1
|
Jorgewich‐Cohen G, Wheatley M, Gaspar L, Praschag P, Lubberink N, Ming K, Rodriguez N, Ferrara C. Prehatch Calls and Coordinated Birth in Turtles. Ecol Evol 2024; 14:e70410. [PMID: 39440206 PMCID: PMC11494248 DOI: 10.1002/ece3.70410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Hatching synchronisation is widespread in oviparous taxa. It has been demonstrated that many species use sounds to coordinate synchronous hatching, being widespread among archosaurs (birds and crocodilians). Recent studies have shown that some turtle species produce vocalisations from within the egg, but the role of this behaviour in synchronising hatch is untested. The small amount of information about sound production by turtle embryos, limited to a handful of closely related species, precludes any inferences based on differences in their ecology, reproductive behaviour and phylogenetic context. With the goal to investigate if coordinated synchronous behaviour is mediated by within-egg vocalisations in turtles, we recorded clutches from six different turtle species. The selected animals present different ecological and reproductive niches and belong to distinct phylogenetic lineages at the family level. We aimed to understand: (1) what is the phylogenetic distribution of within-egg vocal behaviour among turtles; (2) if asynchronous turtle species vocalise from within the egg; (3) if clutch size influences synchronous behaviour and (4) if within-egg turtle calls follow any phylogenetic signal. The new evidence provides light to the current knowledge about synchronous behaviour and within-egg calls, challenging previous hypothesis that within-egg sounds are accidentally produced as side-effects of other behaviours.
Collapse
Affiliation(s)
- Gabriel Jorgewich‐Cohen
- Department of PalaeontologyUniversity of ZurichZurichSwitzerland
- Department of Evolutionary AnthropologyUniversity of ZurichZurichSwitzerland
| | - Madeleine Wheatley
- Turtle Island – Turtle Conservation and Research CentreGrazStyriaAustria
| | - Lucas Pacciullio Gaspar
- Departamento de Biodiversidade, Laboratório de Ecologia Espacial e conservação (LEEC)Universidade Estadual Paulista Julio de Mesquita Filho, Campus Rio ClaroRio ClaroSão PauloBrazil
| | - Peter Praschag
- Turtle Island – Turtle Conservation and Research CentreGrazStyriaAustria
| | | | - Keesha Ming
- Department of PalaeontologyUniversity of ZurichZurichSwitzerland
| | - Nicholas A. Rodriguez
- School of Biological SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | | |
Collapse
|
2
|
Ruiz-Raya F, Velando A. Lasting benefits of embryonic eavesdropping on parent-parent communication. SCIENCE ADVANCES 2024; 10:eadn8542. [PMID: 39213348 PMCID: PMC11364100 DOI: 10.1126/sciadv.adn8542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Developing embryos have traditionally been viewed as passive agents in the evolution of family conflicts, with maternal substances within the uterus or eggs as main factors modulating later expression of offspring solicitation behaviors. Yet, parent-offspring conflict theory predicts that offspring might also rely on alternative cues to adjust demand in response to prenatal cues of parental capacity for resource provisioning. Here, we show how embryonic experience with vocalizations carried out by parents during nest-relief displays at incubation adaptively shapes avian offspring development, providing lasting benefits to offspring. Genetic siblings prenatally exposed to different levels of parent-parent communication showed differences in epigenetic patterns, adrenocortical responsiveness, development, and food solicitation behavior. The correspondence between prenatal acoustic experience and parental context positively influenced the nutritional status and growth rate of offspring reared by communicative parents. Offspring can thus retain strong control over their own development by gathering prenatal acoustic information about parental generosity.
Collapse
|
3
|
Gall GEC, Letherbarrow M, Strandburg-Peshkin A, Radford AN, Madden JR. Exposure to calls before hatching affects the post-hatching behaviour of domestic chickens. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240114. [PMID: 39144491 PMCID: PMC11321849 DOI: 10.1098/rsos.240114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
The soundscape experienced by animals early in life can affect their behaviour later in life. For birds, sounds experienced in the egg can influence how individuals learn to respond to specific calls post-hatching. However, how early acoustic experiences affect subsequent social behaviour remains unknown. Here, we investigate how exposure to maternal 'cluck' calls pre-hatching affects the behaviour of domestic chickens (Gallus gallus domesticus) at 3-5 days and 17-21 days old. We incubated eggs and played cluck calls to half of them. After hatching, we raised chicks in small groups occupying different enclosures. At 3-5 days old, we tested chicks' responses to three stimuli: (i) background sound, (ii) chick calls and (iii) cluck calls. We found that the pre-hatching experience of cluck calls reduced the likelihood of moving in response to all three stimuli. At 17-21 days old, some chicks explored beyond their own enclosure and 'visited' other groups. Chicks exposed to cluck calls before hatching were three times more likely to enter another group's enclosure than control chicks, and this was unaffected by the chicks' social connectedness. Our results indicate age- and context-dependent responses of chicks to pre-hatching cluck-call playbacks, with potential long-term effects on individual social behaviour.
