1
|
Geleta D, Abebe G, Tilahun T, Abdissa A, Mihret A, Cataldo RJ, Workneh N, Negash AA, Beyene G. Molecular and clinical insights into extended-spectrum β-lactamase genes of Klebsiella pneumoniae isolated from neonatal sepsis in Ethiopia. BMC Infect Dis 2024; 24:1442. [PMID: 39695444 DOI: 10.1186/s12879-024-10344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Klebsiella bacterial strains harboring Extended-Spectrum Beta-Lactamase (ESBL) enzymes are the primary culprits behind neonatal sepsis globally. These strains significantly impact clinical outcomes due to their multi-drug resistance patterns in local healthcare settings. In response to this spiraling threat, we studied the prevalence and clinical implications of ESBL-encoding genes in neonates hospitalized with confirmed sepsis. METHODS A correlational study was conducted on 51 neonates diagnosed with sepsis caused by ESBL-positive Klebsiella pneumoniae at Jimma Medical Center spanning from May 2022 to July 2023. Antimicrobial resistance profiles of the bacterial isolates were determined using the Kirby-Bauer diffusion test, while multiplex polymerase chain reaction (mPCR) techniques were employed to identify resistance genes. The correlation between resistance genes and treatment outcomes was analyzed using the phi coefficient (φ) with a significance level below 0.05. The data management was executed through the utilization of WHONET and STATA software platforms. RESULTS The sample consisted of 26 (50.9%) male and the remaining 25 (49.1%) female neonates, with diverse clinical characteristics. All 51 Klebsiella pneumoniae isolates were 100% resistant to trimethoprim/sulfamethoxazole and ceftriaxone, but showed varying resistance profiles ranging from 30.8% to meropenem to 94.2% to ceftazidime. Notably, all isolates demonstrated multidrug resistance, with 23% of cases showing resistance to seven different antimicrobial classes. The most prevalent resistance genes identified were blaCTX-M (96.1%), blaTEM (94.1%), and blaSHV (88.2%). The majority of isolates (94.1%) carried at least two resistance genes, such as blaTEM and blaCTX (94.1%), blaTEM and blaSHV (86.2%), and blaCTX and blaSHV (86.2%). Notably, 84.3% of the bacteria harbored the trio of blaTEM, blaCTX, and blaSHV resistance genes, and only the presence of blaSHV in monogenic (φ = 0.4, P = 0.01) or the trio of blaTEM, blaCTX, and blaSHV genes (φ = 0.3, P = 0.02) showed positive correlation with neonatal mortality. CONCLUSION We observed a significant prevalence of multidrug-resistant Klebsiella pneumoniae strains among neonates. Moreover, ESBL-resistance genes were widespread, with the blaSHV gene showing a correlation with increased neonatal mortality. These findings emphasize the urgent need for enhanced infection prevention measures, robust antimicrobial resistance surveillance, innovative treatment strategies, antibiotic stewardship initiatives, further research into resistance transfer mechanisms as well as hierarchical predictors of neonatal mortality. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Daniel Geleta
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia.
| | - Gemeda Abebe
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia
| | - Tsion Tilahun
- Department of Pediatrics and Child Health, Faculty of Medicine, Jimma University, Jimma, Oromia, Ethiopia
| | | | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Netsanet Workneh
- Department of Health Behavior and Society, Public Health Faculty, Jimma University, Jimma, Oromia, Ethiopia
| | | | - Getenet Beyene
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia
| |
Collapse
|
2
|
Somda NS, Nyarkoh R, Kotey FCN, Tetteh-Quarcoo PB, Donkor ES. A systematic review and meta-analysis of carbapenem-resistant Enterobacteriaceae in West Africa. BMC Med Genomics 2024; 17:267. [PMID: 39533268 PMCID: PMC11555847 DOI: 10.1186/s12920-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In Africa, the problem of carbapenem-resistant Enterobacteriaceae (CRE) is aggravated by many factors. This systematic review attempted to describe the current status of the molecular epidemiology of carbapenem resistance in West Africa (WA). METHODS Articles published from 16 West African countries on the molecular epidemiology of carbapenem resistance were reviewed. An extensive literature search was carried out in PubMed, Scopus, Web of Science, and African Journals Online (AJOL) using specific keywords. The meta-analysis and forest plots of major pathogens and carbapenem resistance genes were done using the Open Meta-Analyst, Task Order # 2 software. The data were analysed in binary random model effects by the DerSimonian-Laird method at a 95% confidence interval. RESULTS Of the 431 articles found in our initial search, 60 (13.92%) were considered suitable for inclusion. Only seven of the 16 West African countries formed part of the analysis, Nigeria (23/60), Ghana (19/60), Burkina Faso (7/60), Senegal (6/60), Benin (2/60), Mali (2/60), and Togo (1/60). Also, 80% (48/60) of the studies used clinical samples, 16.67% (10/60) used environmental samples, and 3.33% (2/60) used animal samples. The average prevalence was highest in Acinetobacter baumannii (18.6%; 95% CI = 14.0-24.6, I2 = 97.9%, p < 0.001), followed by Pseudomonas aeruginosa (6.5%; 95% CI = 3.1-13.4, I2 = 96.52%, p < 0.001), Klebsiella pneumoniae (5.8%; 95% CI = 4.2-7.9, I2 = 98.06%, p < 0.001) and Escherichia coli (4.1%; 95% CI = 2.2-7.7, I2 = 96.68%, p < 0.001). The average prevalence of the blaNDM gene was 10.6% (95% CI = 7.9-14.3, I2 = 98.2%, p < 0.001), followed by 3.9% (95% CI: 1.8-8.3, I2 = 96.73%, p < 0.001) for blaVIM and 3.1% (95% CI: 1.7-5.8, I2 = 91.69%, p < 0.001) for blaOXA-48. CONCLUSION In West Africa, K. pneumoniae, E. coli, A. baumannii, and P. aeruginosa are the main CRE with blaNDM, blaVIM, and blaOXA-48 being the predominant carbapenem resistance genes. In view of these results, ongoing CRE surveillance combined with antimicrobial stewardship improved, laboratory detection methods, and adherence to infection control practices will be needed to control the spread of CRE.
