHs were identified in the genome of the poplar 84K hybrid genotype (P. alba × P. tremula var. glandulosa), and gene structures and conserved domains were confirmed between homologs. The PagALKBH proteins were classified into six groups based on conserved sequence compared with human, Arabidopsis, maize, rice, wheat, tomato, barley, and grape. All homologs of PagALKBHs were tissue-specific; most were highly expressed in leaves. ALKBH9B and ALKBH10B are m6A demethylases and overexpression of their homologs PagALKBH9B and PagALKBH10B reduced m6A RNA methylation in transgenic lines. The number of adventitious roots and the biomass accumulation of transgenic lines decreased compared with WT. Therefore, PagALKBH9B and PagALKBH10B mediate m6A RNA demethylation and play a regulatory role in poplar growth and development. Overexpression of PagALKBH9B and PagALKBH10B can reduce the accumulation of H2O2 and oxidative damage by increasing the activities of SOD, POD, and CAT, and enhancing protection for Chl a/b, thereby increasing the salt tolerance of transgenic lines. However, overexpression lines were more sensitive to drought stress due to reduced proline content. This research revealed comprehensive information about the PagALKBH gene family and their roles in growth and development and responsing to salt stress of poplar.
Collapse
Affiliation(s)
- Ye Zhao
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Qi Guo
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Sen Cao
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yanting Tian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Kunjin Han
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yuhan Sun
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Juan Li
- Natural Resources and Planning Bureau of Yanshan County, Cangzhou, Hebei, China
| | - Qingshan Yang
- Shandong Academy of Forestry, Jinan, Shandong, China
| | - Qingju Ji
- Cangzhou Municipal Forestry Seeding and Cutting Management Center, Cangzhou, China
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Yun Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Liu Y, Zhang F. Comparison of whole goat milk and its major fractions regarding the modulation of gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3618-3627. [PMID: 34873691 DOI: 10.1002/jsfa.11708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/13/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Goat milk can be important for human nutrition because of its nutritional value, which may be attributed to its richness in protein, lactose, fat, and other bioactive components. This study compared the diversity and composition of gut microbiota in response to whole goat milk and its major fractions (milk fat, casein, milk whey, whey protein, and whey supernatant). Goat milk, its major fractions, and sterile distilled water (for the control group) were administered to mice intragastrically, and gut microbiota were compared in these groups using metagenomic analysis. RESULTS We observed distinct patterns of gut microbiota from different diet groups. The sample distance heatmap showed that, compared with other goat milk fractions, gut microbiota in the casein group was more similar to that in the whole goat-milk group. The relative abundance of the genus Lactobacillus increased significantly after whole goat-milk treatment; the milk whey fraction increased the abundance of Blautia; milk fat and milk whey related fractions treatment promoted the population of Bacteroides. The network analysis showed that genera Lactobacillus and Lactococcus were negatively associated with Helicobacter and Acinetobacter, respectively. CONCLUSION Fractions of goat milk could contain different gut microbiota from whole goat milk. Consumption of certain goat milk fractions could increase the ingestion of beneficial bacteria and inhibit the growth of some pathogenic bacteria. Our results could provide the basis for the research into and development of goat-milk based functional foods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yufang Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Fuxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
8
|
Taillieu E, Chiers K, Amorim I, Gärtner F, Maes D, Van Steenkiste C, Haesebrouck F. Gastric Helicobacter species associated with dogs, cats and pigs: significance for public and animal health. Vet Res 2022; 53:42. [PMID: 35692057 PMCID: PMC9190127 DOI: 10.1186/s13567-022-01059-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022] Open
Abstract
