1
|
Zhou H, Xiang W, Zhou G, Rodrigues-Lima F, Guidez F, Wang L. Metabolic dysregulation in myelodysplastic neoplasm: impact on pathogenesis and potential therapeutic targets. Med Oncol 2024; 42:23. [PMID: 39644425 DOI: 10.1007/s12032-024-02575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Despite significant advancements in the research of the pathogenesis mechanisms of Myelodysplastic Neoplasm (MDS) in recent years, there are still many gaps to fill. The advancement of metabolomics studies has led to a research booming in clarifying the impact of metabolic abnormalities during the pathogenesis of MDS. The present review primarily focuses on the dysregulated metabolic pathways, exploring the influences on the pathogenesis of MDS and their roles during the course of the disease. Furthermore, we discuss the potential of relevant metabolic pathways as therapeutic targets, along with the latest metabolic-related treatment drugs and approaches.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenqiong Xiang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Guangyu Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fernando Rodrigues-Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle Et Adaptative, 75013, Paris, France
| | - Fabien Guidez
- Université Paris Cité, Institut de Recherche Saint Louis INSERM UMR_S1131, 75010, Paris, France
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
2
|
McGraw KL, Larson DR. Implications for metabolic disturbances in myelodysplastic syndromes. Semin Hematol 2024; 61:470-478. [PMID: 39603905 PMCID: PMC11646176 DOI: 10.1053/j.seminhematol.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The Myelodysplastic Syndromes (MDS) are heterogeneous stem cell malignancies clinically characterized by bone marrow dysplasia, peripheral blood cytopenias, and a high risk for transformation to acute myeloid leukemia. In early stages of disease, differentiation defects and maturation blocks result in deficient hematopoiesis. In higher risk disease, unrestricted proliferation of immature blast cells leads to leukemogenesis. Disease pathogenesis can be attributed to many factors including chronic inflammation that is driven in part by commonly found somatic gene mutations (SGM) fostering expansion of malignant clones while suppressing normal hematopoiesis. Cellular metabolism that both directly and indirectly regulates hematopoietic stem cell (HSC) fate, is intimately connected to the immune system, is altered by MDS somatic gene mutations and is likely is a major contributor to disease pathophysiology. Despite this likely role in pathobiology, there is an underwhelming depth of literature on the subject and the precise metabolic dysregulations in these myeloid malignancies have yet to be fully delineated. In this review, we will provide a general overview of several major metabolic processes and how each directs HSC fate, provide a summary of metabolic studies in MDS, discuss how common SGM and inflammation influence metabolic pathways to drive bone marrow failure, and end with a discussion of standards of care and how these should be carefully considered in the context of metabolic dysregulation.
Collapse
Affiliation(s)
- Kathy L McGraw
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872.
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872
| |
Collapse
|
3
|
Tripathi S, Gupta E, Galande S. Statins as anti-tumor agents: A paradigm for repurposed drugs. Cancer Rep (Hoboken) 2024; 7:e2078. [PMID: 38711272 PMCID: PMC11074523 DOI: 10.1002/cnr2.2078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Statins, frequently prescribed medications, work by inhibiting the rate-limiting enzyme HMG-CoA reductase (HMGCR) in the mevalonate pathway to reduce cholesterol levels. Due to their multifaceted benefits, statins are being adapted for use as cost-efficient, safe and effective anti-cancer treatments. Several studies have shown that specific types of cancer are responsive to statin medications since they rely on the mevalonate pathway for their growth and survival. RECENT FINDINGS Statin are a class of drugs known for their potent inhibition of cholesterol production and are typically prescribed to treat high cholesterol levels. Nevertheless, there is growing interest in repurposing statins for the treatment of malignant neoplastic diseases, often in conjunction with chemotherapy and radiotherapy. The mechanism behind statin treatment includes targeting apoptosis through the BCL2 signaling pathway, regulating the cell cycle via the p53-YAP axis, and imparting epigenetic modulations by altering methylation patterns on CpG islands and histone acetylation by downregulating DNMTs and HDACs respectively. Notably, some studies have suggested a potential chemo-preventive effect, as decreased occurrence of tumor relapse and enhanced survival rate were reported in patients undergoing long-term statin therapy. However, the definitive endorsement of statin usage in cancer therapy hinges on population based clinical studies with larger patient cohorts and extended follow-up periods. CONCLUSIONS The potential of anti-cancer properties of statins seems to reach beyond their influence on cholesterol production. Further investigations are necessary to uncover their effects on cancer promoting signaling pathways. Given their distinct attributes, statins might emerge as promising contenders in the fight against tumorigenesis, as they appear to enhance the efficacy and address the limitations of conventional cancer treatments.