Collapse
Affiliation(s)
- Namwin Siourimè Somda
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Rabbi Nyarkoh
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Fleischer C N Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Patience B Tetteh-Quarcoo
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana.
| |
Collapse
|
3
|
Goodwin PH, Hsiang T. Cell-Free Extracts of the Ginseng Soil Bacterium Pseudomonas plecoglossicida Promote Suppression of Resistance of American Ginseng ( Panax quinquefolius) to Root Rot Caused by Ilyonectria mors-panacis. BIOLOGY 2024; 13:671. [PMID: 39336098 PMCID: PMC11428298 DOI: 10.3390/biology13090671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024]
Abstract
A prior report showed that soil previously planted with American ginseng (Panax quinquefolius) contained compound(s) which could reduce ginseng resistance to root infection by Ilyonectria mors-panacis, and this was not found in extracts from ginseng roots or soils not previously planted with ginseng. However, the origin of this ginseng-related factor in ginseng soils is unknown. An isolate of Pseudomonas plecoglossicida obtained from soil where P. quinquefolius had been harvested grew more in culture media when ginseng root extract was included, indicating the use of compounds in the extract as nutrients. Treatment with cell-free extracts from media containing ginseng root extracts where P. plecoglossicida had been cultured resulted in root lesions caused by I. mors-panacis being significantly larger than roots treated with fresh media containing root extract or with cell-free media inoculated with the same bacterial isolate without root extract. Levels of ginsenosides in the media decreased over time with incubation. Genome sequencing revealed that the bacterium had genes homologous to those reported for ginsenoside metabolism, which can release sugars for microbial growth. Thus, a ginseng soil bacterium, P. plecoglossicida, can create compound(s) suppressive to root rot resistance, similar to that found in soils previously planted with ginseng, indicating that the activity suppressing root rot resistance in soil previously planted with ginseng may be of microbial origin, utilizing compounds from ginseng roots.
Collapse
Affiliation(s)
- Paul H Goodwin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Oyelade AA, Ikhimiukor OO, Nwadike BI, Fagade OE, Adelowo OO. Assessing the risk of exposure to antimicrobial resistance at public beaches: Genome-based insights into the resistomes, mobilomes and virulomes of beta-lactams resistant Enterobacteriaceae from recreational beaches in Lagos, Nigeria. Int J Hyg Environ Health 2024; 258:114347. [PMID: 38492327 DOI: 10.1016/j.ijheh.2024.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/18/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
The role of recreational water use in the acquisition and transmission of antimicrobial resistance (AMR) is under-explored in low- and middle-income countries (LMICs). We used whole genome sequence analysis to provide insights into the resistomes, mobilomes and virulomes of 14 beta-lactams resistant Enterobacterales isolated from water and wet-sand at four recreational beaches in Lagos, Nigeria. Carriage of multiple beta-lactamase genes was detected in all isolates except two, including six isolates carrying blaNDM-1. Most detected antibiotic resistance genes (ARGs) were located within a diverse landscape of plasmids, insertion sequences and transposons including the presence of ISKpn14 upstream of blaNDM-1 in a first report in Africa. Virulence genes involved in adhesion and motility as well as secretion systems are particularly abundant in the genomes of the isolates. Our results confirmed the four beaches are contaminated with bacteria carrying clinically relevant ARGs associated with mobile genetic elements (MGE) which could promote the transmission of ARGs at the recreational water-human interface.