This article focuses on the pathogenic significance of Helicobacter species naturally colonizing the stomach of dogs, cats and pigs. These gastric "non-Helicobacter (H.) pylori Helicobacter species" (NHPH) are less well-known than the human adapted H. pylori. Helicobacter suis has been associated with gastritis and decreased daily weight gain in pigs. Several studies also attribute a role to this pathogen in the development of hyperkeratosis and ulceration of the non-glandular stratified squamous epithelium of the pars oesophagea of the porcine stomach. The stomach of dogs and cats can be colonized by several Helicobacter species but their pathogenic significance for these animals is probably low. Helicobacter suis as well as several canine and feline gastric Helicobacter species may also infect humans, resulting in gastritis, peptic and duodenal ulcers, and low-grade mucosa-associated lymphoid tissue lymphoma. These agents may be transmitted to humans most likely through direct or indirect contact with dogs, cats and pigs. Additional possible transmission routes include consumption of water and, for H. suis, also consumption of contaminated pork. It has been described that standard H. pylori eradication therapy is usually also effective to eradicate the NHPH in human patients, although acquired antimicrobial resistance may occasionally occur and porcine H. suis strains are intrinsically less susceptible to aminopenicillins than non-human primate H. suis strains and other gastric Helicobacter species. Virulence factors of H. suis and the canine and feline gastric Helicobacter species include urease activity, motility, chemotaxis, adhesins and gamma-glutamyl transpeptidase. These NHPH, however, lack orthologs of cytotoxin-associated gene pathogenicity island and vacuolating cytotoxin A, which are major virulence factors in H. pylori. It can be concluded that besides H. pylori, gastric Helicobacter species associated with dogs, cats and pigs are also clinically relevant in humans. Although recent research has provided better insights regarding pathogenic mechanisms and treatment strategies, a lot remains to be investigated, including true prevalence rates, exact modes of transmission and molecular pathways underlying disease development and progression.
Collapse
Affiliation(s)
- Emily Taillieu
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Koen Chiers
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Irina Amorim
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Porto, Portugal.,Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal.,School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
| | - Fátima Gärtner
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Porto, Portugal.,Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Christophe Van Steenkiste
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp University, Edegem, Belgium.,Department of Gastroenterology and Hepatology, General Hospital Maria Middelares, Ghent, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
Fang M, Xue Z, He L, You Y, Gong Y, Fan D, Sun L, Zhai K, Yang Y, Zhang J. Distribution characteristics of the sabA, hofC, homA, homB and frpB-4 genes of Helicobacter pylori in different regions of China. PLoS One 2022; 17:e0268373. [PMID: 35588168 PMCID: PMC9119684 DOI: 10.1371/journal.pone.0268373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background Helicobacter pylori (H. pylori) encodes numerous outer membrane proteins (OMPs), with considerable geographic heterogeneity and related to different clinical outcomes. This study aimed to investigate the distribution characteristics of five important OMP genes (sabA, hofC, homA, homB and frpB-4) in different regions of China. Materials and method A total of 266 strains were isolated from 348 stomach biopsy specimens in Shandong, Guangxi, Heilongjiang, Hunan, and Qinghai provinces. The presence of sabA, hofC, homA, homB and frpB-4 gene was detected by polymerase chain reaction (PCR) from H. pylori genomic DNA. Results Among the strains in five regions, the prevalence of frpB-4 was 100% and that of hofC was 97.7%. The prevalence of homB in the isolates from Qinghai (45.5%) was significantly lower than that in Shandong (75.3%), Guangxi (76.9%) and Hunan (69.6%) (P<0.05). The frequency of homA in Shandong (30.1%) was significantly lower than in Guangxi (57.7%) and Qinghai (63.6%) (P<0.05). The prevalence of the sabA gene in Shandong, Guangxi, Heilongjiang, Hunan and Qinghai provinces was 21.9%, 59.7%, 45.9%, 52.2%, and 18.2%, respectively (P<0.05). The sabA “on” status was significantly more frequent in isolates from Guangxi (46.8%), Heilongjiang (37.8%), and Hunan (47.8%) than Qinghai (3.0%) (P<0.05). The presence of homA and sabA genes may be negatively correlated with the development of gastritis. There was no significant association between the frpB-4, hofC, homB gene and clinical outcomes. Conclusion The prevalence of homA, homB, and sabA genes and the sabA “on” or “off” status have significant geographical differences among five provinces in China. The presence of homA and sabA genes may be protective factors of gastritis.