Collapse
Affiliation(s)
- Sneha Tripathi
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
| | - Ekta Gupta
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
| | - Sanjeev Galande
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
- Centre of Excellence in Epigenetics, Department of Life SciencesShiv Nadar Institution of EminenceGautam Buddha NagarIndia
| |
Collapse
|
4
|
Tsilingiris D, Vallianou NG, Spyrou N, Kounatidis D, Christodoulatos GS, Karampela I, Dalamaga M. Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Curr Obes Rep 2024; 13:1-34. [PMID: 38159164 PMCID: PMC10933194 DOI: 10.1007/s13679-023-00542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece.
| |
Collapse
|
5
|
Xie WQ, Yang X, Gu RX, Tian Z, Xing HY, Tang KJ, Rao Q, Qiu SW, Wang M, Wang JX. [Establishment of leukemia cell model with inducible AML1-ETO expression and its effect on fatty acid metabolism in leukemia cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:366-372. [PMID: 37550185 PMCID: PMC10440621 DOI: 10.3760/cma.j.issn.0253-2727.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Indexed: 08/09/2023]
Abstract
Objective: To investigate the effect of the AML1-ETO (AE) fusion gene on the biological function of U937 leukemia cells by establishing a leukemia cell model that induces AE fusion gene expression. Methods: The doxycycline (Dox) -dependent expression of the AE fusion gene in the U937 cell line (U937-AE) were established using a lentivirus vector system. The Cell Counting Kit 8 methods, including the PI and sidanilide induction, were used to detect cell proliferation, cell cycle-induced differentiation assays, respectively. The effect of the AE fusion gene on the biological function of U937-AE cells was preliminarily explored using transcriptome sequencing and metabonomic sequencing. Results: ①The Dox-dependent Tet-on regulatory system was successfully constructed to regulate the stable AE fusion gene expression in U937-AE cells. ②Cell proliferation slowed down and the cell proliferation rate with AE expression (3.47±0.07) was lower than AE non-expression (3.86 ± 0.05) after inducing the AE fusion gene expression for 24 h (P<0.05). The proportion of cells in the G(0)/G(1) phase in the cell cycle increased, with AE expression [ (63.45±3.10) %) ] was higher than AE non-expression [ (41.36± 9.56) %] (P<0.05). The proportion of cells expressing CD13 and CD14 decreased with the expression of AE. The AE negative group is significantly higher than the AE positive group (P<0.05). ③The enrichment analysis of the transcriptome sequencing gene set revealed significantly enriched quiescence, nuclear factor kappa-light-chain-enhancer of activated B cells, interferon-α/γ, and other inflammatory response and immune regulation signals after AE expression. ④Disorder of fatty acid metabolism of U937-AE cells occurred under the influence of AE. The concentration of the medium and short-chain fatty acid acylcarnitine metabolites decreased in cells with AE expressing, propionyl L-carnitine, wherein those with AE expression (0.46±0.13) were lower than those with AE non-expression (1.00±0.27) (P<0.05). The metabolite concentration of some long-chain fatty acid acylcarnitine increased in cells with AE expressing tetradecanoyl carnitine, wherein those with AE expression (1.26±0.01) were higher than those with AE non-expression (1.00±0.05) (P<0.05) . Conclusion: This study successfully established a leukemia cell model that can induce AE expression. The AE expression blocked the cell cycle and inhibited cell differentiation. The gene sets related to the inflammatory reactions was significantly enriched in U937-AE cells that express AE, and fatty acid metabolism was disordered.