Collapse
Affiliation(s)
- Abolade A Oyelade
- New Jersey Department of Health, Public Health and Environmental Laboratories, New Jersey, USA
| | - Odion O Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, New York, USA
| | - Blessing I Nwadike
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Obasola E Fagade
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Olawale O Adelowo
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
5
|
Yoon C, Lee Y. Emerging of multidrug-resistant Pseudomonas guariconensis with bla VIM-2 in an asymptomatic bacteriuria patient: A rare clinical presentation. Diagn Microbiol Infect Dis 2024; 108:116182. [PMID: 38215518 DOI: 10.1016/j.diagmicrobio.2024.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
This case presents the clinical and genomic aspects of a rare and multidrug-resistant Pseudomonas guariconensis isolate carrying blaVIM-2 and highlights the need for heightened awareness in healthcare facilities. A 63-year-old woman underwent surgery for the diagnosis of a paraspinal abscess and infectious spondylitis. During hospitalization, the patient was diagnosed with heart failure exacerbation. The patient had no symptoms of urinary tract infection and met the criteria for asymptomatic bacteriuria. In urine culture, colonies of the organism grew >105 CFU/mL on blood agar and on MacConkey agar. The Bruker Biotyper mass spectrometry showed P. guariconensis. Based on the 16S rRNA gene sequence showed that a 99.79 % match with as P. guariconensis LMG 27394T. The average nucleotide identity with P. guariconensis LMG 27394T was 91.53 %. Antimicrobial susceptibility testing showed that the isolate was not susceptible to most of the antibiotics. Antimicrobial resistance genes identified were aph(6)-Id, aph(3″)-Ib, aac(6')-Ib3, aac(3)-If, gyrA mutation (T83I) and blaVIM-2.
Collapse
Affiliation(s)
- Choseok Yoon
- Department of Internal Medicine, Hanyang University Seoul Hospital, Hanyang University of College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Yangsoon Lee
- Department of Laboratory medicine, Hanyang University of College of Medicine, South Korea.
| |
Collapse
|
6
|
Moseley EJ, Zhang JC, Williams OM. Pseudomonas guariconensis Necrotizing Fasciitis, United Kingdom. Emerg Infect Dis 2024; 30:185-187. [PMID: 38147508 PMCID: PMC10756353 DOI: 10.3201/eid3001.231192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
We describe a case of necrotizing fasciitis in the United Kingdom in which Pseudomonas guariconensis was isolated from multiple blood culture and tissue samples. The organism carried a Verona integron-encoded metallo-β-lactamase gene and evidence of decreased susceptibility to β-lactam antimicrobial agents. Clinicians should use caution when treating infection caused by this rare pathogen.
Collapse
|
7
|
Proteus mirabilis isolated from untreated hospital wastewater, Ibadan, Southwestern Nigeria showed low-level resistance to fluoroquinolone and carried qnrD3 on Col3M plasmids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47158-47167. [PMID: 36735119 DOI: 10.1007/s11356-023-25618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Untreated wastewater emanating from healthcare facilities are risk factors for the spread of antimicrobial resistance (AMR) at the human-environment interface. In this study, we investigated the determinants of resistance in three multidrug resistant strains of Proteus mirabilis isolated from untreated wastewater collected from three government owned hospitals in Ibadan, Nigeria. Despite showing low-level resistance to ciprofloxacin, whole genome sequencing revealed the transferable mechanism of quinolone resistance (TMQR) gene qnrD3 carried on Col3M plasmids in all the isolates. Core genome phylogenetic analysis showed the isolates are closely related differing from each other by ≤ 23 single nucleotide polymorphisms (SNP). Further, they shared the closest evolutionary relationship with isolates from China. Similarly, the Col3M plasmids is most closely related to p3M-2A found in P. vulgaris 3 M isolated from the intestine of shrimps in China. This to the best of our knowledge is the first report of Col3M plasmids carrying qnrD3 in environmental bacterial isolates. Our results indicate a possible silent spread of this important plasmid associated with the dissemination of qnrD3 in Nigeria, and further highlights the important role played by untreated wastewater from healthcare facilities in the spread of AMR in low- and middle-income countries.
Collapse
|
8
|
Tula MY, Enabulele OI, Ophori EA, Aziegbemhin AS, Iyoha O, Filgona J. A systematic review of the current status of carbapenem resistance in Nigeria: Its public health implication for national intervention. Niger Postgrad Med J 2023; 30:1-11. [PMID: 36814157 DOI: 10.4103/npmj.npmj_240_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Carbapenem antibiotics are considered one of the most effective and the last-resort antibiotics for the treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, with the advent of carbapenem resistance, it becomes obvious that quality health-care delivery will be hampered if adequate measure is not put in place. This review assessed the prevalence of carbapenem-resistant Gram-negative bacteria (CR-GNB) and also provided an up-to-date position on carbapenem resistance (CR) in Nigeria. Three electronic databases (Google Scholar, PubMed and African Journal online) were searched for relevant literatures, and 38 articles published between January 2013 and June 2022 that met the criteria for inclusion were recruited into the study. The mean prevalence of CR in Nigeria stands at 21.3%, with the southern and northern regions documenting a mean prevalence of 22.0% and 20.9%, respectively. Most of the reviewed articles were from clinical settings (81.6%), with urine samples (38.7%) constituting the most prevalent clinical sample in which CR-GNB were detected. The preponderance of phenotypic methods (55.3%) over molecular method (44.7%), particularly the use of disk diffusion test breakpoint and Modified Hodge test was documented. The most prevalent carbapenem-resistant bacteria were Escherichia coli (50.0%) and Klebsiella pneumoniae (26.3%). The blaNDM and blaVIM were the major reported carbapenemase-encoded genes, particularly among E. coli, K. pneumoniae and Pseudomonas species. This systematic review revealed a mean prevalence of CR-GNB in Nigeria that required urgent attention. Furthermore, the detection of clinically and epidemiologically important carbapenemase coding genes is of public health importance.