Collapse
Affiliation(s)
- Mengyang Fang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Zhijing Xue
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Lihua He
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yuanhai You
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yanan Gong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Dongjie Fan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Lu Sun
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Kangle Zhai
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yaming Yang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Jianzhong Zhang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
10
|
Ejaz S, Ejaz S, Shahid R, Noor T, Shabbir S, Imran M. Chitosan-curcumin complexation to develop functionalized nanosystems with enhanced antimicrobial activity against hetero-resistant gastric pathogen. Int J Biol Macromol 2022; 204:540-554. [PMID: 35157901 DOI: 10.1016/j.ijbiomac.2022.02.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
Abstract
With the apparent stagnation in the antibiotic discovery and the propagation of multidrug resistance, Helicobacter pylori associated gastric infections are hard to eradicate. In pursuance of alternative medicines, in this study, covalent modification of chitosan (CS) polymer with curcumin (Cur) was accomplished. Proton Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopy elucidated the covalent interaction between Cur and CS with characteristic peak of imine functional group (C=N). Scanning Electron Microscopy provided visual proof for surface topology, while size and zeta potential values further affirmed the development of curcumin functionalized chitosan nanosystems (Cur-FCNS). The complexation efficiency of CS with Cur was found as 70 ± 3% at an optimal ratio of 5:1 for CS and Cur, respectively. Cur-FCNS developed with ionic gelation and ultrasonication method demonstrated synergistic anti-H. pylori activity in growth-kinetics and anti-biofilm assays, which was superior to free Cur and even chitosan nanosystems. Under simulated gastric conditions, Cur-FCNS revealed cumulative-release of only 16 ± 0.8% till 40 h, which indicated its improved stability to interact with H. pylori. In silico findings affirmed high binding affinity of Cur-FCNS with multiple bacterial virulence factors. Thus, our results affirmed the exceptional potential of Cur-FCNS as next-generation alternative-medicine to treat resistant H. pylori.
Collapse
Affiliation(s)
- Sadaf Ejaz
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Saima Ejaz
- Research Centre for Modelling and Simulation (RCMS), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Saima Shabbir
- Department of Materials Science and Engineering, Institute of Space Technology (IST), Islamabad 44000, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
11
|
Sharndama HC, Mba IE. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol 2022; 53:33-50. [PMID: 34988937 PMCID: PMC8731681 DOI: 10.1007/s42770-021-00675-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is an organism associated with ulcer disease and gastric cancer. The latter is one of the most prevalent malignancies and currently the fourth major cause of cancer-related deaths globally. The pathogen infects about 50% of the world population, and currently, no treatment ensures its total elimination. There has been an increase in our understanding of the pathophysiology and pathogenesis mechanisms of H. pylori over the years. H. pylori can induce several genetic alterations, express numerous virulence factors, and trigger diverse adaptive mechanisms during its adherence and colonization. For successful colonization and infection establishment, several effector proteins/toxins are released by the organism. Evidence is also available reporting spiral to coccoid transition as a unique tactic H. pylori uses to survive in the host's gastrointestinal tract (GIT). Thus, the virulence and pathogenicity of H. pylori are under the control of complex interplay between the virulence factors, host, and environmental factors. Expounding the role of the various virulence factors in H. pylori pathogenesis and clinical outcomes is crucial for vaccine development and in providing and developing a more effective therapeutic intervention. Here we critically reflect on H. pylori infection and delineate what is currently known about the virulence and pathogenesis mechanisms of H. pylori.
Collapse
Affiliation(s)
| | - Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria.