Collapse
Affiliation(s)
- Gabriella E. C. Gall
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for Research in Animal Behaviour (CRAB), Washington Singer Laboratories, University of Exeter, Exeter, UK
| | - Megan Letherbarrow
- Centre for Research in Animal Behaviour (CRAB), Washington Singer Laboratories, University of Exeter, Exeter, UK
| | - Ariana Strandburg-Peshkin
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | | | - Joah R. Madden
- Centre for Research in Animal Behaviour (CRAB), Washington Singer Laboratories, University of Exeter, Exeter, UK
| |
Collapse
|
4
|
Ghazanfar AA, Gomez-Marin A. The central role of the individual in the history of brains. Neurosci Biobehav Rev 2024; 163:105744. [PMID: 38825259 PMCID: PMC11246226 DOI: 10.1016/j.neubiorev.2024.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Every species' brain, body and behavior is shaped by the contingencies of their evolutionary history; these exert pressures that change their developmental trajectories. There is, however, another set of contingencies that shape us and other animals: those that occur during a lifetime. In this perspective piece, we show how these two histories are intertwined by focusing on the individual. We suggest that organisms--their brains and behaviors--are not solely the developmental products of genes and neural circuitry but individual centers of action unfolding in time. To unpack this idea, we first emphasize the importance of variation and the central role of the individual in biology. We then go over "errors in time" that we often make when comparing development across species. Next, we reveal how an individual's development is a process rather than a product by presenting a set of case studies. These show developmental trajectories as emerging in the contexts of the "the actual now" and "the presence of the past". Our consideration reveals that individuals are slippery-they are never static; they are a set of on-going, creative activities. In light of this, it seems that taking individual development seriously is essential if we aspire to make meaningful comparisons of neural circuits and behavior within and across species.
Collapse
Affiliation(s)
- Asif A Ghazanfar
- Princeton Neuroscience Institute, and Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| | - Alex Gomez-Marin
- Behavior of Organisms Laboratory, Instituto de Neurociencias CSIC-UMH, Alicante 03550, Spain.
| |
Collapse
|
5
|
Kraft FLH, Crino OL, Adeniran-Obey SO, Moraney RA, Clayton DF, George JM, Buchanan KL. Parental developmental experience affects vocal learning in offspring. Sci Rep 2024; 14:13787. [PMID: 38877207 PMCID: PMC11178867 DOI: 10.1038/s41598-024-64520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Cultural and genetic inheritance combine to enable rapid changes in trait expression, but their relative importance in determining trait expression across generations is not clear. Birdsong is a socially learned cognitive trait that is subject to both cultural and genetic inheritance, as well as being affected by early developmental conditions. We sought to test whether early-life conditions in one generation can affect song acquisition in the next generation. We exposed one generation (F1) of nestlings to elevated corticosterone (CORT) levels, allowed them to breed freely as adults, and quantified their son's (F2) ability to copy the song of their social father. We also quantified the neurogenetic response to song playback through immediate early gene (IEG) expression in the auditory forebrain. F2 males with only one corticosterone-treated parent copied their social father's song less accurately than males with two control parents. Expression of ARC in caudomedial nidopallium (NCM) correlated with father-son song similarity, and patterns of expression levels of several IEGs in caudomedial mesopallium (CMM) in response to father song playback differed between control F2 sons and those with a CORT-treated father only. This is the first study to demonstrate that developmental conditions can affect social learning and neurogenetic responses in a subsequent generation.