Collapse
Affiliation(s)
- Musa Yakubu Tula
- Department of Biological Science Technology, Federal Polytechnic, Mubi, Adamawa State, Nigeria
| | - Onaiwu Idahosa Enabulele
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin City, Edo State, Nigeria
| | - Endurance Anthony Ophori
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin City, Edo State, Nigeria
| | | | - Osaretin Iyoha
- Department of Medical Microbiology, School of Medicine, College of Medical Sciences, University of Benin Teaching Hospital, Benin City, Edo State, Nigeria
| | - Joel Filgona
- Department of Microbiology, Adamawa State University, Mubi, Adamawa State, Nigeria
| |
Collapse
|
9
|
Jesumirhewe C, Springer B, Allerberger F, Ruppitsch W. Genetic Characterization of Antibiotic Resistant Enterobacteriaceae Isolates From Bovine Animals and the Environment in Nigeria. Front Microbiol 2022; 13:793541. [PMID: 35283848 PMCID: PMC8916115 DOI: 10.3389/fmicb.2022.793541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
There is a link between antibiotic resistance in humans, livestock and the environment. This study was carried out to characterize antibiotic resistant bovine and environmental Enterobacteriaceae isolates from Edo state, Nigeria. A total of 109 consecutive isolates of Enterobacteriaceae were isolated from March–May 2015 from 150 fecal samples of healthy bovine animals from three farms at slaughter in Edo state Nigeria. Similarly, 43 Enterobacteriaceae isolates were also obtained from a total of 100 environmental samples from different sources. Isolates were recovered and identified from samples using standard microbiological techniques. Recovered isolates were pre-identified by the Microbact Gram-Negative identification system and confirmed with Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and ribosomal multilocus sequence typing (rMLST). Antibiotic susceptibility testing was carried out by Kirby-Bauer method for 14 antibiotics. Whole genome sequencing (WGS) was carried out for isolate characterization and identification of resistance determinants. Out of 109 animal and 43 environmental Enterobacteriaceae isolates, 18 (17%) and 8 (19%) isolates based on selection criteria showed antibiotic resistance and were further investigated by whole genome sequencing (WGS). Resistance genes were detected in all (100%) of the resistant bovine and environmental Enterobacteriaceae isolates. The resistance determinants included β-lactamase genes, aminoglycoside modifying enzymes, qnr genes, sulfonamide, tetracycline and trimethoprim resistance genes, respectively. Out of the 18 and 8 resistant animal and environmental isolates 3 (17%) and 2 (25%) were multidrug resistant (MDR) and had resistance determinants which included efflux genes, regulatory systems modulating antibiotic efflux and antibiotic target alteration genes. Our study shows the dissemination of antibiotic resistance especially MDR strains among Nigerian bovine and environmental Enterobacteriaceae isolates. The presence of these resistant strains in animals and the environment constitute a serious health concern indicated by the difficult treatment options of the infections caused by these organisms. To the best of our knowledge we report the first detailed genomic characterization of antibiotic resistance in bovine and environmental Enterobacteriaceae isolates for Nigeria.
Collapse
Affiliation(s)
- Christiana Jesumirhewe
- Department of Pharmaceutical Microbiology, Prof Dora Akunyili College of Pharmacy, Igbinedion University, Okada, Nigeria
- *Correspondence: Christiana Jesumirhewe,
| | - Burkhard Springer
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Franz Allerberger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
10
|
Awosile BB, Agbaje M, Adebowale O, Kehinde O, Omoshaba E. Beta-lactamase resistance genes in Enterobacteriaceae from Nigeria. Afr J Lab Med 2022; 11:1371. [PMID: 35282396 PMCID: PMC8905388 DOI: 10.4102/ajlm.v11i1.1371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
Background Beta-lactamase genes are one of the most important groups of antimicrobial resistance genes in human and animal health. Therefore, continuous surveillance of this group of resistance genes is needed for a better understanding of the local epidemiology within a country and global dissemination. Aim This review was carried out to identify different beta-lactamase resistance genes reported in published literature from Nigeria. Methods Systematic review and meta-analysis was carried out on eligible Nigerian articles retrieved from electronic literature searches of PubMed®, African Journals Online, and Google Scholar published between January 1990 and December 2019. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses method was adopted to facilitate clarity and transparency in reporting review findings. Results Fifty-seven articles were included. All beta-lactamases reported were detected from Gram-negative bacteria, particularly from Enterobacteriaceae. Thirty-six different beta-lactamase genes were reported in Nigeria. These genes belong to the narrow-spectrum, AmpC, extended-spectrum and carbapenemase beta-lactamase resistance genes. The pooled proportion estimate of extended-spectrum beta-lactamase genes in Nigeria was 31% (95% confidence interval [CI]: 26% – 36%, p < 0.0001), while the estimate of the blaCTX-M-15 gene in Nigeria was 46% (95% CI: 36% – 57%, p < 0.0001). The proportion estimate of AmpC genes was 32% (95% CI: 11% – 52%, p < 0.001), while the estimate for carbapenemases was 8% (95% CI: 5% – 12%, p < 0.001). Conclusion This study provides information on beta-lactamase distribution in Nigeria. This is necessary for a better understanding of molecular epidemiology of clinically important beta-lactamases, especially the extended-spectrum beta-lactamases and carbapenemases in Nigeria.