| |
Collapse
|
12
|
You Y, Thorell K, He L, Yahara K, Yamaoka Y, Cha JH, Murakami K, Katsura Y, Kobayashi I, Falush D, Zhang J. Genomic differentiation within East Asian Helicobacter pylori. Microb Genom 2022; 8. [PMID: 35188454 PMCID: PMC8942036 DOI: 10.1099/mgen.0.000676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The East Asian region, including China, Japan and Korea, accounts for half of gastric cancer deaths. However, different areas have contrasting gastric cancer incidences and the population structure of Helicobacter pylori in this ethnically diverse region is yet unknown. We aimed to investigate genomic differences in H. pylori between these areas to identify sequence polymorphisms associated with increased cancer risk. We analysed 381 H. pylori genomes collected from different areas of the three countries using phylogenetic and population genetic tools to characterize population differentiation. The functional consequences of SNPs with a highest fixation index (Fst) between subpopulations were examined by mapping amino acid changes on 3D protein structure, solved or modelled. Overall, 329/381 genomes belonged to the previously identified hspEAsia population indicating that import of bacteria from other regions of the world has been uncommon. Seven subregional clusters were found within hspEAsia, related to subpopulations with various ethnicities, geographies and gastric cancer risks. Subpopulation-specific amino acid changes were found in multidrug exporters (hefC), transporters (frpB-4), outer membrane proteins (hopI) and several genes involved in host interaction, such as a catalase site, involved in H2O2 entrance, and a flagellin site mimicking host glycosylation. Several of the top hits, including frpB-4, hefC, alpB/hopB and hofC, have been found to be differentiated within the Americas in previous studies, indicating that a handful of genes may be key to local geographic adaptation. H. pylori within East Asia are not homogeneous but have become differentiated geographically at multiple loci that might have facilitated adaptation to local conditions and hosts. This has important implications for further evaluation of these changes in relation to the varying gastric cancer incidence between geographical areas in this region.
Collapse
Affiliation(s)
- Yuanhai You
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Kaisa Thorell
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Västra Götaland 12 Region, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Lihua He
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Jeong-Heon Cha
- Department of Oral Biology, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yukako Katsura
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences (formerly Department of Medical Genome Sciences), Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka-shi, Tokyo, Japan
- I2BC, University of Paris-Saclay, Gif-sur-Yvette, France
- Research Center for Micro-Nano Technology, Hosei University, Koganei-shi, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Daniel Falush
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, PR China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | | |
Collapse
|
13
|
Matos R, Sousa HS, Nogueiro J, Magalhães A, Reis CA, Carneiro F, Amorim I, Haesebrouck F, Gärtner F. Helicobacter species binding to the human gastric mucosa. Helicobacter 2022; 27:e12867. [PMID: 34967491 DOI: 10.1111/hel.12867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori infects half of the world population, being associated with several gastric disorders, such as chronic gastritis and gastric carcinoma. The Helicobacter genus also includes other gastric helicobacters, such as H. heilmannii¸ H. ailurogastricus, H. suis, H. felis, H. bizzozeronii, and H. salomonis. These gastric helicobacters colonize both the human and animal stomach. The prevalence of gastric non-Helicobacter pylori Helicobacter (NHPH) species in humans has been described as low, and the in vitro binding to the human gastric mucosa was never assessed. Herein, human gastric tissue sections were used for the evaluation of the tissue glycophenotype and for the binding of gastric NHPH strains belonging to different species. Histopathological evaluation showed that 37.5% of the patients enrolled in our cohort presented chronic gastritis, while the presence of neutrophil or eosinophilic activity (chronic active gastritis) was observed in 62.5% of the patients. The secretor phenotype was observed in 68.8% of the individuals, based on the expression of Lewis B antigen and binding of the UleX lectin. The in vitro binding assay showed that all the NHPH strains evaluated were able to bind, albeit in low frequency, to the human gastric mucosa. The H. heilmannii, H. bizzozeronii, and H. salomonis strains displayed the highest binding ability both to the gastric superficial epithelium and to the deep glands. Interestingly, we observed binding of NHPH to the gastric mucosa of individuals with severe chronic inflammation and intestinal metaplasia, suggesting that NHPH binding may not be restricted to the healthy gastric mucosa or slight chronic gastritis. Furthermore, the in vitro binding of NHPH strains was observed both in secretor and non-secretor individuals in a similar frequency. In conclusion, this study is the first report of the in vitro binding ability of gastric NHPH species to the human gastric mucosa. The results suggest that other glycans, besides the Lewis antigens, could be involved in the bacterial adhesion mechanism; however, the molecular intervenients remain unknown.