Collapse
Affiliation(s)
- Fanny-Linn H Kraft
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Ondi L Crino
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Raven A Moraney
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - David F Clayton
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Julia M George
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
6
|
Abstract
In recent years, the impact of prenatal sound on development, notably for programming individual phenotypes for postnatal conditions, has increasingly been revealed. However, the mechanisms through which sound affects physiology and development remain mostly unexplored. Here, I gather evidence from neurobiology, developmental biology, cellular biology and bioacoustics to identify the most plausible modes of action of sound on developing embryos. First, revealing often-unsuspected plasticity, I discuss how prenatal sound may shape auditory system development and determine individuals' later capacity to receive acoustic information. I also consider the impact of hormones, including thyroid hormones, glucocorticoids and androgen, on auditory plasticity. Second, I review what is known about sound transduction to other - non-auditory - brain regions, and its potential to input on classical developmental programming pathways. Namely, the auditory pathway has direct anatomical and functional connectivity to the hippocampus, amygdala and/or hypothalamus, in mammals, birds and anurans. Sound can thus trigger both immediate and delayed responses in these limbic regions, which are specific to the acoustic stimulus and its biological relevance. Third, beyond the brain, I briefly consider the possibility for sound to directly affect cellular functioning, based on evidence in earless organisms (e.g. plants) and cell cultures. Together, the multi-disciplinary evidence gathered here shows that the brain is wired to allow multiple physiological and developmental effects of sound. Overall, there are many unexplored, but possible, pathways for sound to impact even primitive or immature organisms. Throughout, I identify the most promising research avenues for unravelling the processes of acoustic developmental programming.
Collapse
Affiliation(s)
- Mylene M Mariette
- Doñana Biological Station EBD-CSIC, 41092 Seville, Spain
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
7
|
Kleindorfer S, Brouwer L, Hauber ME, Teunissen N, Peters A, Louter M, Webster MS, Katsis AC, Sulloway FJ, Common LK, Austin VI, Colombelli-Négrel D. Nestling Begging Calls Resemble Maternal Vocal Signatures When Mothers Call Slowly to Embryos. Am Nat 2024; 203:267-283. [PMID: 38306283 DOI: 10.1086/728105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractVocal production learning (the capacity to learn to produce vocalizations) is a multidimensional trait that involves different learning mechanisms during different temporal and socioecological contexts. Key outstanding questions are whether vocal production learning begins during the embryonic stage and whether mothers play an active role in this through pupil-directed vocalization behaviors. We examined variation in vocal copy similarity (an indicator of learning) in eight species from the songbird family Maluridae, using comparative and experimental approaches. We found that (1) incubating females from all species vocalized inside the nest and produced call types including a signature "B element" that was structurally similar to their nestlings' begging call; (2) in a prenatal playback experiment using superb fairy wrens (Malurus cyaneus), embryos showed a stronger heart rate response to playbacks of the B element than to another call element (A); and (3) mothers that produced slower calls had offspring with greater similarity between their begging call and the mother's B element vocalization. We conclude that malurid mothers display behaviors concordant with pupil-directed vocalizations and may actively influence their offspring's early life through sound learning shaped by maternal call tempo.
Collapse
|
8
|
Huge AC, Adreani NM, Colombelli-Négrel D, Akçay Ç, Common LK, Kleindorfer S. Age effects in Darwin's finches: older males build more concealed nests in areas with more heterospecific singing neighbors. JOURNAL OF ORNITHOLOGY 2023; 165:179-191. [PMID: 38225937 PMCID: PMC10787676 DOI: 10.1007/s10336-023-02093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/27/2023] [Indexed: 01/17/2024]
Abstract
Nesting success tends to increase with age in birds, in part because older birds select more concealed nest sites based on experience and/or an assessment of prevailing predation risk. In general, greater plant diversity is associated with more biodiversity and more vegetation cover. Here, we ask if older Darwin's finch males nest in areas with greater vegetation cover and if these nest sites also have greater avian species diversity assessed using song. We compared patterns in Darwin's Small Tree Finch (Camarhynchus parvulus) and Darwin's Small Ground Finch (Geospiza fuliginosa) as males build the nest in both systems. We measured vegetation cover, nesting height, and con- vs. heterospecific songs per minute at 55 nests (22 C. parvulus, 33 G. fuliginosa). As expected, in both species, older males built nests in areas with more vegetation cover and these nests had less predation. A novel finding is that nests of older males also had more heterospecific singing neighbors. Future research could test whether older males outcompete younger males for access to preferred nest sites that are more concealed and sustain a greater local biodiversity. The findings also raise questions about the ontogenetic and fitness consequences of different acoustical experiences for developing nestlings inside the nest. Supplementary Information The online version contains supplementary material available at 10.1007/s10336-023-02093-5.