Collapse
Affiliation(s)
- Babafela B Awosile
- Texas Tech University School of Veterinary Medicine, Amarillo, Texas, United States
| | - Michael Agbaje
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oluwawemimo Adebowale
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olugbenga Kehinde
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ezekiel Omoshaba
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
11
|
Olaniran OB, Adeleke OE, Donia A, Shahid R, Bokhari H. Incidence and Molecular Characterization of Carbapenemase Genes in Association with Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa from Tertiary Healthcare Facilities in Southwest Nigeria. Curr Microbiol 2021; 79:27. [PMID: 34905085 DOI: 10.1007/s00284-021-02706-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa, resistant to multiple antibacterial agents including carbapenems, is of great global public health concern. There is limited data available regarding incidence of Metallo-Beta Lactamase producing P. aeruginosa, their molecular basis of resistance in particular carbapenem resistance and any genetic relatedness among circulating clinical isolates in Southwest Nigeria. Four hundred and thirty P. aeruginosa isolates were collected from seven tertiary care hospitals (predominantly from wound, ear, and urinary tract infections) and verified by PCR targeting oprI and oprL. Antibiotic susceptibility using 16 selected antibiotics and MBL screening was performed. The integrons (class 1, 2 and 3) and carbapenemase genes- blaGES, blaNMC-A, blaBIC-1, blaSME, blaIMP, blaVIM, blaSPM, blaNDM, blaAIM, blaDIM, blaSIM, blaGIM, blaOXA-48, blaOXA-58 were detected by PCR and were sequenced. Quantitative real-time polymerase chain reaction was used to quantify expression levels of eight efflux pump genes, ampC cephalosporinase and outer membrane porin, oprD. The isolates were genotyped using Enterobacterial Repetitive Intergenic Consensus sequence Polymerase Chain Reaction (ERIC-PCR). Four hundred and thirty P. aeruginosa isolates were subjected to antibiotic susceptibility testing, revealing that 109 (25.4%) isolates were multidrug-resistant, 47 (10.9%) were extensively drug-resistant and 25 (5.8%) were pandrug-resistant. MBL was seen in 17.0% (73/430) isolates. MBL-encoding genes; blaVIM-5 and blaNDM-1 were detected in 86.3% (63/73) isolates, with blaVIM-5 and blaNDM-1 in 35.6% (26/73) and 38.4% (28/73), respectively, whereas co-occurrence of blaVIM-5 and blaNDM-1 was found in 12.3% (9/73). Forty-one (56.2%) carbapenem-resistant P. aeruginosa strains carried class 1 integrons, while co-occurrence of class 1 and 2 integrons was seen in 12.3%. qPCR results indicated that MexXY-OprM was highly expressed pump in 58.9%, ampC upregulated in 26.0%, while oprD porin was downregulated in 65.8% isolates. ERIC-PCR results suggest that carbapenem-resistant strains exhibit genetic heterogeneity. The high incidence of MBL-encoding genes and integrons in diversified clinical P. aeruginosa from southwestern Nigeria is of great concern. The co-occurrence of blaVIM-5 and blaNDM-1 as well as resistance in general manifesting a gradient based on genotypic variation suggests that there is a strong need for efficient surveillance programs and antibiotic stewardship.
Collapse
Affiliation(s)
- Oluwatoyin B Olaniran
- Department of Pharmaceutical Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Olufemi E Adeleke
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Ahmed Donia
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Habib Bokhari
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
- Kohsar University Murree, Murree, Pakistan.
| |
Collapse
|
12
|
Ragheb SM, Govinden U, Osei Sekyere J. Genetic support of carbapenemases: a One Health systematic review and meta-analysis of current trends in Africa. Ann N Y Acad Sci 2021; 1509:50-73. [PMID: 34753206 DOI: 10.1111/nyas.14703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
Antimicrobial resistance (AMR) is a public health threat globally. Carbapenems are β-lactam antibiotics used as last-resort agents for treating antibiotic-resistant infections. Mobile genetic elements (MGEs) play an important role in the dissemination and expression of antimicrobial resistance genes (ARGs), including the mobilization of ARGs within and between species. The presence of MGEs around carbapenem-hydrolyzing enzymes, called carbapenemases, in bacterial isolates in Africa is concerning. The association between MGEs and carbapenemases is described herein. Specific plasmid replicons, integrons, transposons, and insertion sequences were found flanking specific and different carbapenemases across the same and different clones and species isolated from humans, animals, and the environment. Notably, similar genetic contexts have been reported in non-African countries, supporting the importance of MGEs in driving the intra- and interclonal and species transmission of carbapenemases in Africa and globally. Technical and budgetary limitations remain challenges for epidemiological analysis of carbapenemases in Africa, as studies undertaken with whole-genome sequencing remained relatively few. Characterization of MGEs in antibiotic-resistant infections can deepen our understanding of carbapenemase epidemiology and facilitate the control of AMR in Africa. Investment in genomic epidemiology will facilitate faster clinical interventions and containment of outbreaks.