Collapse
Affiliation(s)
- W Q Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - X Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - R X Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Z Tian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - H Y Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - K J Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Q Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - S W Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - M Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| | - J X Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
6
|
Li C, Xiao J, Wu S, Liu L, Zeng X, Zhao Q, Zhang Z. Clinical application of serum-based proteomics technology in human tumor research. Anal Biochem 2023; 663:115031. [PMID: 36580994 DOI: 10.1016/j.ab.2022.115031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
The rapid development of proteomics technology in the past decades has led to further human understanding of tumor research, and in some ways, the technology plays a very important supporting role in the early detection of tumors. Human serum has been shown to contain a variety of proteins closely related to life activities, and the dynamic change in proteins can often reflect the physiological and pathological conditions of the body. Serum has the advantage of easy extraction, so the application of proteomics technology in serum has become a hot spot and frontier area for the study of malignant tumors. However, there are still many difficulties in the standardized use of proteomic technologies, which inevitably limit the clinical application of proteomic technologies due to the heterogeneity of human proteins leading to incomplete whole proteome populations, in addition to most serum protein markers being now not highly specific in aiding the early detection of tumors. Nevertheless, further development of proteomics technologies will greatly increase our understanding of tumor biology and help discover more new tumor biomarkers with specificity that will enable medical technology.
Collapse
Affiliation(s)
- Chen Li
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Juan Xiao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Shihua Wu
- Department of Pathology, The Second Hospital of Shaoyang College, Hunan, Shaoyang, 422000, Hunan Province, China
| | - Lu Liu
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China
| | - Xuemei Zeng
- Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang, 421001, China
| | - Qiang Zhao
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China.
| | - Zhiwei Zhang
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan, Hengyang, 421001, Hunan Province, China; Cancer Research Institute of Hengyang Medical College, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan, Hengyang, 421001, China.
| |
Collapse
|
7
|
Gałgowska M, Pietrzak-Fiećko R. Evaluation of the Nutritional and Health Values of Selected Polish Mushrooms Considering Fatty Acid Profiles and Lipid Indices. Molecules 2022; 27:molecules27196193. [PMID: 36234742 PMCID: PMC9570797 DOI: 10.3390/molecules27196193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
Imleria badia, Boletus edulis, and Cantharellus cibarius are popular mushrooms of economic importance in Poland. Since physical and mental development of a person and the maintenance of good health entail providing the body with adequate nutrients, including plant and animal fats, the aim of this study was to determine the fatty acid profiles of three mushroom species from Poland and to assess their nutritional and health values using lipid indices. Studied mushrooms have a favorable fatty acid composition due to the high percentage of polyunsaturated fatty acids. Low values of the atherohenic index (AI) and the thrombogenic index (TI) prove that the consumption of the fungi may decrease the risk of coronary heart disease. Products with a high hypocholesterolemic/hypercholesterolemic ratio (H/H) and health-promoting index value are assumed to be more beneficial to human health, granting the possibility for using mushrooms in the nutrition of people with hypertension and in the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Michalina Gałgowska
- Department of Meat Technology and Chemistry, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Cieszyński 1 Sq, 10-719 Olsztyn, Poland
- Department of Dairy Science and Quality Management, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 7 Str., 10-719 Olsztyn, Poland
- Correspondence: (M.G.); (R.P.-F.)
| | - Renata Pietrzak-Fiećko
- Department of Commodity Sciences and Food Analysis, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Cieszyński 1 Sq, 10-719 Olsztyn, Poland
- Correspondence: (M.G.); (R.P.-F.)
| |
Collapse
|
8
|
Ruan J, Yang C, Du Y, Chen M, Han B. Plasma lipidome acts as diagnostic marker and predictor for cyclosporin response in patients with aplastic anemia. Clin Exp Med 2022:10.1007/s10238-022-00826-z. [PMID: 35445952 DOI: 10.1007/s10238-022-00826-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
Abstract
The lipid metabolomic profile has been well defined in the pathogenesis and differential diagnosis in patients with different myeloid diseases. We assumed that the serum lipid metabolites could also help the diagnosis and prognostic prediction of aplastic anemia (AA). In this study, serum lipid profiles were explored in AA patients before and after cyclosporin (CsA) treatment. Meanwhile, hypocellular myelodysplastic syndrome (h-MDS) patients and the healthy volunteers were compared as controls. 15 AA patients, 11 h-MDS patients and 20 age and sex matched health controls were enrolled. All the AA patients were diagnosed to be non-severe aplastic anemia with transfusion dependency and were treated by CsA 3-5 mg/kg/d for at least 6 months. AA patients had decreased arachidonic acid pathway metabolites and retinol metabolism-related metabolites as compared with h-MDS and the health (P < 0.05), whereas h-MDS patients had increased metabolism of proline and threonine and abnormal sphingolipid metabolism compared with AA patients and the normal controls. After 6 month of CsA treatment, serum arachidonic acid, PGE2, PGJ2, 15(S)-HETE, leukotriene B4 and Protectin D1 decreased significantly. Patients who had response to CsA had higher levels of baseline protectin D1 (P = 0.011), leukotriene B4 (P = 0.011), 15(S)-HETE (P = 0.004) and all-trans-retinal (P = 0.000) than those who had no response.