Collapse
Affiliation(s)
- Antonia C. Huge
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
| | - Nicolas M. Adreani
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
| | | | - Çağlar Akçay
- Department of Psychology, Koç University, Istanbul, Turkey
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Lauren K. Common
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- College of Science and Engineering, Flinders University, Adelaide, 5001 Australia
| | - Sonia Kleindorfer
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- College of Science and Engineering, Flinders University, Adelaide, 5001 Australia
| |
Collapse
|
9
|
Lefeuvre M, Lu C, Botero CA, Rutkowska J. Variable ambient temperature promotes song learning and production in zebra finches. Behav Ecol 2023; 34:408-417. [PMID: 37192924 PMCID: PMC10183203 DOI: 10.1093/beheco/arad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/23/2023] [Accepted: 02/27/2023] [Indexed: 03/20/2023] Open
Abstract
Current climate change is leading to increasingly unpredictable environmental conditions and is imposing new challenges to wildlife. For example, ambient conditions fluctuating during critical developmental periods could potentially impair the development of cognitive systems and may therefore have a long-term influence on an individual's life. We studied the impact of temperature variability on zebra finch cognition, focusing on song learning and song quality (N = 76 males). We used a 2 × 2 factorial experiment with two temperature conditions (stable and variable). Half of the juveniles were cross-fostered at hatching to create a mismatch between pre- and posthatching conditions, the latter matching this species' critical period for song learning. We found that temperature variability did not affect repertoire size, syllable consistency, or the proportion of syllables copied from a tutor. However, birds that experienced variable temperatures in their posthatching environment were more likely to sing during recordings. In addition, birds that experienced variable prenatal conditions had higher learning accuracy than birds in stable prenatal environments. These findings are the first documented evidence that variable ambient temperatures can influence song learning in zebra finches. Moreover, they indicate that temperature variability can act as a form of environmental enrichment with net positive effects on cognition.
Collapse
Affiliation(s)
- Maëlle Lefeuvre
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Cracow, Poland
| | - ChuChu Lu
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Cracow, Poland
| | - Carlos A Botero
- University of Texas at Austin, Department of Integrative Biology, Austin, TX, USA
| | - Joanna Rutkowska
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland
| |
Collapse
|
10
|
Katsis AC, Bennett AT, Buchanan KL, Kleindorfer S, Mariette MM. Prenatal sound experience affects song preferences in male zebra finches. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
11
|
Faust KM, Goldstein MH. Adult exploration predicts parental responsiveness to juvenile songs in zebra finch parent–juvenile interactions. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
12
|
Morvai B, Fazekas EA, Miklósi Á, Pogány Á. Genetic and Social Transmission of Parental Sex Roles in Zebra Finch Families. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.799996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parental care plays a central, reinforcing role in the evolution of sex roles and its development is often reported to be driven by genetic, rather than environmental effects. Based on these studies, however, genetic inheritance does not account fully for the often-significant phenotypic variability observed within species, a variation that we hypothesized may be explained by social effects from parents. Following a full cross-fostering design, here we aimed at disentangling genetic and social parental effects in the ontogeny of parental behaviours. Clutches of eggs were swapped, and we monitored parental behaviours in two consecutive generations of a captive population of the socially monogamous, biparental zebra finch (Taeniopygia guttata). Using nest box cameras, parental behaviour was recorded for 3 h in two reproductive stages: on day 8 of incubation and day 10 post-hatching. These fostered birds, after becoming fully matured, received a pair randomly and we observed parental care of this second generation too, following the same protocol. We then compared various parental behaviours (such as time spent incubating, or number of nest attendances during offspring provisioning) in the second generation to those of their genetic and social parents. Based on the results of our experiment, both genetic and social effects can contribute to intergenerational transmission of specific parental behaviours, with various weights. However, the strongest and most consistent effect that we found is that of the current mate; a social effect that can manifest both in negative and positive directions, depending on the behavioural trait. Our study suggests context-specific and sexually different genetic, social and non-social environmental effects in the ontogeny of parental sex roles and outline the importance of parental negotiation in explaining individual variation of parental behaviour in biparental species.