Collapse
Affiliation(s)
- Rita Matos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Hugo Santos Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| | - Jorge Nogueiro
- Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal.,Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal.,Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal.,Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Irina Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Fátima Gärtner
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
14
|
Nunes VV, Silva-Mann R, Souza JL, Calazans CC. Pharmaceutical, food potential, and molecular data of Hancornia speciosa Gomes: a systematic review. GENETIC RESOURCES AND CROP EVOLUTION 2022; 69:525-543. [PMID: 35068695 PMCID: PMC8764503 DOI: 10.1007/s10722-021-01319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Hancornia speciosa Gomes is a fruit and medicinal tree species native to South America, which in Brazil is considered of potential economic value and priority for research and development. We present a map of the state-of-art, including articles, patents, and molecular data of the species to identify perspectives for future research. The annual scientific production, intellectual, social, and conceptual structure were evaluated, along with the number of patent deposits, components of the plant used, countries of deposit, international classification and assignees, and the accessibility of available molecular data. Brazil has the most significant publications (306) between 1992 and 2020. Technological products (29) have been developed from different tissues of the plant. Most of the articles and patents were developed by researchers from public universities from different regions of Brazil. The molecular data are sequences of nucleotides (164) and proteins (236) of the chloroplast genome and are described to identify the species as DNA barcodes and proteins involved in photosynthesis. The compilation and report of scientific, technological, and molecular information in the present review allowed the identification of new perspectives of research to be developed based on the gaps in knowledge regarding the species and perspectives for the definition of future research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10722-021-01319-w.
Collapse
Affiliation(s)
- Valdinete Vieira Nunes
- Post-Graduation Program in Agriculture and Biodiversity, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Renata Silva-Mann
- Department of Agronomic Engineering, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Juliana Lopes Souza
- Post-Graduation Program in Agriculture and Biodiversity, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Crislaine Costa Calazans
- Post-Graduation Program in Agriculture and Biodiversity, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| |
Collapse
|
15
|
Wilkinson DJ, Dickins B, Robinson K, Winter JA. Genomic diversity of Helicobacter pylori populations from different regions of the human stomach. Gut Microbes 2022; 14:2152306. [PMID: 36469575 PMCID: PMC9728471 DOI: 10.1080/19490976.2022.2152306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Individuals infected with Helicobacter pylori harbor unique and diverse populations of quasispecies, but diversity between and within different regions of the human stomach and the process of bacterial adaptation to each location are not yet well understood. We applied whole-genome deep sequencing to characterize the within- and between-stomach region genetic diversity of H. pylori populations from paired antrum and corpus biopsies of 15 patients, along with single biopsies from one region of an additional 3 patients, by scanning allelic diversity. We combined population deep sequencing with more conventional sequencing of multiple H. pylori single colony isolates from individual biopsies to generate a unique dataset. Single colony isolates were used to validate the scanning allelic diversity pipelines. We detected extensive population allelic diversity within the different regions of each patient's stomach. Diversity was most commonly found within non-coding, hypothetical, outer membrane, restriction modification system, virulence, lipopolysaccharide biosynthesis, efflux systems, and chemotaxis-associated genes. Antrum and corpus populations from the same patient grouped together phylogenetically, indicating that most patients were initially infected with a single strain, which then diversified. Single colonies from the antrum and corpus of the same patients grouped into distinct clades, suggesting mechanisms for within-location adaptation across multiple H. pylori isolates from different patients. The comparisons made available by combined sequencing and analysis of isolates and populations enabled comprehensive analysis of the genetic changes associated with H. pylori diversification and stomach region adaptation.