Collapse
Affiliation(s)
- Jing Ruan
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Chen Yang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yali Du
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Miao Chen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
9
|
Discovery of putative tumor suppressors from CRISPR screens reveals rewired lipid metabolism in acute myeloid leukemia cells. Nat Commun 2021; 12:6506. [PMID: 34764293 PMCID: PMC8586352 DOI: 10.1038/s41467-021-26867-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR knockout fitness screens in cancer cell lines reveal many genes whose loss of function causes cell death or loss of fitness or, more rarely, the opposite phenotype of faster proliferation. Here we demonstrate a systematic approach to identify these proliferation suppressors, which are highly enriched for tumor suppressor genes, and define a network of 145 such genes in 22 modules. One module contains several elements of the glycerolipid biosynthesis pathway and operates exclusively in a subset of acute myeloid leukemia cell lines. The proliferation suppressor activity of genes involved in the synthesis of saturated fatty acids, coupled with a more severe loss of fitness phenotype for genes in the desaturation pathway, suggests that these cells operate at the limit of their carrying capacity for saturated fatty acids, which we confirm biochemically. Overexpression of this module is associated with a survival advantage in juvenile leukemias, suggesting a clinically relevant subtype. CRISPR-based knockout screens in cancer cells have suggested the existence of proliferation suppressor genes (PSG). Here, the authors develop an approach to systematically identify them, and reveal a PSG module involved in fatty acid synthesis and tumour suppression in acute myeloid leukemia cell lines.
Collapse
|
10
|
Metabolomics-Based Clinical Efficacy of Compound Shenlu Granule, a Chinese Patent Medicine, in the Supportive Management of Aplastic Anemia Patients: A Randomized Controlled Pilot Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6655848. [PMID: 34630613 PMCID: PMC8497100 DOI: 10.1155/2021/6655848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/29/2021] [Accepted: 09/11/2021] [Indexed: 11/24/2022]
Abstract
Objective To explore the clinical efficacy and mechanism of compound Shenlu granule (SLG) treatment in patients with aplastic anemia (AA). Methods A total of 89 AA patients were randomly divided into an SLG supportive group (group A, n = 44) and a control group (group B, n = 45) while continuing Western medical management. After 6 months, hemograms, traditional Chinese medicine (TCM) syndrome scores, and overall clinical efficacy rate were assessed. Serum metabolomics characteristics were observed using ultraperformance liquid chromatography-mass spectrometry after SLG intervention. Results The levels of red blood cell (RBC), hemoglobin (Hb), and platelet (PLT) were increased in both groups after treatment for 6 months (P < 0.05), and in group A, the elevation of PLT became much more significant (P < 0.01). The TCM syndrome score was lower in group A than in group B after treatment (P < 0.05). Metabolomics data showed a significant difference in the patients using SLG after 6 months, and 14 biomarkers were identified. Conclusion SLG supportive treatment showed positive results in patients with AA, and metabolomics data indicated that SLG influenced aminoacyl-tRNA biosynthesis and glycerophospholipid metabolism to gradually return to normal.