Collapse
|
13
|
Edwards HA, Converse SJ, Swan KD, Moehrenschlager A. Trading off hatching success and cost in the captive breeding of Whooping Cranes. Anim Conserv 2021. [DOI: 10.1111/acv.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - S. J. Converse
- U.S. Geological Survey Washington Cooperative Fish and Wildlife Research Unit School of Environmental and Forest Sciences & School of Aquatic and Fishery Sciences University of Washington Seattle Washington USA
| | - K. D. Swan
- The Calgary Zoo Foundation Calgary AB Canada
| | | |
Collapse
|
14
|
Hauber ME, Louder MI, Griffith SC. Neurogenomic insights into the behavioral and vocal development of the zebra finch. eLife 2021; 10:61849. [PMID: 34106827 PMCID: PMC8238503 DOI: 10.7554/elife.61849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The zebra finch (Taeniopygia guttata) is a socially monogamous and colonial opportunistic breeder with pronounced sexual differences in singing and plumage coloration. Its natural history has led to it becoming a model species for research into sex differences in vocal communication, as well as behavioral, neural and genomic studies of imitative auditory learning. As scientists tap into the genetic and behavioral diversity of both wild and captive lineages, the zebra finch will continue to inform research into culture, learning, and social bonding, as well as adaptability to a changing climate.
Collapse
Affiliation(s)
- Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, United States
| | - Matthew Im Louder
- International Research Center for Neurointelligence, University of Tokyo, Tokyo, Japan.,Department of Biology, Texas A&M University, College Station, United States
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
15
|
Mariette MM, Clayton DF, Buchanan KL. Acoustic developmental programming: a mechanistic and evolutionary framework. Trends Ecol Evol 2021; 36:722-736. [PMID: 34052045 DOI: 10.1016/j.tree.2021.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
Conditions experienced prenatally, by modulating developmental processes, have lifelong effects on individual phenotypes and fitness, ultimately influencing population dynamics. In addition to maternal biochemical cues, prenatal sound is emerging as a potent alternative source of information to direct embryonic development. Recent evidence suggests that prenatal acoustic signals can program individual phenotypes for predicted postnatal environmental conditions, which improves fitness. Across taxonomic groups, embryos have now been shown to have immediate adaptive responses to external sounds and vibrations, and direct developmental effects of sound and noise are increasingly found. Establishing the full developmental, ecological, and evolutionary impact of early soundscapes will reveal how embryos interact with the external world, and potentially transform our understanding of developmental plasticity and adaptation to changing environments.
Collapse
Affiliation(s)
- Mylene M Mariette
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3216, Australia.
| | - David F Clayton
- Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, UK
| | | |
Collapse
|
16
|
Antonson ND, Rivera M, Abolins-Abols M, Kleindorfer S, Liu WC, Hauber ME. Early acoustic experience alters genome-wide methylation in the auditory forebrain of songbird embryos. Neurosci Lett 2021; 755:135917. [PMID: 33901611 DOI: 10.1016/j.neulet.2021.135917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023]
Abstract
Early exposure to salient cues can critically shape the development of social behaviors. For example, both oscine birds and humans can hear and learn to recognize familiar sounds in ovo and in utero and recognize them following hatching and birth, respectively. Here we demonstrate that different chronic acoustic playbacks alter genome-wide methylation of the auditory forebrain in late-stage zebra finch (Taeniopygia guttata) embryos. Within the same subjects, immediate early gene activation in response to acute con- or heterospecific song exposure is negatively correlated with methylation extent in response to repeated daily prior exposure to the same type of stimuli. Specifically, we report less relative global methylation following playbacks of conspecific songs and more methylation following playbacks of distantly-related heterospecific songs. These findings offer a neuroepigenomic mechanism for the ontogenetic impacts of early acoustic experiences in songbirds.