Collapse
Affiliation(s)
- Daniel James Wilkinson
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
- School of Science and Technology, Nottingham Trent University, UK
| | - Benjamin Dickins
- School of Science and Technology, Nottingham Trent University, UK
| | - Karen Robinson
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jody Anne Winter
- School of Science and Technology, Nottingham Trent University, UK
- CONTACT Jody Anne Winter School of Science and Technology, Nottingham Trent University Clifton Campus, Clifton Lane, NottinghamNG118NS, UK
| |
Collapse
|
16
|
Cheok YY, Lee CYQ, Cheong HC, Vadivelu J, Looi CY, Abdullah S, Wong WF. An Overview of Helicobacter pylori Survival Tactics in the Hostile Human Stomach Environment. Microorganisms 2021; 9:microorganisms9122502. [PMID: 34946105 PMCID: PMC8705132 DOI: 10.3390/microorganisms9122502] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori is well established as a causative agent for gastritis, peptic ulcer, and gastric cancer. Armed with various inimitable virulence factors, this Gram-negative bacterium is one of few microorganisms that is capable of circumventing the harsh environment of the stomach. The unique spiral structure, flagella, and outer membrane proteins accelerate H. pylori movement within the viscous gastric mucosal layers while facilitating its attachment to the epithelial cells. Furthermore, secretion of urease from H. pylori eases the acidic pH within the stomach, thus creating a niche for bacteria survival and replication. Upon gaining a foothold in the gastric epithelial lining, bacterial protein CagA is injected into host cells through a type IV secretion system (T4SS), which together with VacA, damage the gastric epithelial cells. H. pylori does not only establishes colonization in the stomach, but also manipulates the host immune system to permit long-term persistence. Prolonged H. pylori infection causes chronic inflammation that precedes gastric cancer. The current review provides a brief outlook on H. pylori survival tactics, bacterial-host interaction and their importance in therapeutic intervention as well as vaccine development.
Collapse
Affiliation(s)
- Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Suhailah Abdullah
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
- Correspondence:
| |
Collapse
|
17
|
Ochoa S, Collado L. Enterohepatic Helicobacter species - clinical importance, host range, and zoonotic potential. Crit Rev Microbiol 2021; 47:728-761. [PMID: 34153195 DOI: 10.1080/1040841x.2021.1924117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The genus Helicobacter defined just over 30 years ago, is a highly diverse and fast-growing group of bacteria that are able to persistently colonize a wide range of animals. The members of this genus are subdivided into two groups with different ecological niches, associated pathologies, and phylogenetic relationships: the gastric Helicobacter (GH) and the enterohepatic Helicobacter (EHH) species. Although GH have been mostly studied, EHH species have become increasingly important as emerging human pathogens and potential zoonotic agents in the last years. This group of bacteria has been associated with the development of several diseases in humans from acute pathologies like gastroenteritis to chronic pathologies that include inflammatory bowel disease, and liver and gallbladder diseases. However, their reservoirs, as well as their routes of transmission, have not been well established yet. Therefore, this review summarizes the current knowledge of taxonomy, epidemiology, and clinical role of the EHH group.
Collapse
Affiliation(s)
- Sofia Ochoa
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Luis Collado
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
18
|
Matos R, Amorim I, Magalhães A, Haesebrouck F, Gärtner F, Reis CA. Adhesion of Helicobacter Species to the Human Gastric Mucosa: A Deep Look Into Glycans Role. Front Mol Biosci 2021; 8:656439. [PMID: 34026832 PMCID: PMC8138122 DOI: 10.3389/fmolb.2021.656439] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
Helicobacter species infections may be associated with the development of gastric disorders, such as gastritis, peptic ulcers, intestinal metaplasia, dysplasia and gastric carcinoma. Binding of these bacteria to the gastric mucosa occurs through the recognition of specific glycan receptors expressed by the host epithelial cells. This review addresses the state of the art knowledge on these host glycan structures and the bacterial adhesins involved in Helicobacter spp. adhesion to gastric mucosa colonization. Glycans are expressed on every cell surface and they are crucial for several biological processes, including protein folding, cell signaling and recognition, and host-pathogen interactions. Helicobacter pylori is the most predominant gastric Helicobacter species in humans. The adhesion of this bacterium to glycan epitopes present on the gastric epithelial surface is a crucial step for a successful colonization. Major adhesins essential for colonization and infection are the blood-group antigen-binding adhesin (BabA) which mediates the interaction with fucosylated H-type 1 and Lewis B glycans, and the sialic acid-binding adhesin (SabA) which recognizes the sialyl-Lewis A and X glycan antigens. Since not every H. pylori strain expresses functional BabA or SabA adhesins, other bacterial proteins are most probably also involved in this adhesion process, including LabA (LacdiNAc-binding adhesin), which binds to the LacdiNAc motif on MUC5AC mucin. Besides H. pylori, several other gastric non-Helicobacter pylori Helicobacters (NHPH), mainly associated with pigs (H. suis) and pets (H. felis, H. bizzozeronii, H. salomonis, and H. heilmannii), may also colonize the human stomach and cause gastric disease, including gastritis, peptic ulcers and mucosa-associated lymphoid tissue (MALT) lymphoma. These NHPH lack homologous to the major known adhesins involved in colonization of the human stomach. In humans, NHPH infection rate is much lower than in the natural hosts. Differences in the glycosylation profile between gastric human and animal mucins acting as glycan receptors for NHPH-associated adhesins, may be involved. The identification and characterization of the key molecules involved in the adhesion of gastric Helicobacter species to the gastric mucosa is important to understand the colonization and infection strategies displayed by different members of this genus.