Collapse
|
11
|
SCAMP2/5 as diagnostic and prognostic markers for acute myeloid leukemia. Sci Rep 2021; 11:17012. [PMID: 34426610 PMCID: PMC8382833 DOI: 10.1038/s41598-021-96440-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
The secretory carrier-associated membrane proteins (SCAMPs) are associated with the development of multiple human cancers. The role of SCAMPs in acute myeloid leukemia (AML), however, remains to be identified. In the present study, we explored expression patterns and prognostic value of SCAMPs and network analysis of SCAMPs-related signaling pathways in AML using Oncomine, GEPIA, cBioPortal, LinkedOmics, DAVID and Metascape databases. Genetic alteration analysis revealed that the mutation rate of SCAMP genes was below 1% (9/1272) in AML, and there was no significant correlation between SCAMPs gene mutation and AML prognosis. However, the SCAMP2/5 mRNA levels were significantly higher in AML patients than in healthy controls. Moreover, high mRNA expressions of SCAMP2/4/5 were associated with poor overall survival, which might be due to that SCAMP2/4/5 and their co-expressed genes were associated with multiple pathways related to tumorigenesis and progression, including human T-cell leukemia virus 1 infection, acute myeloid leukemia, mTOR and NF-kappa B signaling pathways. These results suggest that SCAMP2/4/5 are potential prognostic markers for AML, and that SCAMP2 and SCAMP5 individually or in combination may be used as diagnostic markers for AML.
Collapse
|
12
|
The Fatty Acid and Protein Profiles of Circulating CD81-Positive Small Extracellular Vesicles Are Associated with Disease Stage in Melanoma Patients. Cancers (Basel) 2021; 13:cancers13164157. [PMID: 34439311 PMCID: PMC8392159 DOI: 10.3390/cancers13164157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Early detection of cutaneous melanoma is the key to increasing survival and proper therapeutic adjustment, especially in stages II–IV. We investigated whether the fatty acid (FA) and protein compositions of small extracellular vesicles (sEV) expressing CD81, derived from the plasma of stage 0–I, II and III–IV melanoma patients, could reflect disease stage. Results showed a higher content of FA and differences in C18:0/C18:1 ratio, a marker of cell membrane fluidity, that distinguished patients’ CD81sEV from those of healthy donors (HD). By proteomic analysis (identifier PXD024434) we identified significant increases in CD14, PON1, PON3 and APOA5 in stage II CD81sEV compared to HD. In stage III–IV, CD81sEV’ RAP1B expression was decreased. These stage-related signatures may support the potential of sEV to provide information for early diagnosis, prediction of metastatic behavior, treatment and follow-up of melanoma patients. Abstract The early detection of cutaneous melanoma, a potentially lethal cancer with rising incidence, is fundamental to increasing survival and therapeutic adjustment. In stages II–IV especially, additional indications for adjuvant therapy purposes after resection and for treatment of metastatic patients are urgently needed. We investigated whether the fatty acid (FA) and protein compositions of small extracellular vesicles (sEV) derived from the plasma of stage 0–I, II and III–IV melanoma patients (n = 38) could reflect disease stage. The subpopulation of sEV expressing CD81 EV marker (CD81sEV) was captured by an ad hoc immune affinity technique from plasma depleted of large EV. Biological macromolecules were investigated by gas chromatography and mass spectrometry in CD81sEV. A higher content of FA was detectable in patients with respect to healthy donors (HD). Moreover, a higher C18:0/C18:1 ratio, as a marker of cell membrane fluidity, distinguished early (stage 0–I) from late (III–IV) stages’ CD81sEV. Proteomics detected increases in CD14, PON1, PON3 and APOA5 exclusively in stage II CD81sEV, and RAP1B was decreased in stage III–IV CD81sEV, in comparison to HD. Our results suggest that stage dependent alterations in CD81sEV’ FA and protein composition may occur early after disease onset, strengthening the potential of circulating sEV as a source of discriminatory information for early diagnosis, prediction of metastatic behavior and following up of melanoma patients.
Collapse
|
13
|
Yuan Y, Zhao J, Li T, Ji Z, Xin Y, Zhang S, Qin F, Zhao L. Integrative metabolic profile of myelodysplastic syndrome based on UHPLC-MS. Biomed Chromatogr 2021; 35:e5136. [PMID: 33844331 DOI: 10.1002/bmc.5136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 01/05/2023]
Abstract
Myelodysplastic syndrome (MDS) is a neoplastic disease originating from hematopoietic stem cells. Currently, hematopoietic stem cell transplantation (HSCT) is the most effective cure, although lenalidomide, azacytidine, and decitabine have been applied to relieve symptoms of MDS. The purpose of this study was to evaluate the changes in endogenous metabolites by applying a UHPLC-MS (ultra-high-performance liquid chromatography-MS) metabolomics approach and to investigate metabolic pathways related to MDS. An untargeted metabolomics approach based on UHPLC-MS in combination with multivariate data analysis, including partial least squares discrimination analysis and orthogonal partial least squares discriminant analysis, was established to investigate potential biomarkers in the plasma of MDS patients. As a result, 29 biomarkers were identified to distinguish between MDS patients, HSCT patients, and healthy controls, which were mainly related to inflammation regulation, amino acid metabolism, fatty acid metabolism, and energy metabolism. To our knowledge, this is the first time where plasma metabolomics was combined with HSCT to study the pathogenesis and therapeutic target of MDS. The identification of biomarkers and analysis of metabolic pathways could offer the possibility of discovering new therapeutic targets for MDS in the future.