Collapse
Affiliation(s)
- N D Antonson
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana, Champaign, IL, 61801, USA
| | - M Rivera
- Department of Psychology, Hunter College and the Graduate Center of the City University of New York, 695 Park Avenue, New York, NY, 10065, USA
| | - M Abolins-Abols
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA
| | - S Kleindorfer
- College of Science and Engineering, Flinders University, Adelaide, South Australia, 5042, Australia; Core facility for Behavioral and Cognitive Biology, University of Vienna, 4645, Austria
| | - W-C Liu
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, 13346, USA
| | - M E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana, Champaign, IL, 61801, USA.
| |
Collapse
|
17
|
Schroeder KM, Remage-Healey L. Adult-like neural representation of species-specific songs in the auditory forebrain of zebra finch nestlings. Dev Neurobiol 2021; 81:123-138. [PMID: 33369121 PMCID: PMC7969438 DOI: 10.1002/dneu.22802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/22/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Encoding of conspecific signals during development can reinforce species barriers as well as set the stage for learning and production of species-typical vocalizations. In altricial songbirds, the development of the auditory system is not complete at hatching, so it is unknown the degree to which recently hatched young can process auditory signals like birdsong. We measured in vivo extracellular responses to song stimuli in a zebra finch (Taeniopygia guttata) secondary auditory forebrain region, the caudomedial nidopallium (NCM). We recorded from three age groups between 13 days post-hatch and adult to identify possible shifts in stimulus encoding that occur before the opening of the sensitive period of song motor learning. We did not find differences in putative cell type composition, firing rate, response strength, and selectivity across ages. Across ages narrow-spiking units had higher firing rates, response strength, accuracy, and trial-by-trial reliability along with lower selectivity than broad-spiking units. In addition, we showed that stimulus-specific adaptation, a characteristic of adult NCM, was also present in nestlings and fledglings. These results indicate that most features of secondary auditory processing are already adult-like shortly after hatching. Furthermore, we showed that selectivity for species-specific stimuli is similar across all ages, with the greatest fidelity in temporal coding in response to conspecific song and domesticated Bengalese finch song, and reduced fidelity in response to owl finch song, a more ecologically relevant heterospecific, and white noise. Our study provides the first evidence that the electrophysiological properties of higher-order auditory neurons are already mature in nestling songbirds.
Collapse
Affiliation(s)
- Katie M. Schroeder
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Luke Remage-Healey
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
18
|
Kalra S, Yawatkar V, James LS, Sakata JT, Rajan R. Introductory gestures before songbird vocal displays are shaped by learning and biological predispositions. Proc Biol Sci 2021; 288:20202796. [PMID: 33468007 PMCID: PMC7893256 DOI: 10.1098/rspb.2020.2796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/21/2020] [Indexed: 11/12/2022] Open
Abstract
Numerous animal displays begin with introductory gestures. For example, lizards start their head-bobbing displays with introductory push-ups, and many songbirds begin their vocal displays by repeating introductory notes (INs) before producing their learned song. Among songbirds, the acoustic structure and the number of INs produced before song vary considerably between individuals in a species. While similar variation in songs between individuals is a result of learning, whether variations in INs are also due to learning remains poorly understood. Here, using natural and experimental tutoring with male zebra finches, we show that mean IN number and IN acoustic structure are learned from a tutor. Interestingly, IN properties and how well INs were learned, were not correlated with the accuracy of song imitation and only weakly correlated with some features of songs that followed. Finally, birds artificially tutored with songs lacking INs still repeated vocalizations that resembled INs, before their songs, suggesting biological predispositions in IN production. These results demonstrate that INs, just like song elements, are shaped both by learning and biological predispositions. More generally, our results suggest mechanisms for generating variation in introductory gestures between individuals while still maintaining the species-specific structure of complex displays like birdsong.