Collapse
Affiliation(s)
- Rita Matos
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Irina Amorim
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Ana Magalhães
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Fátima Gärtner
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| |
Collapse
|
19
|
Berlamont H, De Witte C, Bauwens E, Min Jou H, Ducatelle R, De Meester E, Gansemans Y, Deforce D, Van Nieuwerburgh F, Haesebrouck F, Smet A. Distinct transcriptome signatures of Helicobacter suis and Helicobacter heilmannii strains upon adherence to human gastric epithelial cells. Vet Res 2020; 51:62. [PMID: 32381076 PMCID: PMC7206758 DOI: 10.1186/s13567-020-00786-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
The porcine Helicobacter suis and canine-feline H. heilmannii are gastric Helicobacter species with zoonotic potential. However, little is known about the pathogenesis of human infections with these Helicobacter species. To gain more insight into the interactions of both zoonotic Helicobacter species with human gastric epithelial cells, we investigated bacterial genes that are differentially expressed in a H. suis and H. heilmannii strain after adhesion to the human gastric epithelial cell line MKN7. In vitro Helicobacter-MKN7 binding assays were performed to obtain bacterial RNA for sequencing analysis. H. suis and H. heilmannii bacteria attached to the gastric epithelial cells (i.e. cases) as well as unbound bacteria (i.e. controls) were isolated, after which prokaryotic RNA was purified and sequenced. Differentially expressed genes were identified using the DESeq2 package and SARTools pipeline in R. A list of 134 (83 up-regulated and 51 down-regulated) and 143 (60 up-regulated and 83 down-regulated) differentially expressed genes (padj ≤ 0.01; fold change ≥ 2) were identified for the adherent H. suis and H. heilmannii strains, respectively. According to BLASTp analyses, only 2 genes were commonly up-regulated and 4 genes commonly down-regulated in both pathogens. Differentially expressed genes of the H. suis and H. heilmannii strains belonged to multiple functional classes, indicating that adhesion of both strains to human gastric epithelial cells evokes pleiotropic adaptive responses. Our results suggest that distinct pathways are involved in human gastric colonization of H. suis and H. heilmannii. Further research is needed to elucidate the clinical significance of these findings.
Collapse
Affiliation(s)
- Helena Berlamont
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Chloë De Witte
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eva Bauwens
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hannah Min Jou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ellen De Meester
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Annemieke Smet
- Translational Research in Immunology and Inflammation, Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Antwerp University, 2610, Antwerp, Belgium.
| |
Collapse
|
20
|
Abstract
This article is a review of the most important, accessible, and relevant literature published between April 2018 and April 2019 in the field of Helicobacter species other than Helicobacter pylori. The initial part of the review covers new insights regarding the presence of gastric and enterohepatic non-H. pylori Helicobacter species (NHPH) in humans and animals, while the subsequent section focuses on the progress in our understanding of the pathogenicity and evolution of these species. Over the last year, relatively few cases of gastric NHPH infections in humans were published, with most NHPH infections being attributed to enterohepatic Helicobacters. A novel species, designated "Helicobacter caesarodunensis," was isolated from the blood of a febrile patient and numerous cases of human Helicobacter cinaedi infections underlined this species as a true emerging pathogen. With regard to NHPH in animals, canine/feline gastric NHPH cause little or no harm in their natural host; however they can become opportunistic when translocated to the hepatobiliary tract. The role of enterohepatic Helicobacter species in colorectal tumors in pets has also been highlighted. Several studies in rodent models have further elucidated the mechanisms underlying the development of NHPH-related disease, and the extra-gastric effects of a Helicobacter suis infection on brain homeostasis was also studied. Comparative genomics facilitated a breakthrough in the evolutionary history of Helicobacter in general and NHPH in particular. Investigation of the genome of Helicobacter apodemus revealed particular traits with regard to its virulence factors. A range of compounds including mulberries, dietary fiber, ginseng, and avian eggs which target the gut microbiota have also been shown to affect Helicobacter growth, with a potential therapeutic utilization and increase in survival.