Collapse
Affiliation(s)
- Yunxia Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Jing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Taifeng Li
- Department of Pharmacy, Peking University People's Hospital, Beijing, P. R. China
| | - Zhengchao Ji
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, Jilin Province, P. R. China
| | - Ying Xin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Siyao Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Feng Qin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| |
Collapse
|
14
|
de Almeida-Souza CB, Antunes MM, Carbonera F, Godoy G, da Silva MARCP, Masi LN, Visentainer JV, Curi R, Bazotte RB. A High-Fat Diet Induces Lower Systemic Inflammation than a High-Carbohydrate Diet in Mice. Metab Syndr Relat Disord 2021; 19:296-304. [PMID: 33570478 DOI: 10.1089/met.2020.0116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: We previously established that male Swiss mice (Mus musculus) receiving a high-fat diet (HFD) during 8 weeks exhibit similar caloric ingestion and body weight (grams) compared with mice fed a high-carbohydrate diet (HCD). HFD mice exhibit a lower inflammatory state than an HCD in the liver, skeletal muscle, and brain. In addition, we demonstrated that HFD and HCD modulated fatty acids (FA) composition in these tissues. In this study, our objective was to compare HFD mice and HCD mice in terms of systemic inflammation. Methods: Saturated FA (SFA), monounsaturated FA, omega-6 polyunsaturated FA (n-6 PUFA), and n-3 PUFA were evaluated at the time points 0, 1, 7, 14, 28, and 56 days after starting the administration of the diets. We investigated n-6 PUFA:n-3 PUFA, SFA:n-3 PUFA, palmitic acid:α-linolenic acid (ALA), and myristic acid:docosahexaenoic acid (DHA) ratios as potential serum biomarkers of systemic inflammation. We also measured the serum levels of basic fibroblast growth factor, granulocyte-macrophage colony-stimulating factor (GM-CSF), inducible protein 10 (IP-10), interferon gamma (IFN-γ), interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, macrophage inflammatory protein-1α (MIP-1-α), monocyte chemotactic protein 1 (MCP-1), monokine induced by IFN-γ (MIG), and tumor necrosis factor α (TNF-α). Results: The HFD group had lower (P < 0.05) n-6 PUFA:n-3 PUFA, palmitic acid:ALA, myristic acid:DHA ratios, and lower plasma levels of proinflammatory cytokines (IFN-γ, MIG, GM-CSF, and IL-6). Conclusion: The HFD mice showed lower systemic inflammation compared with a caloric ingestion-body weight-matched control HCD mice.