Collapse
Affiliation(s)
- Shikha Kalra
- Division of Biology, Indian Institute of Science Education and Research Pune, Pune, India
| | - Vishruta Yawatkar
- Division of Biology, Indian Institute of Science Education and Research Pune, Pune, India
| | - Logan S James
- Department of Biology, McGill University, Montreal, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Canada
- Centre for Research on Brain, Language and Music, McGill University, Montreal, Canada
| | - Raghav Rajan
- Division of Biology, Indian Institute of Science Education and Research Pune, Pune, India
| |
Collapse
|
19
|
Long-term effects of prenatal sound experience on songbird behavior and their relation to song learning. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02939-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Acoustic Developmental Programming: implications for adaptive plasticity and the evolution of sensitive periods. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Pessato A, McKechnie AE, Buchanan KL, Mariette MM. Vocal panting: a novel thermoregulatory mechanism for enhancing heat tolerance in a desert-adapted bird. Sci Rep 2020; 10:18914. [PMID: 33144650 PMCID: PMC7609653 DOI: 10.1038/s41598-020-75909-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/15/2020] [Indexed: 01/06/2023] Open
Abstract
Animals thriving in hot deserts rely on extraordinary adaptations and thermoregulatory capacities to cope with heat. Uncovering such adaptations, and how they may be favoured by selection, is essential for predicting climate change impacts. Recently, the arid-adapted zebra finch was discovered to program their offspring’s development for heat, by producing ‘heat-calls’ during incubation in hot conditions. Intriguingly, heat-calls always occur during panting; and, strikingly, avian evaporative cooling mechanisms typically involve vibrating an element of the respiratory tract, which could conceivably produce sound. Therefore, we tested whether heat-call emission results from a particular thermoregulatory mechanism increasing the parent’s heat tolerance. We repeatedly measured resting metabolic rate, evaporative water loss (EWL) and heat tolerance in adult wild-derived captive zebra finches (n = 44) at increasing air temperatures up to 44 °C. We found high within-individual repeatability in thermoregulatory patterns, with heat-calling triggered at an individual-specific stage of panting. As expected for thermoregulatory mechanisms, both silent panting and heat-calling significantly increased EWL. However, only heat-calling resulted in greater heat tolerance, demonstrating that “vocal panting” brings a thermoregulatory benefit to the emitter. Our findings therefore not only improve our understanding of the evolution of passerine thermal adaptations, but also highlight a novel evolutionary precursor for acoustic signals.
Collapse
Affiliation(s)
- Anaïs Pessato
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University Geelong, Geelong, VIC, 3216, Australia.
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, 0001, South Africa.,DST-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0001, South Africa
| | - Katherine L Buchanan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University Geelong, Geelong, VIC, 3216, Australia
| | - Mylene M Mariette
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University Geelong, Geelong, VIC, 3216, Australia.
| |
Collapse
|
22
|
O'Hanlon JC, Jones BR, Bulbert MW. The dynamic eggs of the Phasmatodea and their apparent convergence with plants. Naturwissenschaften 2020; 107:34. [PMID: 32737596 DOI: 10.1007/s00114-020-01690-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/28/2022]
Abstract
The egg stages of animal life cycles are underappreciated in terms of their capacity for dispersal, protection, and biotic and abiotic interactions. Some of the most intriguing egg morphologies are seen in stick and leaf insects (Phasmatodea). Phasmids are charismatic insects, particularly due to their incredible camouflage, though a lesser-known fact is that their eggs are incredibly diverse in shape and structure, reflecting varying ecological niches. Perhaps most remarkable are those eggs which appear to resemble plant seeds in both their appearance and means of dispersal, such as via water and animal vectors. Numerous hypotheses surrounding the function of these egg morphologies and their apparent convergence with seeds have been proposed; however, empirical evidence remains lacking. Here, we present an initial synthesis of available evidence surrounding the ecology and dispersal strategies of phasmid eggs and weigh up the evidence for convergent evolution between phasmid eggs and seeds. In doing so, we highlight areas where further research is needed and discuss how the ecology of phasmid eggs may interplay with other aspects of phasmid ecology, distribution, and evolution.
Collapse
Affiliation(s)
- James C O'Hanlon
- School of Environmental and Rural Science, University of New England, Armidale, 2350, Australia.