Collapse
Affiliation(s)
- Suzan Mohammed Ragheb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Usha Govinden
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - John Osei Sekyere
- Department of Microbiology & Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana.,Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
13
|
Tickler IA, Shettima SA, Dela Cruz CM, Le VM, Dewell S, Sumner J, Tenover FC. Characterization of carbapenem-resistant gram-negative bacterial isolates from Nigeria by whole genome sequencing. Diagn Microbiol Infect Dis 2021; 101:115422. [PMID: 34111650 DOI: 10.1016/j.diagmicrobio.2021.115422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023]
Abstract
This study characterized the mechanisms of carbapenem resistance in gram-negative bacteria isolated from patients in Yola, Nigeria. Whole genome sequencing (WGS) was performed on 66 isolates previously identified phenotypically as carbapenem-non-susceptible. The patterns of beta-lactamase resistance genes identified were primarily species-specific. However, blaNDM-7 and blaCMY-4 were detected in all Escherichia coli and most Providencia rettgeri isolates; blaNDM-7 was also detected in 1 Enterobacter cloacae. The E. coli and E. cloacae isolates also shared blaOXA-1, while blaOXA-10 was found in all P. rettgeri, one Pseudomonas aeruginosa and 1 E. coli. Except for Stenotrophomonas maltophilia isolates, which only contained blaL1, most species carried multiple beta-lactamase genes, including those encoding extended-spectrum beta-lactamases, AmpC and OXA in addition to a carbapenemase gene. Carbapenemase genes were either class B or class D beta-lactamases. No carbapenemase gene was detected by WGS in 13.6% of isolates.
Collapse
|
14
|
Cherak Z, Loucif L, Moussi A, Rolain JM. Carbapenemase-producing Gram-negative bacteria in aquatic environments: a review. J Glob Antimicrob Resist 2021; 25:287-309. [PMID: 33895415 DOI: 10.1016/j.jgar.2021.03.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance is one of the greatest public-health challenges worldwide, especially with regard to Gram-negative bacteria (GNB). Carbapenems are the β-lactam antibiotics of choice with the broadest spectrum of activity and, in many cases, are the last-resort treatment for several bacterial infections. Carbapenemase-encoding genes, mainly carried by mobile genetic elements, are the main mechanism of resistance against carbapenems in GNB. These enzymes exhibit a versatile hydrolytic capacity and confer resistance to most β-lactam antibiotics. After being considered a clinical issue, increasing attention is being giving to the dissemination of such resistance mechanisms in the environment and especially through water. Aquatic environments are among the most significant microbial habitats on our planet, known as a favourable medium for antibiotic gene transfer, and they play a crucial role in the huge spread of drug resistance in the environment and the community. In this review, we present current knowledge regarding the spread of carbapenemase-producing isolates in different aquatic environments, which may help the implementation of control and prevention strategies against the spread of such dangerous resistant agents in the environment.
Collapse
Affiliation(s)
- Zineb Cherak
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Département de Microbiologie et de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algeria.
| | - Abdelhamid Moussi
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France; and Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
15
|
Olowo-okere A, Ibrahim YKE, Ehinmidu JO, Mohammed Y, Nabti LZ, Olayinka BO. Emergence of VIM metallo-β-lactamase among carbapenem-resistant Pseudomonas species in northwest Nigeria. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Wide spread of carbapenemase-producing bacterial isolates in a Nigerian environment. J Glob Antimicrob Resist 2020; 21:321-323. [DOI: 10.1016/j.jgar.2019.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 11/22/2022] Open
|
17
|
High Level of Resistance to Antimicrobials and Heavy Metals in Multidrug-Resistant Pseudomonas sp. Isolated from Water Sources. Curr Microbiol 2020; 77:2694-2701. [DOI: 10.1007/s00284-020-02052-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/23/2020] [Indexed: 01/11/2023]
|
18
|
Lopez NV, Farsar CJ, Harmon DE, Ruiz C. Urban and agricultural soils in Southern California are a reservoir of carbapenem-resistant bacteria. Microbiologyopen 2020; 9:1247-1263. [PMID: 32246583 PMCID: PMC7294306 DOI: 10.1002/mbo3.1034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/01/2023] Open
Abstract
Carbapenems are last‐resort β‐lactam antibiotics used in healthcare facilities to treat multidrug‐resistant infections. Thus, most studies on identifying and characterizing carbapenem‐resistant bacteria (CRB) have focused on clinical settings. Relatively, little is still known about the distribution and characteristics of CRBs in the environment, and the role of soil as a potential reservoir of CRB in the United States remains unknown. Here, we have surveyed 11 soil samples from 9 different urban or agricultural locations in the Los Angeles–Southern California area to determine the prevalence and characteristics of CRB in these soils. All samples tested contained CRB with a frequency of <10 to 1.3 × 104 cfu per gram of soil, with most agricultural soil samples having a much higher relative frequency of CRB than urban soil samples. Identification and characterization of 40 CRB from these soil samples revealed that most of them were members of the genera Cupriavidus, Pseudomonas, and Stenotrophomonas. Other less prevalent genera identified among our isolated CRB, especially from agricultural soils, included the genera Enterococcus, Bradyrhizobium, Achromobacter, and Planomicrobium. Interestingly, all of these carbapenem‐resistant isolates were also intermediate or resistant to at least 1 noncarbapenem antibiotic. Further characterization of our isolated CRB revealed that 11 Stenotrophomonas, 3 Pseudomonas, 1 Enterococcus, and 1 Bradyrhizobium isolates were carbapenemase producers. Our findings show for the first time that both urban and agricultural soils in Southern California are an underappreciated reservoir of bacteria resistant to carbapenems and other antibiotics, including carbapenemase‐producing CRB.