Collapse
Affiliation(s)
- Armelle Ménard
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, Université de Bordeaux, Bordeaux, France
| | - Annemieke Smet
- Laboratorium of Experimental Medicine and Pediatrics, Department of Translational Research in Immunology and Inflammation, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk (Antwerp), Belgium
| |
Collapse
|
21
|
Yue H, Nie X, Yan Z, Weining S. N6-methyladenosine regulatory machinery in plants: composition, function and evolution. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1194-1208. [PMID: 31070865 PMCID: PMC6576107 DOI: 10.1111/pbi.13149] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 05/04/2023]
Abstract
N6-methyladenosine (m6A) RNA methylation, one of the most pivotal internal modifications of RNA, is a conserved post-transcriptional mechanism to enrich and regulate genetic information in eukaryotes. The scope and function of this modification in plants has been an intense focus of study, especially in model plant systems. The characterization of plant m6A writers, erasers and readers, as well as the elucidation of their functions, is currently one of the most fascinating hotspots in plant biology research. The functional analysis of m6A in plants will be booming in the foreseeable future, which could contribute to crop genetic improvement through epitranscriptome manipulation. In this review, we systematically analysed and summarized recent advances in the understanding of the structure and composition of plant m6A regulatory machinery, and the biological functions of m6A in plant growth, development and stress response. Finally, our analysis showed that the evolutionary relationships between m6A modification components were highly conserved across the plant kingdom.
Collapse
Affiliation(s)
- Hong Yue
- College of Life SciencesState Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaojun Nie
- College of Life SciencesState Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhaogui Yan
- College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanHubeiChina
| | - Song Weining
- College of Life SciencesState Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
22
|
Falkeis-Veits C, Vieth M. Non-malignant Helicobacter pylori-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:121-134. [PMID: 31016630 DOI: 10.1007/5584_2019_362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori infection of the human stomach is associated with chronic gastritis, peptic ulcer disease or gastric carcinoma, and thus a high burden for the public health systems worldwide. Fortunately, only a small subfraction of up to 15-20% of infected individuals will develop serious complications. Unfortunately, it is not always known upfront, who will be affected by serious diesease outcome. For risk stratifications, it is therefore necessary to establish a common terminology and grading system, that can be applied worldwide to compare population data. The updated Sydney System for classification of gastritis with its semi-quantitative analogue scale is the system, that is currently used worldwide. Additionally, pathologists should always try to classify the etiology of the inflammatory infiltrates in the stomach to instruct the clinicians for choosing a proper treatment regime. Risk factors such as intestinal metaplasia, atrophy and scoring systems to classify these risk factors into a clinical context such as OLGA and OLGIM are discussed. Also, special forms of gastritis like lymphocytic gastritis, autoimmune gastritis and peptic ulcer disease are explained and discussed e.g. how to diagnose and how to treat. Extra-gastric sequelae of H. pylori infections inside and outside the stomach are shown in this chapter as well. Important host and bacterial risk factors such as pathogenicity islands are dicussed to draw a complete landscape around a H. pylori infection, that still can be diagnosed in patients. However, it needs to be noted that some countries have almost no H. pylori infection anymore, while others have still a very high frequency of infections with or without serious complications. The understanding and application of risk assessements may help to save money and quality of life. Extra-gastric H. pylori infections are rarely reported in the literature until today. The pathogenitiy is still under debate, but especially in the bile ducts and gallbladder, several pathological conditions may be also based on H. pylori infection, and will be also discussed.
Collapse
Affiliation(s)
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany.
| |
Collapse
|