| | - Braxton R Jones
- Department of Biological Sciences, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia
| | - Matthew W Bulbert
- Department of Biological Sciences, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia
| |
Collapse
|
23
|
|
24
|
James LS, Davies R, Mori C, Wada K, Sakata JT. Manipulations of sensory experiences during development reveal mechanisms underlying vocal learning biases in zebra finches. Dev Neurobiol 2020; 80:132-146. [PMID: 32330360 DOI: 10.1002/dneu.22754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
Biological predispositions in learning can bias and constrain the cultural evolution of social and communicative behaviors (e.g., speech and birdsong), and lead to the emergence of behavioral and cultural "universals." For example, surveys of laboratory and wild populations of zebra finches (Taeniopygia guttata) document consistent patterning of vocal elements ("syllables") with respect to their acoustic properties (e.g., duration, mean frequency). Furthermore, such universal patterns are also produced by birds that are experimentally tutored with songs containing randomly sequenced syllables ("tutored birds"). Despite extensive demonstrations of learning biases, much remains to be uncovered about the nature of biological predispositions that bias song learning and production in songbirds. Here, we examined the degree to which "innate" auditory templates and/or biases in vocal motor production contribute to vocal learning biases and production in zebra finches. Such contributions can be revealed by examining acoustic patterns in the songs of birds raised without sensory exposure to song ("untutored birds") or of birds that are unable to hear from early in development ("early-deafened birds"). We observed that untutored zebra finches and early-deafened zebra finches produce songs with positional variation in some acoustic features (e.g., mean frequency) that resemble universal patterns observed in tutored birds. Similar to tutored birds, early-deafened birds also produced song motifs with alternation in acoustic features across adjacent syllables. That universal acoustic patterns are observed in the songs of both untutored and early-deafened birds highlights the contribution motor production biases to the emergence of universals in culturally transmitted behaviors.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC, Canada.,Centre for Research in Brain, Language and Music, McGill University, Montreal, Quebec, Canada
| | - Ronald Davies
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Chihiro Mori
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC, Canada.,Centre for Research in Brain, Language and Music, McGill University, Montreal, Quebec, Canada.,Center for Studies of Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
25
|
Hudson EJ, Creanza N, Shizuka D. The Role of Nestling Acoustic Experience in Song Discrimination in a Sparrow. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
26
|
Neural activation in response to conspecific songs in zebra finch (Taeniopygia guttata) embryos and nestlings. Neuroreport 2019; 30:217-221. [PMID: 30601425 DOI: 10.1097/wnr.0000000000001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Classic studies on the effects of auditory stimulation in embryonic birds have largely been limited to precocial taxa. In altricial taxa, physiological responses of embryos and, subsequently, the behavioral responses of nestlings have begun to receive increasing attention, yet it remains unclear whether and to what specificity neural responses are generated in ovo. Using in-situ hybridization for an immediate early gene, ZENK, we detected significant neural activation in both the embryos and nestlings of an altricial songbird, the zebra finch (Taeniopygia guttata) when exposed to conspecific song playbacks relative to silence. In turn, embryonic ZENK responses to heterospecific songs were intermediate in strength. These results are consistent with physiological evidence for conspecific song selectivity in embryos of other altricial songbird taxa.
Collapse
|
27
|
Love J, Hoepfner A, Goller F. Song Feature Specific Analysis of Isolate Song Reveals Interspecific Variation in Learned Components. Dev Neurobiol 2019; 79:350-369. [PMID: 31002477 DOI: 10.1002/dneu.22682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 11/05/2022]
Abstract
Studies of avian vocal development without exposure to conspecific song have been conducted in many passerine species, and the resultant isolate song is often interpreted to represent an expression of the genetic code for conspecific song. There is wide recognition that vocal learning exists in oscine songbirds, but vocal learning has only been thoroughly investigated in a few model species, resulting in a narrow view of birdsong learning. By extracting acoustic signals from published spectrograms, we have reexamined the findings of isolate studies with a universally applicable semi-automated quantitative analysis regimen. When song features were analyzed in light of three different production aspects (respiratory, syringeal, and central programming of sequence), all three show marked interspecific variability in how close isolate song features are to normal. This implies that song learning mechanisms are more variable than is commonly recognized. Our results suggest that the interspecific variation shows no readily observable pattern reflecting phylogeny, which has implications for understanding the mechanisms behind the evolution of avian vocal communication. We emphasize that song learning in passerines provides an excellent opportunity to investigate the evolution of a complex, plastic trait from a phylogenetic perspective.
Collapse
Affiliation(s)
- Jay Love
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, Utah, 84112
| | - Amanda Hoepfner
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, Utah, 84112
| | - Franz Goller
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, Utah, 84112.,Institute for Zoophysiology, University of Muenster, Muenster, Germany
| |
Collapse
|
28
|
McDiarmid CS, Naguib M, Griffith SC. Zebra finch v-calls and the evidence for a signal: a response to comments on McDiarmid et al. Behav Ecol 2019. [DOI: 10.1093/beheco/arz046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Callum S McDiarmid
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marc Naguib
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University, WD, Wageningen, The Netherlands
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Kleindorfer S, Evans C, Hauber ME, Colombelli-Négrel D. Could prenatal sound discrimination predict vocal complexity later in life? BMC ZOOL 2018. [DOI: 10.1186/s40850-018-0038-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|