Collapse
Affiliation(s)
- Nicolas V. Lopez
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Cameron J. Farsar
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Dana E. Harmon
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Cristian Ruiz
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| |
Collapse
|
19
|
Adelowo OO, Ikhimiukor OO, Knecht C, Vollmers J, Bhatia M, Kaster AK, Müller JA. A survey of extended-spectrum beta-lactamase-producing Enterobacteriaceae in urban wetlands in southwestern Nigeria as a step towards generating prevalence maps of antimicrobial resistance. PLoS One 2020; 15:e0229451. [PMID: 32130234 PMCID: PMC7055906 DOI: 10.1371/journal.pone.0229451] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/06/2020] [Indexed: 01/30/2023] Open
Abstract
In many countries, emission of insufficiently treated wastewater into water bodies appears to be an important factor in spreading clinically relevant antimicrobial resistant bacteria. In this study, we looked for the presence of Enterobacteriaceae strains with resistance to 3rd generation cephalosporin antibiotics in four urban wetlands in southwestern Nigeria by isolation, whole genome sequencing and qPCR enumeration of marker genes. Genome analysis of multi-drug resistant and potentially pathogenic Escherichia coli isolates (members of the widely distributed ST10 complex) revealed the presence of the extended spectrum beta-lactamase gene blaCTX-M-15 on self-transmissible IncF plasmids. The gene was also present together with a blaTEM-1B gene on self-transmissible IncH plasmids in multi-drug resistant Enterobacter cloacae isolates. A Citrobacter freundii isolate carried blaTEM-1B on an IncR-type plasmid without discernable conjugation apparatus. All strains were isolated from a wetland for which previous qPCR enumeration of marker genes, in particular the ratio of intI1 to 16S rRNA gene copy numbers, had indicated a strong anthropogenic impact. Consistent with the isolation origin, qPCR analysis in this study showed that the blaCTX-M gene was present at an abundance of 1x10-4 relative to bacterial 16S rRNA gene copy numbers. The results indicate that contamination of these urban aquatic ecosystems with clinically relevant antibiotic resistant bacteria is substantial in some areas. Measures should therefore be put in place to mitigate the propagation of clinically relevant antimicrobial resistance within the Nigerian aquatic ecosystems.
Collapse
Affiliation(s)
- Olawale Olufemi Adelowo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
- * E-mail: , (OOA); (JAM)
| | - Odion Osebhahiemen Ikhimiukor
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Camila Knecht
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Otto-von-Guericke-Universität Magdeburg—Institute of Apparatus and Environmental Technology, Magdeburg, Germany
| | - John Vollmers
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Mudit Bhatia
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Anne-Kirstin Kaster
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jochen A. Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- * E-mail: , (OOA); (JAM)
| |
Collapse
|
20
|
Mandal M, Das SN, Mandal S. Principal component analysis exploring the association between antibiotic resistance and heavy metal tolerance of plasmid-bearing sewage wastewater bacteria of clinical relevance. Access Microbiol 2020; 2:acmi000095. [PMID: 32974572 PMCID: PMC7470316 DOI: 10.1099/acmi.0.000095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/02/2020] [Indexed: 12/31/2022] Open
Abstract
This paper unravels the occurrence of plasmid-mediated antibiotic resistance in association with tolerance to heavy metals among clinically relevant bacteria isolated from sewage wastewater. The bacteria isolated were identified following conventional phenotypic and/or molecular methods, and were subjected to multiple-antibiotic resistance (MAR) profiling. The isolates were tested against the heavy metals Hg2+, Cd2+, Cr2+ and Cu2+. SDS-PAGE and agarose gel electrophoretic analyses were performed, respectively, for the characterization of heavy metal stress protein and R-plasmid among the isolated bacteria. Principal component analysis was applied in determining bacterial resistance to antibiotics and heavy metals. Both lactose-fermenting ( Escherichia coli ) and non-fermenting ( Acinetobacter baumannii and Pseudomonas putida ) Gram-negative bacterial strains were procured, and showed MAR phenotypes with respect to three or more antibiotics, along with resistance to the heavy metals Hg2+, Cd2+, Cr2+ and Cu2+. The Gram-positive bacteria, Enterococcus faecalis , isolated had 'ampicillin-kanamycin-nalidixic acid' resistance. The bacterial isolates had MAR indices of 0.3-0.9, indicating their ( E. faecalis , E. coli , A. baumannii and P. putida ) origin from niches with high antibiotic pollution and human faecal contamination. The Gram-negative bacteria isolated contained a single plasmid (≈54 kb) conferring multiple antibiotic resistance, which was linked to heavy metal tolerance; the SDS-PAGE analysis demonstrated the expression of heavy metal stress proteins (≈59 and ≈10 kDa) in wastewater bacteria with a Cd2+ stressor. The study results grant an insight into the co-occurrence of antibiotic resistance and heavy metal tolerance among clinically relevant bacteria in sewage wastewater, prompting an intense health impact over antibiotic usage.