Collapse
Affiliation(s)
| | - Marina M Antunes
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Fabiana Carbonera
- Department of Chemistry, State University of Maringá, Maringá, Brazil
| | - Guilherme Godoy
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Maria A R C P da Silva
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Laureane N Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Roberto B Bazotte
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil.,Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| |
Collapse
|
15
|
Nath M, Bhattacharjee K, Choudhury Y. Vildagliptin, a dipeptidyl peptidase-4 inhibitor, reduces betel-nut induced carcinogenesis in female mice. Life Sci 2020; 266:118870. [PMID: 33310040 DOI: 10.1016/j.lfs.2020.118870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
AIM Betel-nut, a popular masticatory among Southeast Asian populations is a class I carcinogen, previously associated with dyslipidemia and aberrant lipid metabolism, and is reported to be used more frequently by females, than males. This study investigates the potential of repurposing the anti-diabetic drug, vildagliptin, a dipeptidyl peptidase-4 inhibitor, for alleviating the oncogenic condition in female Swiss Albino mice administered an aqueous extract of betel-nut (AEBN) orally (2 mg ml-1) for 24 weeks. MAIN METHODS Tissues were investigated by histopathological, immunohistochemical and apoptosis assays. Biochemical analyses of oxidative stress markers and lipid profile were performed using different tissues and sera. The expressions of different proteins involved in lipid metabolism and oncogenic pathways were evaluated by Western blotting. KEY FINDINGS AEBN induced carcinogenesis primarily in the liver by significantly impairing AMPK signaling, inducing oxidative stress, activating Akt/mTOR signaling, increasing Ki-67 immunoreactivity and cyclin D1 expression, and significantly diminishing apoptosis. Co-administration of AEBN with vildagliptin (10 mg kg-1 body weight) for 8 weeks reduced liver dysplasia, and significantly decreased free palmitic acid, increased free oleic acid, normalized lipid profile, decreased oxidative stress, cyclin D1 expression, Ki-67 immunoreactivity, and Bcl2 expression, and increased the ratio of apoptotic/non-apoptotic cells. Mechanistically, vildagliptin elicited these physiological and molecular alterations by restoring normal AMPK signaling and reducing the cellular expressions of FASN and HMGCR, restoring AMPK-dependent phosphorylation of p53 at Ser-15 and reducing Akt/mTOR signaling. SIGNIFICANCE These results indicate that vildagliptin may alleviate betel-nut induced carcinogenesis in the liver of female mice.
Collapse
Affiliation(s)
- Moumita Nath
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | | | - Yashmin Choudhury
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
16
|
Chen J, Liu H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int J Mol Sci 2020; 21:ijms21165695. [PMID: 32784511 PMCID: PMC7460856 DOI: 10.3390/ijms21165695] [Citation(s) in RCA: 374] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary fats are generally fatty acids that may play positive or negative roles in the prevention and treatment of diseases. In nature, fatty acids occur in the form of mixtures of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), and polyunsaturated fatty acid (PUFA), so their nutritional and/or medicinal values must be determined. Herein, we do not consider the classic indices, such as ∑SFA, ∑MUFA, ∑PUFA, ∑n-6 PUFA, ∑n-3 PUFA, and n-6 PUFA/n-3 PUFA; instead, we summarize and review the definitions, implications, and applications of indices used in recent years, including the PUFA/SFA, index of atherogenicity (IA), the index of thrombogenicity (IT), the hypocholesterolemic/hypercholesterolemic ratio (HH), the health-promoting index (HPI), the unsaturation index (UI), the sum of eicosapentaenoic acid and docosahexaenoic acid (EPA + DHA), fish lipid quality/flesh lipid quality (FLQ), the linoleic acid/α-linolenic acid (LA/ALA) ratio, and trans fatty acid (TFA). Of these nutritional indices, IA and IT are the most commonly used to assess the composition of fatty acids as they outline significant implications and provide clear evidence. EPA + DHA is commonly used to assess the nutritional quality of marine animal products. All indices have their advantages and disadvantages; hence, a rational choice of which to use is critical.
Collapse
Affiliation(s)
- Jiapeng Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Correspondence: ; Tel.: +86-0532-82031823
| |
Collapse
|
17
|
Rossi Sebastiano M, Konstantinidou G. Targeting Long Chain Acyl-CoA Synthetases for Cancer Therapy. Int J Mol Sci 2019; 20:E3624. [PMID: 31344914 PMCID: PMC6696099 DOI: 10.3390/ijms20153624] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
The deregulation of cancer cell metabolic networks is now recognized as one of the hallmarks of cancer. Abnormal lipid synthesis and extracellular lipid uptake are advantageous modifications fueling the needs of uncontrolled cancer cell proliferation. Fatty acids are placed at the crossroads of anabolic and catabolic pathways, as they are implicated in the synthesis of phospholipids and triacylglycerols, or they can undergo β-oxidation. Key players to these decisions are the long-chain acyl-CoA synthetases, which are enzymes that catalyze the activation of long-chain fatty acids of 12-22 carbons. Importantly, the long-chain acyl-CoA synthetases are deregulated in many types of tumors, providing a rationale for anti-tumor therapeutic opportunities. The purpose of this review is to summarize the last up-to-date findings regarding their role in cancer, and to discuss the related emerging tumor targeting opportunities.
Collapse
|