Collapse
Affiliation(s)
- Manisha Mandal
- Department of Physiology, MGM Medical College and LSK Hospital, Kishanganj-855107, India
| | | | - Shyamapada Mandal
- Department of Zoology, University of Gour Banga, Malda-732103, India
- *Correspondence: Shyamapada Mandal,
| |
Collapse
|
21
|
Quintieri L, Fanelli F, Caputo L. Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies. Foods 2019; 8:E372. [PMID: 31480507 PMCID: PMC6769999 DOI: 10.3390/foods8090372] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/14/2023] Open
Abstract
Microbial multidrug resistance (MDR) is a growing threat to public health mostly because it makes the fight against microorganisms that cause lethal infections ever less effective. Thus, the surveillance on MDR microorganisms has recently been strengthened, taking into account the control of antibiotic abuse as well as the mechanisms underlying the transfer of antibiotic genes (ARGs) among microbiota naturally occurring in the environment. Indeed, ARGs are not only confined to pathogenic bacteria, whose diffusion in the clinical field has aroused serious concerns, but are widespread in saprophytic bacterial communities such as those dominating the food industry. In particular, fresh dairy products can be considered a reservoir of Pseudomonas spp. resistome, potentially transmittable to consumers. Milk and fresh dairy cheeses products represent one of a few "hubs" where commensal or opportunistic pseudomonads frequently cohabit together with food microbiota and hazard pathogens even across their manufacturing processes. Pseudomonas spp., widely studied for food spoilage effects, are instead underestimated for their possible impact on human health. Recent evidences have highlighted that non-pathogenic pseudomonads strains (P. fluorescens, P. putida) are associated with some human diseases, but are still poorly considered in comparison to the pathogen P. aeruginosa. In addition, the presence of ARGs, that can be acquired and transmitted by horizontal genetic transfer, further increases their risk and the need to be deeper investigated. Therefore, this review, starting from the general aspects related to the physiological traits of these spoilage microorganisms from fresh dairy products, aims to shed light on the resistome of cheese-related pseudomonads and their genomic background, current methods and advances in the prediction tools for MDR detection based on genomic sequences, possible implications for human health, and the affordable strategies to counteract MDR spread.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
22
|
Adelowo OO, Helbig T, Knecht C, Reincke F, Mäusezahl I, Müller JA. High abundances of class 1 integrase and sulfonamide resistance genes, and characterisation of class 1 integron gene cassettes in four urban wetlands in Nigeria. PLoS One 2018; 13:e0208269. [PMID: 30496274 PMCID: PMC6264143 DOI: 10.1371/journal.pone.0208269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Abstract
There is little information about environmental contamination with antibiotic resistance genes (ARG) in Sub-Saharan Africa, home to about 1 billion people. In this study we measured the abundance of three genes (sul1, sul2, and intI1) used as indicators of environmental contamination with ARGs in the sediments of four urban wetlands in southwestern Nigeria by qPCR. In addition, we characterised the variable regions of class 1 integrons in sulfamethoxazole/trimethoprim (SMX/TRI)-resistant bacteria isolated from the wetlands by PCR and DNA sequencing. The indicator ARGs were present in all wetlands with mean absolute copy numbers/gram of sediment ranging between 4.7x106 and 1.2x108 for sul1, 1.1x107 and 1x108 for sul2, and 5.3x105 and 1.9x107 for intI1. The relative abundances (ARG/16S rRNA copy number) ranged from about 10-3 to 10-1. These levels of ARG contamination were similar to those previously reported for polluted environments in other parts of the world. The integrase genes intI1 and intI2 were detected in 72% and 11.4% SMX/TRI-resistant isolates, respectively. Five different cassette array types (dfrA7; aadA2; aadA1|dfrA1; acc(6')lb-cr|arr3|dfrA27; arr3|acc(6')lb-cr|dfrA27) were detected among 34 (59.6%) intI1-positive isolates. No gene cassettes were found in the nine intI2-positive isolates. These results show that African urban ecosystems impacted by anthropogenic activities are reservoirs of bacteria harbouring transferable ARG.
Collapse
Affiliation(s)
- Olawale Olufemi Adelowo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Therese Helbig
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
- Institute of Biology/Microbiology Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Camila Knecht
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
- Institute of Instrumental & Environmental Technology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Franziska Reincke
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Ines Mäusezahl
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Jochen A. Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| |
Collapse
|